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Abstract. This paper makes progress toward the 3k−4 conjecture in groups Z/pZ for p prime.

The conjecture states that if A is a nonempty subset of Z/pZ satisfying 2A 6= Z/pZ and |2A| =
2|A|+r ≤ min{3|A|−4, p−r−3}, then A is covered by an arithmetic progression of size at most

|A|+ r + 1. Previously, the best result toward this conjecture, without any additional constraint

on |A|, was a theorem of Serra and Zémor proving the conjecture provided r ≤ 0.0001|A|. Subject

to the mild additional constraint |2A| ≤ 3p/4 (which is optimal in a sense explained in the paper),

our first main result improves the bound on r, allowing r ≤ 0.1368|A|. We also prove a variant

which further improves this bound on r provided A is sufficiently dense. We then apply this

variant to give a new upper bound for the maximal density of m-sum-free sets in Z/pZ, i.e., sets

A having no solution (x, y, z) ∈ A3 to the equation x + y = mz, where m ≥ 3 is a fixed integer.

The previous best upper bound for this maximal density was 1/3.0001 (using the Serra-Zémor

Theorem). We improve this to 1/3.1955. We also present a construction of Schoen that yields a

lower bound independent of m for this maximal density, of the form 1/8− om,p→∞(1).

1. Introduction

Given a subset A of an abelian group G, we often denote the sumset A+A = {x+y : x, y ∈ A}
by 2A, and we denote the complement G \A by A.

One of the central topics in additive number theory is the study of the structure of a finite

subset A of an abelian group under the assumption that the sumset 2A is small. In this paper,

we focus on groups Z/pZ of integers modulo a prime p, and on the regime in which the doubling

constant |2A|/|A| is within a small additive constant of the minimum possible value.

To put this in context, let us recall the basic fact that a finite set A of integers always satisfies

|2A| ≥ 2|A|− 1 and that this minimum is attained only if A is an arithmetic progression (see [11,

Theorem 3.1]). This description of extremal sets is extended by a result of Freiman, known as

the 3k− 4 Theorem, which tells us that A is still efficiently covered by an arithmetic progression

even when |2A| is as large as 3|A| − 4.

Theorem 1.1 (Freiman’s 3k− 4 Theorem). Let A ⊆ Z be a finite set satisfying |2A| ≤ 3|A| − 4.

Then there is an arithmetic progression P ⊆ Z such that A ⊆ P and |P | ≤ |2A| − |A|+ 1.

For sets A in Z/pZ with 2A 6= Z/pZ, the Cauchy-Davenport Theorem [11, Theorem 6.2] gives

the lower bound analogous to the one for Z mentioned above, namely |2A| ≥ 2|A| − 1, and the

description of extremal sets as arithmetic progressions (when |2A| < p− 1) is given by Vosper’s

Theorem [11, Theorem 8.1].
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It is widely believed that an analogue of Freiman’s 3k − 4 Theorem holds for subsets of Z/pZ
under some mild additional upper bound on |2A| (or on |A|). More precisely, the following

conjecture is believed to be true (see [11, Conjecture 19.2]), describing efficiently not just A, but

also 2A, in terms of progressions.

Conjecture 1.2. Let p be a prime and let A ⊂ Z/pZ be a nonempty subset satisfying 2A 6= Z/pZ
and |2A| = 2|A| + r ≤ min{3|A| − 4, p − r − 3}. Then there exist arithmetic progressions

PA, P2A ⊆ Z/pZ with the same difference such that A ⊆ PA, |PA| ≤ |A|+ r + 1, P2A ⊆ 2A, and

|P2A| ≥ 2|A| − 1.

Progress toward this conjecture was initiated by Freiman himself, who proved in [9] that the

conclusion concerning PA holds provided that |2A| ≤ 2.4|A| − 3 and |A| < p/35. Since then,

there has been much work improving Freiman’s result in various ways. For instance, Rødseth

showed in [14] that the constraint |A| < p/35 can be weakened to |A| < p/10.7 while maintaining

the doubling constant 2.4. In [10], Green and Ruzsa pushed the doubling constant up to 3, at

the cost of a stronger constraint |A| < p/10215. In [17], Serra and Zémor obtained a result with

no constraint on |A| other than the bounds on |2A| in the conjecture, with the same conclusion

concerning PA, but at the cost of reducing the doubling constant, namely, assuming that |2A| ≤
(2 + α)|A| with α < 0.0001. See also [3], where the doubling constant 2.4 in Freiman’s result is

improved to 2.48 while keeping the hypothesis on |A| markedly less constraining than the one

from [10]. The book [11] presents various other results towards Conjecture 1.2, in a treatment

covering many of the methods from the works mentioned above.

In this paper, we establish the following new result regarding Conjecture 1.2, which noticeably

improves the doubling constant obtained by Serra and Zémor in [17] at the cost of only adding

the mild constraint |2A| ≤ 3
4p.

Theorem 1.3. Let p be prime, let A ⊆ Z/pZ be a nonempty subset with |2A| = 2|A|+ r, and let

α ≈ 0.136861 be the unique real root of the cubic 4x3 + 9x2 + 6x− 1. Suppose

|2A| ≤ (2 + α)|A| − 3 and |2A| ≤ 3

4
p.

Then there exist arithmetic progressions PA, P2A ⊆ Z/pZ with the same difference such that

A ⊆ PA, |PA| ≤ |A|+ r + 1, P2A ⊆ 2A, and |P2A| ≥ 2|A| − 1.

Unlike in [17], here we do have a constraint on |A| in the form of the upper bound |2A| ≤ 3
4p.

However, this upper bound is still optimal in the following weak sense. The conjectured upper

bound on |2A| (given by Conjecture 1.2) is p − r − 3. However, in the extremal case where

r = |A| − 4 (the largest value of r allowed in Conjecture 1.2), the conjectured bound implies

3|A| − 4 = |2A| ≤ p − |A| + 1, whence |A| ≤ p+5
4 and |2A| = 3|A| − 4 ≤ 3p−1

4 . Thus, the bound

p− r − 3 becomes as small as 3p−1
4 as we range over all allowed values for α and |A|, making 3

4p

the optimal bound independent of α and r.
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We also prove the following variant of Theorem 1.3, which is optimized for sets A whose density

is large but at most 1/3. This optimization is designed for an application concerning m-sum-free

sets, which we discuss below.

Theorem 1.4. Let p be prime, let η ∈ (0, 1), let A ⊆ Z/pZ be a set with |A| ≥ η p > 0 and

|2A| = 2|A|+ r < p, and let α = −5
4 + 1

4

√
9 + 8 η p sin(π/p)/ sin(πη/3). Suppose

|2A| ≤ (2 + α)|A| − 3 and |A| ≤ p− r
3

.

Then there exist arithmetic progressions PA, P2A ⊆ Z/pZ with the same difference such that

A ⊆ PA, |PA| ≤ |A|+ r + 1, P2A ⊆ 2A, and |P2A| ≥ 2|A| − 1.

We apply this result to obtain new upper bounds for the size of m-sum-free sets in Z/pZ.

For a positive integer m, a subset A of an abelian group is said to be m-sum-free if there is no

triple (x, y, z) ∈ A3 satisfying x + y = mz. These sets have been studied in numerous works in

arithmetic combinatorics, including various types of abelian group settings [1, 6, 7, 8, 13] (see

also [4, Section 3] for an overview of this topic). In Z/pZ, a central goal concerning these sets is

to estimate the quantity

dm(Z/pZ) = max
{ |A|
p : A ⊆ Z/pZ m-sum-free

}
.

This goal splits naturally into two problems of different nature. On the one hand, we have the

case m = 2, which is the only one in which the solutions of the linear equation in question (i.e.,

3-term arithmetic progressions) form a translation invariant set. Roth’s Theorem [15] tells us that

d2(Z/pZ)→ 0 as p→∞, and the problem in this case is then the well-known one of determining

the optimal bounds for Roth’s theorem, i.e., how fast d2(Z/pZ) vanishes as p increases (recent

developments in this direction include [2, 16]). On the other hand, we have the cases m ≥ 3. For

each of these, the above-mentioned translation-invariance fails, and it is known that dm(Z/pZ)

converges, as p → ∞ through primes, to a positive constant dm which can be modeled on the

circle group (see [5]), the problem then being to determine this constant. Our application of

Theorem 1.4 makes progress on the latter problem.

Note that, if A is m-sum-free, then the dilate m · A = {mx : x ∈ A} ⊆ Z/pZ satisfies

2A ∩ m · A = ∅, whence, if m and p are coprime, we have |2A| + |m · A| = |2A| + |A| ≤ p.

Combining this with the bound |2A| ≥ 2|A| − 1 given by the Cauchy-Davenport Theorem, we

deduce the simple bound |A| ≤ p+1
3 , which implies in particular that dm ≤ 1/3. It was noted in

[4] that partial versions of Conjecture 1.2 can be used to improve on this bound, provided these

versions are applicable to sets of density up to 1/3. The best version available for that purpose

in [4] was given by the theorem of Serra and Zémor mentioned above, and this resulted in the

first upper bound for dm below 1/3, namely 1/3.0001 (see [4, Theorem 3.1]). In this paper, using

Theorem 1.4 we obtain the following improvement.
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Theorem 1.5. Let p ≥ 5 be a prime, let m be an integer in [2, p − 2], and let c = c(p) be the

solution to the equation
(

7 +
√

8 c p sin(π/p)/ sin(πc/3) + 9
)
c = 4 + 12

p . Then dm(Z/pZ) < c. In

particular, dm ≤ 1
3.1955 .

Regarding lower bounds for dm(Z/pZ), note that, identifying Z/pZ with the integers [0, p− 1],

the interval ( 2
m2−4

p, m
m2−4

p) is an m-sum-free set. This set has asymptotic density 1
m+2 , and is

still the greatest known example for m ≤ 7. However, for larger values of m, a construction of

Tomasz Schoen (personal communication), presented in this paper in Lemma 3.1 with his kind

permission, yields an improved lower bound of the form dm ≥ 1
8−om→∞(1). We summarize these

results as follows.

Theorem 1.6. For m ≤ 7, we have dm ≥ 1
m+2 . For m ≥ 8, we have dm ≥ 1

2mb
m
4 c.

The paper is laid out as follows. In Section 2, we prove Theorems 1.3 and 1.4. Our results on m-

sum-free sets are proved in Section 3. There, in Subsection 3.1, we present Schoen’s construction

and deduce Theorem 1.6. Then, in Subsection 3.2, we apply Theorem 1.4 to obtain Theorem 1.5.

Acknowledgements. We are very grateful to Tomasz Schoen for providing the construction in

Lemma 3.1 and for some useful remarks.

2. New bounds toward the 3k − 4 conjecture in Z/pZ

Our first task in this section is to prove Theorem 1.3. We shall obtain this result as the special

case ε = 3/4 of the following theorem.

Theorem 2.1. Let p be prime, let 0 < ε ≤ 3
4 be a real number, let α be the unique positive root

of the cubic 4x3 + (12 − 4ε)x2 + (9 − 4ε)x + (8ε − 7), and let A ⊆ Z/pZ be a nonempty subset

with |2A| = 2|A|+ r. Suppose

|2A| ≤ (2 + α)|A| − 3 and |2A| ≤ ε p.

Then there exist arithmetic progressions PA, P2A ⊆ Z/pZ with the same difference such that

A ⊆ PA, |PA| ≤ |A|+ r + 1, P2A ⊆ 2A, and |P2A| ≥ 2|A| − 1.

The proof is a modification of the argument used to prove [11, Theorem 19.3], itself based on

the original work of Freiman [9] and incorporating improvements to the calculations noted by

Rødseth [14]. The main new contribution is an argument to allow the restriction |2A| ≤ 1
2(p+ 3)

from [11, Theorem 19.3] to be replaced by the above condition |2A| ≤ εp. For ε = 3/4, this is

optimal in the sense explained in the introduction.

In the proof of Theorem 2.1, we use the following version of the 3k − 4 Theorem for Z. Here,

for X ⊆ Z, we denote the greatest common divisor gcd(X −X) by gcd∗(X). Note, for |X| ≥ 2,

that d = gcd∗(X) is the minimal d ≥ 1 such that X is contained in an arithmetic progression

with difference d.
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Theorem 2.2. Let A, B ⊆ Z be finite, nonempty subsets with gcd∗(A+B) = 1 and

|A+B| = |A|+ |B|+ r ≤ |A|+ |B|+ min{|A|, |B|} − 3− δ,

where δ = 1 if x + A = B for some x ∈ Z, and otherwise δ = 0. Then there are arithmetic

progressions PA, PB, PA+B ⊆ Z with common difference 1 such that A ⊆ PA, B ⊆ PB, PA+B ⊆
A+B, |PA| ≤ |A|+ r + 1, |PB| ≤ |B|+ r + 1 and |PA+B| ≥ |A|+ |B| − 1.

For a prime p, nonzero g ∈ Z/pZ (which is then a generator of Z/pZ), and integers m ≤ n, let

[m,n]g = {mg, (m+ 1)g, . . . , ng}

denote the corresponding interval in Z/pZ. If m > n, then [m,n]g = ∅. For X ⊆ Z/pZ, we let

`g(X) denote the length of the shortest arithmetic progression with difference g which contains

X, and we let X = (Z/pZ) \ X denote the complement of X in Z/pZ. We say that a sumset

A + B ⊆ Z/pZ rectifies if `g(A) + `g(B) ≤ p + 1 for some nonzero g ∈ Z/pZ. In such case,

A ⊆ a0 + [0,m]g and B ⊆ b0 + [0, n]g with m + n = `g(A) + `g(B) − 2 ≤ p − 1, for some

a0, b0 ∈ Z/pZ, in which case the maps a0 + sg 7→ s and b0 + tg 7→ t, for s, t ∈ Z, when restricted

to A and B respectively, show that the sumset A+B is Freiman isomorphic (see [11, Section 2.8])

to an integer sumset. This allows us to canonically apply results from Z to the sumset A+B.

If G is an abelian group and A, B ⊆ G are subsets, then we say that A is saturated with

respect to B if (A ∪ {x}) + B 6= A + B for all x ∈ A. In the proof of Theorem 2.1, we shall

also use the following basic result regarding saturation [11, Lemma 7.2], whose earlier form dates

back to Vosper [18]. We include the short proof for completeness.

Lemma 2.3. Let G be an abelian group and let A, B ⊆ G be subsets. Then

−B +A+B ⊆ A

with equality holding if and only if A is saturated with respect to B.

Proof. First observe that −B + A+B ⊆ A, for if b ∈ B, z ∈ A+B and by contradiction

−b+ z = a for some a ∈ A, then z = a+ b ∈ A+B, contrary to its definition. If A is saturated

with respect to B, then given any x ∈ A, there exists some b ∈ B and z ∈ A+B with x+ b = z,

whence x = −b+z ∈ −B+A+B. This shows that A ⊆ −B+A+B, and as the reverse inclusion

always holds (as just shown), it follows that A = −B +A+B. Conversely, if A = −B +A+B,

then given any x ∈ A, there exists some b ∈ B and z ∈ A+B with x = −b + z, implying

x+b = z /∈ A+B. Since x ∈ A is arbitrary, this shows that A is saturated with respect to B. �

Proof of Theorem 2.1. Let f(x) = 4x3 + (12 − 4ε)x2 + (9 − 4ε)x + (8ε − 7), so that f ′(x) =

12x2 + (24− 8ε)x+ (9− 4ε). Then f ′(x) > 0 for x ≥ 0 (in view of ε ≤ 3/4), meaning f(x) is an

increasing function for x ≥ 0 with f(0) = 8ε − 7 < 0 and f(1/2) = 1 + 5ε > 0. Consequently,

f(x) has a unique positive root 0 < α < 1
2 .
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Since |2A| ≤ εp < p, the Cauchy-Davenport Theorem implies r ≥ −1. Let

(1) β =
r + 3

|A|
> 0,

so that

(2) r = β|A| − 3, |2A| = 2|A|+ r = (2 + β)|A| − 3 and β ≤ α < 1

2
.

Since 2|A|+ r = |2A| ≤ εp ≤ 3
4p, it follows that |A| ≤ 3

8p−
1
2r = 3

8p−
1
2β|A|+

3
2 , which implies

(in view of β > 0) that

(3) |A| ≤ 3p+ 12

4(2 + β)
<

3p+ 12

8
.

The proof naturally breaks into two parts: a first case where there is a large rectifiable sub-

sumset, and a second case where there is not.

Case 1: Suppose there exist subsets A′ ⊆ A and B′ ⊆ A with |B′| ≤ |A′| and

(4) |A′|+ 2|B′| − 4 ≥ |2A|

such that A′ + B′ is rectifiable. Furthermore, choose a pair of subsets A′ ⊆ A and B′ ⊆ A

with these properties such that |A′| + |B′| is maximal, and for these subsets A′ and B′, let

g ∈ Z/pZ be a nonzero difference with `g(A
′) + `g(B

′) ≤ p + 1 minimal. Note |A′| ≥ |B′| ≥ 2;

indeed, if |B′| ≤ 1, then combining this with the hypotheses |B′| ≤ |A′| ≤ |A| and (4) yields the

contradiction |A| − 2 ≥ |2A| ≥ |A|. Since A′+B′ rectifies, the Cauchy-Davenport Theorem for Z
[11, Theorem 3.1] ensures

|A′ +B′| = |A′|+ |B′|+ r′ with r′ ≥ −1.

Moreover, we have

(5) A′ ⊆ PA := a0 + [0,m]g, B′ ⊆ PB := b0 + [0, n]g, and A′+B′ ⊆ a0 + b0 + [0,m+n]g

with a0, a0 + mg ∈ A′, b0, b0 + ng ∈ B′ and m + n ≤ p − 1, for some a0, b0 ∈ Z/pZ. Then,

since A′ + B′ rectifies, it follows that the map ψ : Z/pZ → [0, p − 1] ⊆ Z defined by ψ(sg) = s

for s ∈ [0, p− 1], gives a Freiman isomorphism of A′ +B′ with the integer sumset ψ(−a0 +A′) +

ψ(−b0 +B′) ⊆ Z. Observe that

gcd∗(ψ(−a0 +A′) + ψ(−b0 +B′)) = 1,

since if ψ(−a0 + A′) + ψ(−b0 + B′) were contained in an arithmetic progression with difference

d ≥ 2, then this would also be the case for ψ(−a0 + A′) and ψ(−b0 + B′), and then `dg(A
′) +

`dg(B
′) < `g(A

′) + `g(B
′) would follow in view of |A′| ≥ |B′| ≥ 2, contradicting the minimality of

`g(A
′) + `g(B

′) for g.

In view of (4) and |B′| ≤ |A′|, we have |A′ + B′| ≤ |2A| ≤ |A′| + |B′| + min{|A′|, |B′|} − 4.

Thus, since gcd∗(ψ(−a0 + A′) + ψ(−b0 + B′)) = 1, we can apply the 3k − 4 Theorem (Theorem

2.2) to the isomorphic sumset ψ(−a0 + A′) + ψ(−b0 + B′). Then, letting PA = a0 + [0,m]g,
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PB = b0 + [0, n]g and PA+B ⊆ A′ + B′ be the resulting arithmetic progressions with common

difference g, we conclude that

(6) |PA \A′| ≤ r′ + 1 and |PB \B′| ≤ r′ + 1.

If A′ = A and B′ = A, then the original sumset 2A rectifies, we have r′ = r, and the theorem

follows with PA = PB and P2A = PA+B as just defined. Therefore we can assume otherwise,

which in view of |B′| ≤ |A′| means

(7) A \B′ 6= ∅.

Let ∆ = |2A| − |A′ +B′| ≥ 0. Then

(8) r′ = |A \A′|+ |A \B′|+ r −∆.

Since |A′|+ |B′|+ r′ = |A′ +B′| = |2A| −∆, it follows from (4) and |B′| ≤ |A′| that

(9) r′ ≤ |B′| − 4−∆ and r′ ≤ |A′| − 4−∆.

Averaging both bounds in (9) along with the bound (8), and recalling that |2A| = 2|A| + r, we

obtain

(10) r′ ≤ 1

3
|2A| − 8

3
−∆.

Step A. | −A′ +A′ +A| ≤ |A′ +A|+ 2|A′| − 4.

Proof. If Step A fails, then combining its failure with p− |2A| = |2A| ≤ |A′ +A| and Lemma 2.3

yields

p− |2A|+ 2|A′| − 3 ≤ |A′ +A|+ 2|A′| − 3 ≤ | −A′ +A′ +A| ≤ |A| = p− |A|,

which implies that |A| + 2|A′| − 3 ≤ |2A|. This together with (4) and |B′| ≤ |A′| ≤ |A| implies

|A|+ 2|A′| − 3 ≤ |A′|+ 2|B′| − 4 ≤ |A|+ 2|A′| − 4, which is not possible. �

Step B. | −A′ +A′ +A| ≤ |A′|+ 2|A′ +A| − 3.

Proof. If Step B fails, then combining its failure with 2p − 4|A| − 2r = 2|2A| ≤ 2|A′ +A| and

Lemma 2.3 yields

|A′|+ 2p− 4|A| − 2r − 2 ≤ |A′|+ 2|A′ +A| − 2 ≤ | −A′ +A′ +A| ≤ |A| = p− |A|.

Collecting terms in the above inequality, multiplying by 2, and applying the estimates |B′| ≤ |A′|
and (10) yields

2p ≤ 6|A|+ 4r − 2|A′|+ 4 ≤ 3|2A|+ r − |A′| − |B′|+ 4

= 3|2A| − |A′ +B′|+ r + r′ + 4 = 2|2A|+ ∆ + r + r′ + 4 ≤ 7

3
|2A|+ r +

4

3
.

Hence |2A| ≥ 6
7p−

3
7r −

4
7 . Combined with (2) and (3), we conclude that

6

7
p− 3

7
α(

3p+ 12

8
) +

5

7
<

6

7
p− 3

7
β|A|+ 5

7
=

6

7
p− 3

7
r − 4

7
≤ |2A| ≤ εp ≤ 3

4
p,
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which yields the contradiction 0 < (6
7 −

3
4 −

9
56α)p < 36

56α−
5
7 < 0 (in view of α < 1

2), completing

Step B. �

By our application of the 3k − 4 Theorem (Theorem 2.2) to ψ(−a0 + A′) + ψ(−b0 + B′),

we know that A′ + B′ contains an arithmetic progression PA+B with difference g and length

|PA+B| ≥ |A′|+ |B′| − 1, which implies

`g(A′ +B′) ≤ p− |A′| − |B′|+ 1.

By (6) and (9), we obtain

(11) `g(−A′) = `g(A
′) ≤ |A′|+ r′ + 1 ≤ |A′|+ |B′| − 3,

whence `g(−A′) + `g(A′ +B′) ≤ p−2, ensuring −A′+A′ +B′ rectifies via the difference g. Since

A′ +A ⊆ A′ +B′, it follows that −A′ +A′ +A also rectifies via the difference g.

By our application of the 3k−4 Theorem (Theorem 2.2) to ψ(−a0 +A′)+ψ(−b0 +B′), we know

ψ(−a0 +A′) is contained in the arithmetic progression ψ(−a0 +PA) = [0,m] with difference 1 and

length |PA| ≤ |A′|+r′+1, with the latter inequality by (6). Moreover, r′+1 ≤ |B′|−3 ≤ |A′|−3 (by

(9)), so that |A′| > d1
2 |PA|e, meaning ψ(−a0 + A′) must contain at least 2 consecutive elements.

Hence

(12) gcd∗(ψ(−a0 +A′)) = 1.

Since −A′ + A′ +A rectifies via the difference g, it is then isomorphic to the integer sumset

ψ(a0 + mg − A′) + ψ(x + A′ +A) for an appropriate x ∈ Z/pZ. Hence, in view of (12), Step

A and Step B, we can apply the 3k − 4 Theorem (Theorem 2.2) to the isomorphic sumset

ψ(a0 + mg − A′) + ψ(x + A′ +A) and thereby conclude that there is an arithmetic progression

P ⊆ −A′ + A′ +A with difference g and length |P | ≥ |A′| + |A′ +A| − 1 ≥ |A′| + |2A| − 1 =

p−|2A|+ |A′|−1. Consequently, since Lemma 2.3 ensures that P ⊆ −A′+A′ +A ⊆ A, it follows

that `g(A) ≤ |2A| − |A′|+ 1. Combined with (11), we find that

(13) `g(A
′) + `g(A) ≤ |2A|+ r′ + 2.

If A′ + A does not rectify, then (13) and (10) imply p ≤ |2A| + r′ ≤ 4
3 |2A| −

8
3 , whence

|2A| ≥ 3
4p + 2 > εp, contrary to hypothesis. Therefore A′ + A rectifies. This contradicts the

maximality of |A′|+ |B′| since by (7) we have |A| > |B′|, which completes Case 1.

Case 2: Every pair of subsets A′ ⊆ A and B′ ⊆ A with |B′| ≤ |A′| whose sumset A′+B′ rectifies

has

(14) |A′|+ 2|B′| ≤ |2A|+ 3.

Let ` := |2A| = 2|A| + r. For the rest of this proof, let us identify Z/pZ with the set of

integers [0, p− 1] with addition mod p. Then, for every X ⊆ Z/pZ and d ∈ Z/pZ, we define the

exponential sum SX(d) =
∑

x∈X e
2πi
p
dx ∈ C.
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The idea is to use Freiman’s estimate [12, Theorem 1] for such sums to show that the assumption

(14) implies

(15) |SA(d)| ≤ 1
3 |A|+

2
3r + 2 for all nonzero d ∈ Z/pZ.

For any u ∈ [0, 2π), consider the open arc Cu = {eix : x ∈ (u, u + π)} of length π in the unit

circle in C. Let A′ = {x ∈ A : e
2πi
p
dx ∈ Cu}. Since the set of p-th roots of unity contained in

Cu correspond to an arithmetic progression of difference 1 in Z/pZ, it is clear that, for d∗ the

multiplicative inverse of d modulo p, we have `d∗(A
′) ≤ p+1

2 . Hence the sumset A′ +A′ rectifies.

Then the assumption (14) implies that 3|A′| ≤ |2A|+ 3. This shows that every open half arc of

the unit circle contains at most n = 1
3 |2A|+1 of the |A| terms involved in the sum SA(d). By [12,

Theorem 1] applied with this n, N = |A|, and ϕ = π, we obtain |SA(d)| ≤ 2n−N = 2
3 |2A|+2−|A|,

and (15) follows.

To complete the proof, we now exploit (15) to obtain a contradiction, using in particular the

following manipulations which are standard in the additive combinatorial use of Fourier analysis

(e.g. [11, pp. 290–291])

By Fourier inversion and the fact that SA(0) = |A| and S2A(0) = `, we have

|A|2p =
∑

x∈Z/pZ

SA(x)SA(x)S2A(x) = SA(0)SA(0)S2A(0) +
∑

x∈(Z/pZ)\{0}

SA(x)SA(x)S2A(x)

= |A|2`+
∑

x∈(Z/pZ)\{0}

SA(x)SA(x)S2A(x) ≤ |A|2`+
∑

x∈(Z/pZ)\{0}

|SA(x)||SA(x)||S2A(x)|

≤ |A|2`+ (
1

3
|A|+ 2

3
r + 2)

∑
x∈(Z/pZ)\{0}

|SA(x)||S2A(x)|.

This last sum is at most
( ∑
x∈Z/pZ\{0}

|SA(x)|2
)1/2( ∑

x∈Z/pZ\{0}
|S2A(x)|2

)1/2
by the Cauchy-Schwarz

inequality. We thus conclude that

|A|2p ≤ |A|2`+
|A|+ 2r + 6

3
(|A|p− |A|2)1/2(`p− `2)1/2.

Rearranging this inequality, we obtain

(16)
|A|+ 2r + 6

3|A|
≥ |A|(p− `)
|A|1/2(p− |A|)1/2`1/2(p− `)1/2

=

(
p
` − 1
p
|A| − 1

)1/2

.

By hypothesis r = β|A| − 3, and ` = |2A| = (2 + β)|A| − 3, so |A| = `+3
2+β > `

2+β . Using these

estimates in (16) yields

1 + 2β

3
=
|A|+ 2(β|A| − 3) + 6

3|A|
=
|A|+ 2r + 6

3|A|
≥

(
p
` − 1
p
|A| − 1

)1/2

>

( p
` − 1

(2 + β)p` − 1

)1/2

.
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Rearranging the above inequality yields (in view of 0 < β ≤ α < 1)

εp ≥ ` >
1− (1+2β

3 )2(2 + β)

1− (1+2β
3 )2

p.(17)

Since β ≤ α < 1, rearranging the above inequality yields

(18) 4β3 + (12− 4ε)β2 + (9− 4ε)β + 8ε− 7 > 0.

Thus f(β) > 0, with f(x) = 4x3 + (12− 4ε)x2 + (9− 4ε)x+ 8ε− 7. As noted at the start of the

proof, f(x) is increasing for x ≥ 0 with a unique positive root α. As a result, (18) ensures that

β > α, which is contrary to hypothesis, completing the proof. �

Remark 2.4. Our restriction |2A| ≤ 3
4p in Theorem 2.1 could be relaxed somewhat further,

but at increasingly greater cost to the resulting constant α. One simply needs to strengthen the

hypothesis of (4) and appropriately adjust the Fourier analytic calculation in Case 2 in the above

proof, using the correspondingly weakened inequality for (14).

Proof of Theorem 1.3. As mentioned earlier, Theorem 1.3 is just the special case of Theorem 2.1

with ε = 3
4 . �

We now proceed to prove the variant that we shall apply in the next section.

Proof of Theorem 1.4. The proof is very close to that of Theorem 2.1, with the most significant

difference occurring in Case 2. We only highlight the few differences in the argument.

First observe that, if p = 2, then |2A| < p forces |A| = 1, in which case the theorem holds

trivially. Therefore we can assume p ≥ 3. Next observe (via Taylor series expansion) that

p sin(π/p) is an increasing function for p > 1 with limit π. The function η/ sin(πη/3) is also an

increasing function for η ∈ (0, 1). Thus α ≤ −5
4 + 1

4

√
9 + 8π/ sin(π/3) < 0.3. By hypothesis,

|A| ≤ p−r
3 = 1

3p−
1
3β|A|+ 1, implying

(19) |A| ≤ p+ 3

β + 3
<
p+ 3

3
,

which replaces (3) for the proof. Also, |2A| = 2|A|+ r ≤ 2(p−r3 ) + r = 2p+r
3 .

At the end of Step B in Case 1, we instead obtain 6
7p−

3
7r −

4
7 ≤ |2A| ≤

2p+r
3 , which implies

2

3
p ≥ 6

7
p− 16

21
r − 4

7
≥ 6

7
p− 16

21
α|A|+ 16

7
− 4

7
>

6

7
p− 16

21
α(
p+ 3

3
) +

16

7
− 4

7
,

with the final inequality above in view of (19). Thus 0 < (6
7 −

2
3 −

16
63α)p < 16

21α−
12
7 < 0 (in view

of 0 < α < 0.3), which is the contradiction that instead completes Step B.

At the end of Case 1, we instead likewise obtain

3

4
p+ 2 ≤ |2A| ≤ 2p+ r

3
≤ 2

3
p+

1

3
α|A| − 1 <

2

3
p+

1

3
α(
p+ 3

3
)− 1.

This yields the contradiction 0 < (3
4 −

2
3 −

α
9 )p < α

3 − 3 < 0 (in view of 0 < α < 0.3) in order to

complete Case 1.
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For Case 2, we begin by following the argument that proves (15), except that we use Lev’s

sharper estimate [12, Theorem 2] instead of [12, Theorem 1]. Thus, using that any two distinct

terms in SA have the shortest arc between them of length at least δ = 2π/p, we obtain by [12,

Theorem 2] applied with n = 1
3 |2A|+1 ≤ p/2 (so δn ≤ π) that, for every such nonzero d, we have

(20) |SA(d)| ≤
sin
((

1
3 |2A|+ 1− 1

2 |A|
)

2π
p

)
sin(πp )

=
sin
(
(1

3 |A|+
2
3r + 2)πp

)
sin(πp )

.

Let M = 1
3 |A| +

2
3r + 2, and let y = M/p. Note M ≤ (1

3 + 2
3α)|A| < (1

3 + 2
3(0.3))p+3

3 < p
2

in view of r ≤ α|A| − 3 and (19), ensuring y ∈ (η3 ,
1
2). Then the inequality in (20) becomes

|SA(d)| ≤ sin(yπ)
yp sin(π

p
) M . The function f(p, y) = sin(yπ)

yp sin(π
p

) is decreasing in y ∈ (0, 1/2) for any fixed

p ≥ 3, as can be seen by considering the taylor series expansion of its partial derivative. It is also

decreasing in p for every fixed y ∈ (0, 1/2) by a similar analysis. Letting γ = f(p, η3 ) > 0, we can

therefore replace (15) by the bound

(21) |SA(d)| ≤ γ(1
3 |A|+

2
3r + 2).

Since M π
p <

π
2 , M > 1 and p ≥ 3, it follows that sin(M π

p ) −M sin(πp ) ≤ 0 (as can be seen by

considering derivatives with respect to M and using the Taylor series expansion of tan(πp ) to note

tan(πp ) > π
p ). Consequently, we see that the bound in (20) is at most M , ensuring γ ≤ 1. We

now obtain the following inequality instead of (16):

(22) γ
1 + 2β

3
=
γ(1

3 |A|+
2
3r + 2)

|A|
≥ |A|(p− `)
|A|1/2(p− |A|)1/2`1/2(p− `)1/2

=

(
p
` − 1
p
|A| − 1

)1/2

.

A similar rearrangement as the one that yielded (17) now leads to

(23)
2p+ β

3+β (p+ 3)− 3

3
≥ 2p+ β|A| − 3

3
=

2p+ r

3
≥ |2A| >

1− γ2(1+2β
3 )2(2 + β)

1− γ2(1+2β
3 )2

p,

with the first inequality following from (19). Since 0 ≤ β < 1 and 0 < γ ≤ 1, we have β
3+β < 1

and also 1− γ2(1+2β
3 )2 > 0, whence (23) implies(β + 2

β + 3

)(
1− γ2

(1 + 2β

3

)2)
> 1− γ2

(1 + 2β

3

)2
(2 + β).

Multiplying both sides by β+3 > 0 and grouping on the left side the terms involving γ, we obtain

(β+ 2)2γ2
(

1+2β
3

)2
> 1. Taking square roots and expanding, we deduce 2β2 + 5β+ 2− 3γ−1 > 0.

The quadratic formula thus implies that either β <
−5−
√

9+24γ−1

4 < 0 or β >
−5+
√

9+24γ−1

4 = α.

Since β > 0, this contradicts the hypothesis β ≤ α, completing the proof. �
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3. Bounds for m-sum-free sets in Z/pZ

In this section, we give new bounds for the quantity

dm(Z/pZ) = max
{ |A|
p : A ⊆ Z/pZ is m-sum-free

}
.

In the first subsection below, we present some examples of largem-sum-free sets, and in Subsection

3.2, we apply Theorem 1.4 to give a new upper bound for dm(Z/pZ).

3.1. Lower bounds for dm(Z/pZ).

As mentioned in the introduction, a simple example of a large m-sum-free set is the interval

( 2
m2−4

p, m
m2−4

p), having asymptotic density 1
m+2 as p→∞. This gives the largest known example

for m ≤ 7, but not for greater values of m. Indeed, there is the following construction, due to

Tomasz Schoen.

Lemma 3.1 (T. Schoen). For each integer m ≥ 3, we have dm(Z/pZ) ≥ bm/4c
m

p−1
2p for every

prime p of the form p = 2mn+ 1. In particular, lim p→∞
p prime

dm(Z/pZ) ≥ 1
2mb

m
4 c.

Proof. We identify Z/pZ with the interval of integers [0, p − 1] with addition mod p. Let J be

the interval [1, (p − 1)/2] = [1,mn] in Z/pZ. We construct an m-sum-free set A by picking

appropriate elements from J . We need to ensure that 2A∩ (m ·A) = ∅, and for this it suffices to

have 2A ∩ (m · J) = ∅.
Now m ·J is an arithmetic progression of difference m. Taking blocks of 2n consecutive terms,

we partition m · J into progressions U1, U2, . . . , Us, s = bm2 c, together with a final remainder

progression Us+1 of length 0 if m is even and length n if m is odd. More precisely, we have

U1 = {m, 2m, . . . , 2mn}, then U2 = {m − 1, 2m − 1, . . . , 2mn − 1}, and so on, up to Us =

{m− (s− 1), . . . , 2mn− (s− 1)}, with Us+1 = ∅ or {m− s, . . . ,mn− s}.
Looking at this modulo m, we see m ·J is confined to the congruence classes 0,−1, . . . ,−bm−1

2 c
mod m. Therefore, it suffices to ensure that 2A occupies the other congruence classes mod m.

For example, the following set in Z/pZ is m-sum-free:

A = {x ∈ J : x ∈ [1, bm/4c] mod m},

since 2A mod m is included in [1, bm2 c] which is the complement of [dm+1
2 e,m] mod m with

m · J ⊆ [dm+1
2 e,m] mod m. We have |A| = nbm/4c = bm/4c

m
p−1

2 , and the result follows as there

are an infinite number of primes of the form 2mn+ 1 for fixed m. �

3.2. Upper bound for dm(Z/pZ).

In this final part of the paper, we prove Theorem 1.5, which we restate here for convenience.
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Theorem 3.2. Let p ≥ 5 be a prime, let m be an integer in [2, p − 2], and let c = c(p) be the

solution to the equation c = 1+3/p
3+α(c,p) , where α = α(c, p) is the parameter in Theorem 1.4 with

η = c. Then dm(Z/pZ) < c. In particular, dm ≤ 1
3.1955 .

The idea of the proof is roughly the following: either an m-sum-free set A has doubling constant

at least 2 + α, in which case, since (m · A) ∩ 2A = ∅, we have (3 + α)p = |(m · A)| + |2A| ≤ p

and we are done, or we can apply Theorem 1.4, and thus, working with the two arithmetic

progressions provided by the theorem, we reduce the problem essentially to bounding the size

that two progressions I and J of equal difference can have if the dilate m ·J has small intersection

with I. Let us begin by establishing this result about progressions.

Lemma 3.3. Let p ≥ 5 be prime, let 0 < α ≤ 1/5, and let d ∈ [2, p−2] and N be natural numbers

with N ≤ p+1
3 . Let I and J be progressions in Z/pZ having the same difference and satisfying

|I| = 2N − 1, |J | = b(1 + α)N − 2c, and |I ∩ (d · J)| ≤ αN − 2. Then N < p+3
3+α .

Proof. First note that, without loss of generality, we can assume d ≤ p−1
2 , since if the lemma

is proved with this assumption, then, given d > p−1
2 , we can multiply by −1 and apply the

lemma with the intervals −I and J . Let us proceed by contradiction supposing that there exists

some N (along with p, d, α, I and J) such that the hypotheses of the lemma are satisfied but

N ≥ p+3
3+α . Note that the supposed properties of I and J are conserved if we dilate by the inverse

of their difference mod p and if we translate, replacing I by I + dz and J by J + z. It follows

that, identifying Z/pZ with the integers [0, p − 1] with addition mod p, we can assume that

I = [p− |I|, p− 1] and J = x+ [0, |J | − 1] mod p for some x ∈ [0, p− 1].

If d · x ∈ [d, p − |I| + d − 1] mod p, then d · (x − 1) /∈ I mod p, ensuring that the interval

J ′ = (x− 1) + [0, |J | − 1] satisfies the hypotheses with |I ∩ (d · J ′)| ≤ |I ∩ (d · J)|. On the other

hand, if d ·x ∈ [p−|I|, p−1], then d ·x is an element from the intersection I∩ (d ·J) not contained

in I ∩ (d · J ′), where J ′ = (x + 1) + [0, |J | − 1], whence the interval J ′ = (x + 1) + [0, |J | − 1]

satisfies the hypotheses with |I ∩ (d · J ′)| ≤ |I ∩ (d · J)|. In either case, by repeatedly shifting the

interval J , we can w.l.o.g assume

(24) d · x ∈ [0, d− 1] mod p.

In view of (24), we may partition d · J into successive progressions Ui (with difference d) for

i = 1, 2 . . . , s + 1 such that Ui = (minUi + dZ) ∩ [0, p − 1] with minUi ∈ [0, d − 1] for i ∈ [1, s],

and Us+1 is either empty or consists of an initial portion of (minUs+1 + dZ) ∩ [0, p − 1] with

minUs+1 ∈ [0, d− 1]. Then

(25) |Ui ∩ I| ≥
⌊
|I|
d

⌋
for i ∈ [1, s].

In view of (25), we have

(26) αN − 2 ≥ |(d · J) ∩ I| ≥ s
⌊
|I|
d

⌋
.
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Note first that, since the intersection of y + dZ with an interval of length p has size at most

dp/de, we have

(27) s ≥
⌊
|J |
dp/de

⌋
≥
⌊
|J |d

p+ d− 1

⌋
≥ |J |d+ 1

p+ d− 1
− 1 >

((1 + α)N − 3)d+ 1

p+ d− 1
− 1.

We claim that s ≥ 1. Indeed, otherwise |J | ≤ |(d · J) ∩ I| + |(d · J) ∩ [0, p − |I| − 1]| ≤
αN −2 + dp−|I|d e. Using that |J | > (1 +α)N −3, |I| = 2N −1, d ≥ 2 and p ≥ 5, we conclude that

N < p+2d
d+2 ≤ (p+4)/4. Thus N ≤ p+3

4 , which combined with our assumption N ≥ (p+3)/(3+α)

yields (1− α)(p+ 3) ≤ 0, contradicting that α < 1, which proves our claim.

Since s ≥ 1, (26) yields

(28) |(d · J) ∩ I| ≥ b|I|/dc ≥ 2N

d
− 1.

Using again the hypothesis |(d · J) ∩ I| ≤ αN − 2, it follows that (αN − 1)d ≥ 2N > 0. Hence

αN − 1 > 0 and d ≥ 2N
αN−1 >

2
α , whence d ≥ 11 follows in view of α ≤ 1

5 . Thus 11 ≤ d ≤ p−1
2 ,

implying p ≥ 23 and N ≥ p+3
3+α > 6 (in view of α ≤ 1).

Note that b|I|/dc ≥ 1, for otherwise 2N = |I|+1 < d+1 ≤ p+1
2 , contradicting our assumptions

N ≥ p+3
3+α and α ≤ 1. Combining this with (26) and (27), we obtain αN − 2 > ((1+α)N−3)d+1

p+d−1 − 1,

which means d ≤
(
α− 1−2α

N−2

)
(p− 1) < αp (in view of α ≤ 1

2 and N ≥ 3).

So far we have that, if N ≥ p+3
3+α holds, then 11 ≤ d < αp ≤ p/5, and therefore

p > 55.

Also, we have 2N
d − 1 > 0, for otherwise we obtain the contradiction p

4 ≤
p+3
3+α ≤ N ≤

d
2 <

1
2αp ≤

p
10 . The final part of the proof is a calculation involving (26) which will yield a contradiction.

Combining (26) with (28) and (27), we obtain

αN − 2 >

(
((1 + α)N − 3)d+ 1

p+ d− 1
− 1

)(
2N

d
− 1

)
=

2d(1 + α)

d(p+ d− 1)
N2 −

(
(1 + α)d

p+ d− 1
+

6d− 2

d(p+ d− 1)
+

2

d

)
N + 1 +

3d− 1

p+ d− 1
.

We group all terms involving N on the right side, we note that the other terms grouped on the

left side amount to a negative number, and we multiply through by p+d−1
2(1+α)N , to deduce that

N <
1

2(1 + α)

(
(1 + 2α)d+ (

2

d
+ α)p+ 8− 4

d
− α

)
.(29)

Using that 11 ≤ d < p/5 and the assumption N ≥ p+3
3+α , we see that (29) implies

p+ 3

3 + α
<

1

2(1 + α)

(
(1 + 2α)

p

5
+ (

2

11
+ α)p+ 8− 4

11
− α

)
.

Grouping terms involving p to the left side and multiplying through by 110(1 + α)(3 + α) yields

p(47− 142α− 77α2) < 930− 75α− 55α2.
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The polynomial in α on the left side is positive for α ∈ [0, 1/5], whence

p ≤ 55α2 + 75α− 930

77α2 + 142α− 47
,

which is a bound increasing for α ≥ 0, thus maximized for α = 1
5 , yielding p < 59. Since p is

prime, this forces p ≤ 53, contradicting that p > 55, which completes the proof. �

We can now prove the main result.

Proof of Theorem 3.2. Let A ⊆ Z/pZ be an m-sum-free subset of maximum size, with |A| = ηp,

and let α = α(η, p) = −5
4 + 1

4

√
9 + 8 η p sin(π/p)/ sin(πη/3).

Assume by contradiction that η ≥ c. Then, since x 7→ 1+3/p
3+α(x,p) is decreasing in x ∈ (0, 1) and

c = 1+3/p
3+α(c,p) , we deduce that η ≥ c ≥ 1+3/p

3+α , whence

(30) |A| ≥ p+ 3

3 + α
> 1.

As noted at the start of the proof of Theorem 1.4, α(η, p) is increasing for η ∈ (0, 1) with

p sin(π/p) → π monotonically. Since 2A and m · A are disjoint, we have |2A| ≤ p − |A|, while

|2A| ≥ 2|A|−1 by the Cauchy-Davenport Theorem. Thus 2|A|−1 ≤ |2A| ≤ p−|A|, implying |A| ≤
p+1

3 and η ≤ p+1
3p . If p = 5, then 1 < |A| ≤ p+1

3 = 2 forces |A| = 2 and η = 2
5 , whence α < 0.167.

If p = 7, then η ≤ p+1
3p = 8

21 and α ≤ −5
4 + 1

4

√
9 + 8(8/21)7 sin(π/7)/ sin(π(8/21)/3) < .183. For

p ≥ 11, we have η ≤ p+1
3p ≤

12
33 and α ≤ −5

4 + 1
4

√
9 + 8(12/33)π/ sin(π(12/33)/3) < 0.199. Thus

α < 0.2

in all cases.

Let |2A| = 2|A|+ r. Since A is m-sum-free, the sets 2A and m · A are disjoint, which implies

that |2A| < p (as A is nonempty) and that p ≥ |2A|+ |m ·A| = 3|A|+ r. Thus

|A| ≤ p− r
3

and |2A| = 2|A|+ r ≤ 2p+ r

3
.

Since |2A| < p, the Cauchy-Davenport Theorem implies r ≥ −1.

If |2A| = 2|A| + r > (2 + α)|A| − 3, then r > α|A| − 3, in which case |A| ≤ p−r
3 < p−α|A|+3

3 ,

which contradicts (30). Therefore |2A| ≤ (2 + α)|A| − 3 and r ≤ bα|A| − 3c. We can now apply

Theorem 1.4. As a result, there are arithmetic progressions PA and P2A with common difference

g such that A ⊆ PA, P2A ⊆ 2A,

(31) |PA| = b(1 + α)|A| − 2c ≤ p and |P2A| = 2|A| − 1.

It follows that P := m · PA is an arithmetic progression with difference mg 6= ±g such that

(32) |P ∩ P2A| ≤ |P ∩ 2A| ≤ |PA \A| ≤ α|A| − 2.

We can therefore apply Lemma 3.3 with N = |A| (as α < 0.2), deducing that |A| < p+3
3+α ,

a contradiction. Therefore we must have η < c, so dm(Z/pZ) < c, which proves the first

claim in the theorem. Taking the limit of c as p → ∞, we deduce that dm ≤ t where t =
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7
4 + 1

4

√
9 + 8 t π/ sin(πt/3)

)−1
, and the second claim in the theorem follows from solving for t

numerically. �

References

[1] A. Baltz, P. Hegarty, J. Knape, U. Larsson, T. Schoen, The structure of maximum subsets of {1, . . . , n} with

no solutions to a + b = kc, Electron. J. Combin. 12 (2005), Paper No. R19, 16pp.

[2] T. F. Bloom, A quantitative improvement for Roth’s theorem on arithmetic progressions, J. Lond. Math. Soc.

(2) 93 (2016), 643–663.

[3] P. Candela, O. Serra, C. Spiegel, A step beyond Freiman’s theorem for set addition modulo a prime, preprint

(2018). arXiv:1805.12374

[4] P. Candela, A. de Roton, On sets with small sumset in the circle, to appear in Q. J. Math.

[5] P. Candela, O. Sisask, On the asymptotic maximal density of a set avoiding solutions to linear equations modulo

a prime, Acta Math. Hungar. 132 (2011), no. 3, 223–243.

[6] F. R. K. Chung, J. L. Goldwasser, Integer sets containing no solutions to x+ y = 3z, in: R.L. Graham and J.

Nesetil eds., The Mathematics of Paul Erdős, Springer, Berlin (1997), 218–227.
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