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ABSTRACT. Our main motivating goal is the study of factorization in Krull Domains H with
finitely generated class group G. While factorization into irreducibles, called atoms, generally
fails to be unique, there are various measures of how badly this can fail. One of the most
important is the elasticity p(H) = limg—oo pr(H)/k, where py(H) is the maximal number of
atoms in any re-factorization of a product of k atoms. Having finite elasticity is a key indicator
that factorization, while not unique, is not completely wild. The elasticities, as well as many
other arithmetic invariants, are the same as those of an associated combinatorial monoid B(Go)
of zero-sum sequences, where Go C G are the classes containing height one primes.

We characterize when finite elasticity holds for any Krull Domain with finitely generated
class group G. Indeed, our results are valid for the more general class of Transfer Krull Monoids
(over a subset Gg of a finitely generated abelian group G)). Moreover, we show there is a minimal
s < (d+ 1)m, where d is the torsion free rank and m is exponent of the torsion subgroup, such
that ps(H) < oo implies px(H) < oo for all & > 1. This ensures p(H) < oo if and only if
pa+1ym(H) < oo. Our characterization is in terms of a simple combinatorial obstruction to
infinite elasticity: there existing a subset G§ C Go and global bound N such that there are
no nontrivial zero-sum sequences with terms from G§, and every minimal zero-sum sequence
has at most N terms from Go \ G§. We give an explicit description of G§ in terms of the
Convex Geometry of Go modulo the torsion subgroup Gr < G, and show that finite elasticity
is equivalent to there being no positive R-linear combination of the elements of this explicitly
defined subset G§ equal to 0 modulo Gr. Additionally, we use our results to show finite elasticity
implies the set of distances A(H), the catenary degree c(H) (for Krull Monoids) and a weakened
form of the tame degree (for Krull Monoids) are all also finite, and that the Structure Theorem
for Unions holds—four of the most commonly used measurements of structured factorization,
after the elasticity.

Our results for factorization in Transfer Krull Monoids are accomplished by developing an
extensive theory in Convex Geometry generalizing positive bases. The convex cone generated
by X CR%is C(X) = {31, auzi: n >0, z; € X, a; € R, a; > 0}. A positive basis for R is a
minimal by inclusion subset X € R? such that C(X) = R?. Positive bases were first introduced
and studied in the mid 20th century, and the structural work initiated by Reay led to a simplified
proof and strengthening of Bonnice and Klee’s celebrated generalization of Carathéordory’s
Theorem. They have since found increasing importance in areas of applied mathematics. We
show that the structural result of Reay can be extended to special types of complete simplicial
fans, which we term Reay systems. We extend these results to a general theory dealing with
infinite sequences of Reay systems, as well as their limit structures. The latter, while more
complex, avoid the introduction of linear dependencies into the limit structure that were not
originally present, circumventing the general obstacle that a limit of linearly independent sets
can degenerate into linear dependence. The resulting theory is used to study a broad family of
infinite subsets Go of a lattice A C R? that exhibit various types of finite-like behaviour, and
which generalize the class of subsets having finite elasticity.
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1. INTRODUCTION

This work comprises extensive developments combining the areas of Convex Geometry, the
Combinatorics of infinite subsets of lattice points in R¢, and the arithmetic of Krull Domains
and, more generally, of Transfer Krull Monoids. Our main and original motivation concerns the
study of factorization in the very general setting of Transfer Krull Monoids. This is accomplished
by developing an extended theory significantly generalizing prior work in Convex Geometry, then
linked to the algebraic study of factorization via intermediary Combinatorics involving infinite
subsets of lattice points in R,

That the geometry of R¢ could be used to study similar algebraic questions has precedent in
the study of Primitive Partition Identities [33], closely related to Toric Varieties [107] [20], with
such geometric ideas employed in alternative combinatorial language in [7] [42] [61]. However,
we will be concerned with more subtly defined algebraic questions, for whom a direct connection
with Convex Geometry is much less evident. Nonetheless, we will show that such a connection
does exist, though it will require considerable preparatory work in Convex Geometry.

Convex Geometry: Linear Algebra over R? is concerned with subspaces and linear combina-
tions. Imposing the seemingly benign condition that only non-negative scalars be considered

n
leads to the subfield of Convex Geometry concerned with Convex Cones C(X) = {> a;z;: n >
i=1

0,z; € X, a; € R, ; > 0} and positive linear combinations, where X C R?. This natural
line of geometric inquiry was initiated and studied in the mid 20th century by various authors
[31] [90] [15] [92] [93] [94] [74] [16] [102]. Part of their motivation lay in the relationship with
Linear and Integer Programming, Game Theory and classical combinatorial aspects of Convex
Geometry [93] [29], particularly the widely studied subfield having the theorems of Helly, Rado,
Steinitz and Carathéodory as core tenets (see the surveys [35] [32] and the hundreds of refer-
ences there listed). In this setting, the natural analog of a linear basis is a positive basis for R?,
which is a minimal by inclusion subset X C R? such that C(X) = R?. Unlike linear bases, the
cardinality of a positive basis is not determined by the dimension, instead satisfying the basic
bounds d + 1 < |X| < 2d for d > 1. While their cardinality is not unique, Reay [92] gave a
basic structural result for positive bases. The structural description of Reay closely tied positive
bases to the combinatorial foundations of Convex Geometry by first giving a simplified proof
[93] of Bonnice and Klee’s common generalization of the theorems of Carathéordory and Steinitz
[15] [35], and then significantly generalizing the Bonnice-Klee Theorem itself [16] [35]. Positive
bases have since found renewed interest also in applied areas of mathematics, particularly in
Derivative-Free Optimization [30] [97].

The first half of this work is devoted to an expansive extension of the basic structural theory
initiated by Reay for positive bases. We begin by first extending the basic theory of positive bases
to specialized complete simplicial fans. A fan is a finite collection of polyhedral cones C(X) C R¢,
so X C R? is finite, each containing no nontrivial subspace. The faces of C(X) are sub-cones
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C(Y) with Y C X obtained by intersecting C(X ) with a hyperplane defining a closed half-space
that contains C(X), and it is required that each face of a cone from the fan be an element of the
fan, and that the intersection of any two cones in the fan be a face of each. The fan is complete if
the union of all its cones is the entire space, and it is simplicial if each cone C(X) has X linearly
independent, in which case the faces of C(X) correspond to its subsets Y C X. From a purely
geometric perspective, complete simplicial fans are in bijective correspondence with starshaped
spheres (specialized polyhedral complexes defined on the unit sphere), and rational fans (those
whose vertices X come from a lattice) are central to the definition of Toric Varieties [20], which
constitute an entire subfield of Algebraic Geometry. The aforementioned structural partitioning
result of Reay implicitly gives each positive basis the structure of a complete simplicial fan
associated to the partitioning. In Section 4, we methodically extend all basic theory of positive
bases, including the structural result of Reay and several additional properties crucial to the
continued development of the theory, more generally to a type of complete simplicial fan which
we term a Reay system.

One of our main later goals is to study infinite subsets G of a lattice in RY. We wish to
better understand the radial “directions” in which the set G escapes to infinity. For a simple
example like Go = {(-1,y) : y € Z,y > 1} U{(z,0) : = € Z,z > 1} U{(0,—-1)}, it is
intuitively clear that the positive x and y axes constitute the unbounded “directions” of the set
Gy. However, more general subsets Gg C R? can exhibit much more complicated behaviour.
Even for d = 2, we could replace the elements (—1,y) in the previously defined Gy C Z? with
the elements (—f(y),y), for some sub-linear, monotonically increasing and unbounded function
f(y), and still obtain a set having the positive x and y axes as its unbounded “directions”, yet
with a marked 2nd order unbounded drift in the negative x-axis direction occurring as the set
escapes to infinity along the positive y-axis. As even this simple example illustrates, to make
such a vague notion of unbounded direction precise, we will need very careful definitions. The
framework we adopt for making this precise is lain out in Section 3, where we define the notion
of an asymptotically filtered sequence with limit 4. With this framework in place, we can then
use asymptotically filtered sequences of terms from Gy, as well as their associated limits u, as a
means of studying the directions « for which the set GG is unbounded.

Our much more expansive extension of the structural work of Reay involves showing the
fundamental properties of Reay systems can be extended to a general notion of convergent
families of Reay systems, which we term a virtual Reay system, whose component Reay systems
are defined by collections of asymptotically filtered sequences. The resulting theory is presented
in Section 6. A key obstacle to accomplishing this is the fact that our convergent family of
Reay systems will generally not converge to another Reay system. This is exemplary of the
basic fact that a convergent family of linearly independent sets can have a linearly dependent
set as limit. For instance, the linearly independent sets X; = {(—1,0), (1,1/i)} converge to the
linearly dependent set X = {(—1,0),(0,1)} as ¢ — co. We overcome this fundamental obstacle
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by extending the notion of Reay system to a specialized variation of polyhedral complex that
has highly constrained boundary requirements for its faces despite allowing them to be neither
fully open nor closed, as required for an ordinary polyhedral complex. We term this more
general limit structure an Oriented Reay System, and show in Section 5 how all basic properties
and associated theory for ordinary Reay systems carries over into the more complete setting of
oriented Reay systems, which is then pre-requisite for the later work in the setting of virtual
Reay systems.

In total, Sections 3—6 constitute the mostly self-contained extension of the basic theory of
Reay and others from the original context of positive bases to the more expansive setting of
virtual and oriented Reay systems, developed to the point where we are able to define and deal
with the basic quantities essential to our later applications for Krull Domains and Transfer Krull
Monoids.

Krull Domains, Transfer Krull Monoids and Factorization: Krull Domains are one of
the most ubiquitous classes of rings in Commutative Algebraic, being the higher dimensional
analog of Dedekind Domains. Each Krull Domain D has a class group G, and this work is
primarily concerned with the case when G is finitely generated. In this setting, it is well-known
that unique factorization into primes corresponds to having a trivial class group, and there is
unique factorization of (divisorial) ideals into (height one) prime ideals [41] [17] [18] [78]. When
G is nontrivial, unique factorization fails, and there may be multiple ways to factor a non-unit
a = Ui - ... up into irreducibles u;, called atoms, with k£ the length of the factorization. In
such case, the degree of wildness of factorization is measured by various arithmetic invariants,
the most common of which we introduce in more general context momentarily. The most
fundamental question, then, is whether these invariants are finite, as this is a key indication
that factorization is not completely wild.

Worth noting, most of the arithmetic invariants controlling factorization depend only on the
distribution of height-one prime ideals in the class group, meaning the subset Gy C G consisting
of all classes containing height-one prime ideals is of prime concern. If Gg is finite or D is a
tame domain, then sets of potential factorization lengths are well-structured and all invariants
describing their structure are finite [52] [55]. It is easy to see that Gy generates G as a semigroup,
while realization theorems tell us this is essentially the only restriction for which subsets Gy can
occur [54, Theorems 2.5.4 and 3.7.8] [34] [66]. To overview the most commonly studied arithmetic
invariants for factorizations, we do so in the fairly broad class of unit-cancellative semigroups.

Let H be a multiplicatively written, commutative semigroup with identity element. Then H
is said to be cancellative if ab = ac implies b = ¢, whenever a,b,c € H, and unit cancellative if
ua = a implies u is a unit, whenever u,a € H. If D is a commutative domain, then the semigroup
of nonzero elements of D is cancellative, and if D is noetherian, then the monoids of all nonzero
ideals and of all invertible ideals are unit-cancellative (with usual ideal multiplication) but not

cancellative in general. While it may not immediately come to mind, an important example



THE CHARACTERIZATION OF FINITE ELASTICITIES 5

of factorization occurs for semigroups of (isomorphism classes of) modules, in which case the
semigroup operation is the direct-sum. In this setting, factorization of a module corresponds to
a direct-sum decomposition M = M| & ...H My into a finite number of irreducible submodules.
Many classical unique decomposition theorems for modules are then equivalent to factorization in
the associated semigroup of modules being unique. Here, unit-cancellativity means M = M & N
implies N = 0. Thus unit-cancellativity states that all modules have to be directly finite or, in
other words, Dedekind-finite. This is a frequent property (e.g., valid for all finitely generated
modules over commutative rings), that is weaker than cancellativity [67] [77].

Among the oldest and most important arithmetic invariants of factorization are the elasticities.
They were first studied (using alternative terminology) for rings of integers in algebraic fields
(see [58] for references to the old literature), with the now standard term elasticity introduced
by Valenza [108] in 1990. They have since been studied by numerous authors. To list a few
examples (focussing on surveys and more recent papers), see [1] [2] [4] [3] [10] [13] [14] [21] [22]
[24] [25] [26] [62] [44] [47] [48] [53] [54] [55] [68] [76] [79] [80] [83] [84] [91] [101] [109] [110]. It
can be defined as p(H) = sup{suplL(a)/minlL(a) : a € H anon-unit}, where L(a) = {k €
N: a = up-...  ug from some atoms u; € H} denotes the length set of a, that is, the set
of all possible factorization lengths of a written as a product of atoms, or it can be defined
equivalently [54, Proposition 1.4.2] as p(H) = limy_,~ pr(H)/k, where the k-th elasticity px(H)
denotes the maximum number of atoms in any re-factorization of a product of k-atoms. The
set of distances A(H), defined as the minimum difference of two consecutive elements of L(a)
as we range over all non-units a € H, and the Catenary degree c(H) (see Section 2.3) are two
other of the most oft studied arithmetic invariants [54]. Yet another measure of well-behaved
factorization are structural results for Uy (H), which is the set of all ¢ for which there are
atoms u1,...,ug,v1,...,v0 € H with uq -...-up = v1 -...- vy, so the possible re-factorization
lengths of some product of k atoms. For many semigroups, it is known that these sets must be
highly structured in the following sense. A finite set X C Z is said to be an almost arithmetic
progression with difference d > 1 and bound N > 0 if X = P\ Y, where P is an arithmetic
progression with difference d and Y C P is a subset contained in the union of the first N terms
from P and the last N terms from P. If there exists a constant N > 0 and difference d > 1 such
that Uy (H ) is an almost arithmetic progression with difference d and bound N for all sufficiently
large k, then H is said to satisfy the Structure Theorem for Unions. As shown in [46, Theorem
4.2], if A(H) is finite and there is a constant M > 0 such that pg41(Go) — pr(Go) < M for all
k > 1, then the Structure Theorem for Unions holds for H, meaning this additional structure is
implied by sufficiently strong finiteness results for the elasticities and set of distances.

The general class of semigroup treated in this paper are Transfer Krull Monoids. We remark
that they include all Krull Domains, Krull Monoids, and many examples of natural semigroups
of monoids, with a non-cancellative monoid of modules over Bass rings that is Transfer Krull
studied in [9]. We defer the formal definitions to Section 2.3, but continue with a detailed list
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illustrating the broad extent of the class of semigroups covered by our results (see also [50, pp
972] and [64, Example 4.2]).

Commutative Domains. A Noetherian domain D is Krull if and only if it is integrally closed,
and the integral closure of a Noetherian domain is Krull by the Mori-Nagata Theorem. If D
is Krull and finitely generated over Z, then its class group G is finitely generated [87, Chapter
2, Corollary 7.7]. Moreover, D is a Krull Domain if and only if its multiplicative monoid of
nonzero elements is a Krull Monoid.

Submonoids of Commutative Domains. Regular congruence monoids defined in Krull Domains
are Krull Monoids [54, Section 2.11]. Let D be a factorial domain with quotient field K. Then
the ring of integer-valued polynomials Int(D) = {f € K[X] : f(D) C D} is not Krull, but
the divisor closed submonoid [f] is a Krull Monoid for any polynomial f € Int(D) [95, 43].
Moreover, if f € D[X], then the class group of [f] is finitely generated by [96, Theorem 4.1].

Finitely Generated Krull Monoids. A finitely generated monoid is a Krull Monoid if and only
if it is root closed, and finitely generated Krull Monoids have finitely generated class groups [54,
Theorem 2.7.14]. The rank of the class group is studied in geometric terms in [89, Corollary 1].
Two interesting special cases are the following.

Normal Affine Monoids. These are found in combinatorial Commutative Algebra, and are
equivalent to reduced finitely generated Krull Monoids with torsion free quotient group. For the
class group of a finite normal monoid algebra D[M], where D is a Noetherian Krull Domain and
M a normal affine monoid, its class group is the direct sum of the class group of D and that of
M [19, Theorem 4.60], meaning it is finitely generated whenever the class group of D is finitely
generated.

Diophantine Monoids. A Diophantine monoid is an additive monoid of non-negative solutions
to a system of linear Diophantine equations, with the rank of the class group, in terms of the
defining matrix, studied in [28].

Semigroups of Modules: A semigroup V of modules over a ring R (as described earlier) closed
under finite direct sums, direct summands, and isomorphisms is a reduced commutative semi-
group. If the endomorphism rings Endr (M) are semilocal for all modules M in the semigroup,
then V will be a Krull Monoid [36, Theorem 3.4]. Lists of modules having this property may
be found in [37], and examples when the class group is finitely generated are listed in [6]. Con-
versely, every reduced Krull Monoid is isomorphic to a monoid of modules [39, Theorem 2.1]
with details available in the monograph [38].

Normalizing Krull Monoids. A semigroup H is normalizing if aH = Ha for all a € H.
Normalizing Krull Monoids occur when studying Noetherian semigroup algebras [82] and are
Transfer Krull by [49, Theorems 4.13 an 6.5].

Noncommutative rings. Any bounded hereditary Noetherian prime ring D for which every
stably free left D-ideal is free is a Transfer Krull Domain [105, Theorem 4.4]. Results giving
other noncommutative families of Transfer Krull Monoids may be found in [103, 5, 8, 104].
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Commutative domains close to a Krull Domain. In many cases, if a domain R is “close” to a
Krull Domain D, then R will be a Transfer Krull Domain. Results giving examples of this type
may be found in [64, Section 5] and [56, Proposition 4.6 and Theorem 5.8].

Zero-Sum Sequences: The topics discussed above under the headings for Convex Geometry
and for Transfer Krull Monoids may seem so extremely disparate as to be completely unrelated.
It is one of our main goals to show that the opposite is true, with there in fact being an extremely
close connection between these seemingly unrelated topics. In order to establish this connection,
we will need an intermediary combinatorial structure involving subsets Gy of a lattice A C R,

Let G be an abelian group and let Gy C G be a subset. Following the tradition of Combina-
torial Number Theory, a sequence over Gy is a finite, unordered string of elements from Ggy. The
collection B(Gy) consisting of all sequences over G whose terms sum to zero, equipped with the
concatenation operation, makes B(Gg) into a monoid which is Krull. More importantly, every
Krull Monoid M has a transfer homomorphism to a monoid B(Gy) of zero-sum sequences that
directly translates nearly all factorization properties of the original monoid M into the corre-
sponding ones for B(Gp). We go into more detail in Section 2.3. For our purposes, this means all
factorization questions considered in this paper for a general Krull Monoid reduce to the study of
the combinatorial object B(Gg) by established machinery, allowing us to focus solely on B(Gy).
A similar statement is true for Transfer Krull Monoids, though the increased broadness of this
class means the corresponding transfer homomorphism between M and B(Gy) is necessarily
weaker. For our purposes, this means that, while all our main results regarding factorization
will be valid in the highly general context of Transfer Krull Monoids, a small number of con-
sequences will only be valid for Krull Monoids. Thus we work entirely with the combinatorial
object B(Gy) in this work with the corresponding results transferred automatically to Transfer
Krull Monoids or Krull Monoids by established machinery (referenced in Section 2.3) that we
need only use in passing. Note, arithmetic invariants for B(Gq) are generally abbreviated as
p(Go) = p(B(Gy)), ete.

While the connection between factorization in Transfer Krull Monoids and the combinatorial
object B(Gy) is well-known, any further connections with Convex Geometry were much more
limited. The behavior of factorization when G is not finitely generated is generally quite un-
restricted. As such, the study of B(Gy) for subsets Gg of a finitely generated abelian group G
is the the general framework for the foundational finiteness questions for the arithmetic invari-
ants of Transfer Krull Monoids. In this regard, little in the way of characterization was known
apart from the basic case when Gy is finite or the case when G has rank one [4] [53]. Since all
factorization invariants are finite when G is finite (by basic arguments), it is natural to expect
the chief obstacles for characterizing their finiteness would already be present for torsion-free
abelian groups. As it will turn out (though not initially clear), this is precisely the case, allowing
us to focus almost exclusively on the torsion-free case, later adapting these argument applied
to G/Gr, where Gp is the torsion subgroup. As such, we are reduced to considering infinite



8 DAVID J. GRYNKIEWICZ

subsets Go C Z%. The abelian group Z¢ is the prototypical lattice in R%, meaning it is a full
rank discrete subgroup of R?. While any full rank lattice A C R? is isomorphic to Z¢, it will be
convenient to expand consideration to subsets Gy of a general full rank lattice A C R?, allowing
the use of the geometry of R? for studying Gj.

Main Results: Our driving goal is to characterize finite elasticity for B(Gp) (and thus for
Transfer Krull Monoids in general) for any subset Gy of a finitely generated abelian group
G. One natural way to prevent infinite elasticity is if there is a subset G C Gy and global
bound N such that there are no nontrivial zero-sum sequences with terms from G¢, and every
minimal zero-sum sequence has at most N terms from Gy \ Gf. Such a condition trivially
implies the elasticity p(Gp) is finite, in turn implying all refined elasticities pi(Go) are also
finite (see Proposition 8.2). In the spirit of results like Hall’'s Matching Theorem, which shows
that the simple combinatorial obstruction to a perfect matching characterizes when they exist,
we will show that this basic combinatorial obstruction characterizes finite elasticity. Indeed, it
characterizes when p(q11),(Go) is finite, where m is the exponent of the torsion subgroup of G
and d is the torsion-free rank, meaning there is a minimal s < (d + 1)m such that ps(Go) < o0
implies pi(Go) < oo for all k. Moreover, we give an explicit description of G in terms of the
Convex Geometry of Gy modulo the torsion subgroup Gr < G, and show that finite elasticity
is equivalent to there being no positive R-linear combination of the elements of this explicitly
defined subset G equal to 0 modulo G7. What this means is that the initial question of finite
elasticity, involving equations of positive Z-linear combinations of lattice points, is equivalent
to one involving positive R-linear combinations of lattice points. Additionally, we obtain a
weak structural description of the atoms in B(Gy), assuming finite elasticities, and use this to
show finite elasticity implies that the set of distances A(Gy), the catenary degree c(Gp) and a
weakened form of the tame degree are all also finite, and that there are no arbitrarily large gaps
in the sequence {pi(Go)}3, which implies that the Structure Theorem for Unions also holds.

The key means of accomplishing our characterization and many of its consequences is by an in-
depth study in Section 7 of an ample class of subsets Go € A C R?, defined using our generalized
theory of Reay systems given in Sections 3-6, that possess several finite-like properties despite
being (in general) infinite. We term such sets finitary, study their finite characteristics in detail,
and show that finite elasticity implies Gg is finitary (with the converse failing). The broader
class of finitary sets, as it will turn out, shares most of the same structural properties as sets
G with finite elasticities, while at the same time behaving better with respect to inductive
arguments using quotients.

We conclude the introduction by outlining the main results and content section by section.
As a general remark, while somewhat subjective, we have labeled results as lemmas when they
are more technical, often with highly restricted hypotheses, and generally needed as part of a
larger proof, as propositions when they encode basic or fundamental properties of the concepts
being explored, even when the proof may be quite involved, and as theorems when we wish
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to emphasize that it is one of our culminating results. Theorems that we wish to especially

highlight will be referred to as main theorems.

Section 2:

Section 3.1:

Section 3.2:

Section 3.3:

Section 4.1:

Section 4.2:

Section 4.3:

Section 5:

We introduce the basic notation and preliminaries for Convex Geometry, partially or-
dered sets (Posets), lattices, zero-sum sequences, and Transfer Krull Monoids, as well as
the requisite asymptotic notation. A more general notion of rational sequence over G
is introduced, where the multiplicities of terms are allowed to be non-negative rational
numbers rather than integers, which will play a crucial role in later parts of Section 8.
Precursors to this innovation may be found in [7].

The concept of an asymptotically filtered sequence with limit « and related notation and
definitions are introduced along with the basic properties of these definitions. This will
be our main tool for measuring the directions in which a set escapes to infinity.

The companion concepts of encasement and minimal encasement of i, as well as several
basic properties, are given in the context of finite unions of polyhedral cones.

The notion of a set X being bound to another set Y, meaning every point in X is
within some globally bounded distance of some point from Y, is introduced. The section
culminates with Theorem 3.9, which gives a characterization of X being bound to Y,
assuming Y is a finite union of polyhedral cones, in terms of encasement of limits « of
asymptotically filtered sequences. We will mostly need the results of Sections 3.2 and
3.3 when Y is a polyhedral cone.

We characterize some basic non-degeneracy assumptions for arithmetic properties of Gy
in terms of the geometry of R%.

The concept of an elementary atom, which is a slight modification to the definition as
presented in [7], is given. It corresponds to the notion of atom when factoring using
rational sequences rather than ordinary sequences, so using multiplicities from Q rather
than Z. A version of Carathéordory’s Theorem, formulated for rational sequences, is
given in Theorem 4.6. Positive bases are introduced, with a lengthy list of equivalent
defining conditions given in Proposition 4.7, including equivalent formulations involving
elementary atoms.

The notion of a Reay system and related concepts are introduced, and the basic theory
of positive bases extended to this context. Proposition 4.12 corresponds to a refined
statement of the structural result of Reay for positive bases, extended to Reay systems.
The subsection concludes with Proposition 4.13, which contains the technical stability
properties of complete simplicial fans, needed for handling some delicate arguments in
Proposition 6.10.2 and Lemma 7.3.2, and thus in turn for Theorem 7.5 as well.

The notion of Reay system is generalized to that of oriented Reay systems, with all related
notation introduced. The theory and results for Reay systems presented in Section 4.3
are extended to this more general context.
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Section 6:

Section 7.1:

Section 7.2:

Section 7.3:

Section 7.4:

Section 8.1:

DAVID J. GRYNKIEWICZ

The notion of oriented Reay system is now extended to that of virtual Reay systems with
all related notation introduced. The theory and results for ordinary and oriented Reay
systems presented in Sections 4.3 and 5 are now extended to this more general context.
Three equivalent definitions for the subset G C Gy, which plays the crucial role in the
characterization of finite elasticities, are given in Proposition 7.1. The crucial notion of
a finitary set is defined using the language of Sections 3-6. The remainder of the section
is devoted to an in-depth study of finitary sets. Theorem 7.13 gives a condition on G§
that implies Gy is finitary. In particular, 0 ¢ C*(G§) implies Gy is finitary. Combining
this result with Proposition 8.2 gives us the means to use finitary sets, along with all
their associated properties developed in Section 7, during our characterization of finite
elasticities. Theorem 7.10 gives a 4th characterization of the set Gf in terms of the
multiplicities of elements in elementary atoms, valid for finitary sets. This characterizes
the elements of Gf in terms of positive Q-linear primitive partition identities equal to
zero. The subsection concludes with Theorem 7.5, giving geometric restrictions for the
distribution of elements in a finitary set Gg. In particular, it ensures that a finitary set
Gy has a linearly independent subset X C G§ C Gy such that Gg is bound to —C(X),
meaning the set Gy must be concentrated around the simplicial cone —C(X).

The goal of this subsection and the next two is to derive more structural information
regarding certain virtual Reay systems defined over a finitary set. To do this, the notion
of a series decomposition of a purely virtual Reay system is introduced (inspired by
the Jordan-Holder Theorem and other similar results in Algebra), along with detailed
notation and concepts.

Series decompositions are used to study the structure of the sets X(Gp) and X(Go)
associated to a finitary set in Section 7.2. Four of the key finiteness properties of finitary
sets are given in Theorems 7.18.1, 7.18.2, 7.22 and 7.25. Included is the striking property
given in Proposition 7.24 that a finitary set Gy has a finite subset ¥ C Gy such that
every zero-sum sequence with terms from G must use at least one term from Y.

The notions of lattice types and minimal types, as well as related notation and concepts,
are introduced. Their crucial finiteness and interchangeability properties, needed for
many results in Section 8, are given in sole result of the subsection: Proposition 7.26.
The core of this subsection is Theorem 8.5. Buried within the statement of Theorem
8.5 is a multi-dimensional generalization of a result of Lambert [86] [53, Lemma 4.3].
The result of Lambert handles the case of dimension d = 1, where a novel variation for
the argument giving the upper bound D(G) < |G| for the Davenport constant yields the
result. Though, in the end, the proof of Theorem 8.5 was derived as a natural extension
of the theory developed in Sections 3—7 rather than as a generalization of the argument of
Lambert, this innocuous one-dimensional result nonetheless served as the inspiration for
a good portion of the material contained in this work. Theorem 8.5 plays the central role
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in our characterization of finite elasticities, and its proof involves a detailed algorithm
utilizing the theory developed for finitary sets in Section 7. The beginning of the section
contains several basic results involving elasticity and G§. Corollary 8.7 contains a 5th
characterization of the set Gf in terms of the multiplicities of elements in ordinary
atoms, valid for finitary sets. This characterizes the elements of G in terms of positive
Z-linear primitive partition identities equal to zero. Theorem 8.8 is our characterization
result in the torsion-free setting. Corollary 8.9 shows that finite elasticity is equivalent
to a variation on elasticity defined using the more basic elementary atoms rather than
ordinary atoms.

This subsection contains all the additional consequences for factorization when G is
torsion-free. Theorem 8.12 gives a weak structural characterization of the atoms over
Gp under the assumption of finite elasticities. Its principal use is to simulate globally
bounded support for an atom. The number of distinct elements appearing in an atom
over G can generally be an arbitrarily large number. Omitting some details, Theorem
8.12 shows that there are a finite number of “types” of elements, with elements of the
same type behaving in the same, well-controlled manner as given by Proposition 8.11,
so that if one equates all elements of the same type in an atom (with some elements
belonging to no type and left alone), then the total number of distinct elements/types
in an atom is globally bounded. While B(Gp) may not be tame in general, we introduce
a weaker notion of tameness in Theorem 8.13 which is finite (assuming the elasticities
are finite). While this notion of tameness is weaker than what is generally studied in
the literature, it is nonetheless sufficient, under an assumption of finite elasticities, to
showing the set of distances and catenary degree are finite, as well as that the Structure
Theorem for Unions holds. This is done in Theorem 8.14. At the end of Section 8.2, a
more detailed summary of all the information derived for Gy assuming finite elasticities
is compiled.

This final (comparatively short) subsection extends the results of Section 8 from the case
G torsion-free to general finitely generated abelian groups, and sets results in the more
general framework of (Transfer) Krull Monoids. It is set separate from other sections
so that the main ideas, already quite involved, can be presented in the more natural
torsion-free setting without the few additional technical issues that must be handled for
the general case. Proposition 8.16 contains the basic observations that allow finiteness
of arithmetic invariants to be transferred between G and G/Gr, where Gpr < G is
the torsion subgroup. In Main Theorem 8.18, a technical modification to the torsion-
free argument extends the validity of Theorem 8.13 from the torsion-free case to the
general case (for Krull Monoids), establishing the finiteness of the weak tame degree.
Main Theorem 8.20 likewise extends Theorem 8.14 to the general case, establishing
the finiteness of the set of distances (for Transfer Krull Monoids), the finiteness of the
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Catenary degree (for Krull Monoids), and that the Structure Theorem for Unions holds
(for Transfer Krull Monoids). Proposition 8.19 contains the basic argument showing
that having finite elasticities implies a Krull Monoid is locally tame. Proposition 8.21
extends the two alternative characterizations of G given in Corollary 8.7 to the general
case. Proposition 8.23 extends Proposition 7.24, showing that finite elasticities ensures
there is finite subset Y C (G such that every zero-sum sequence with terms from Gy
must use at least one term from Y. Finally, Main Theorem 8.24 extends Theorem 8.8 to
the general case (for Transfer Krull Monoids), giving our main characterization result for
finite elasticities for general GG. The subsection concludes with a more detailed summary
of all the information derived for Gy assuming finite elasticities.

2. PRELIMINARIES AND GENERAL NOTATION

2.1. Convex Geometry. Variables introduced with inequalities, e.g., x > 1, are generally
assumed to be integers unless otherwise stated. The letters «, 5, 7, §, a, b and ¢ generally
indicate real/rational numbers. Intervals are also discrete unless otherwise stated, so [z,y] =
{z€Z: y<z<z}forx,y € R Weuse C to denote proper inclusion.

For z € R, we let ||z|| denote the usual Euclidian Lo-norm. Then d(z,y) = ||z — y|| is the
distance between two points z, y € R?. Given two nonempty sets X, Y C R?, we let

d(X,Y)=inf{d(z,y): x€ X,y €Y}

and define X +Y ={z+y: z€ X,yeY}, - X={-z: z€X}and X - Y = X 4+ (-Y).
For a real number € > 0, let B.(z) denote an open ball of radius € centered at x.
Let X C R? be a subset of the d-dimensional Euclidian space, where d > 0. Then

n n
Z(X) = {Zaixi :n>0,r,€X, a; €2}, QX)= {Zaimi :n>0, 7€ X, o €Q},
=1 =1

n
and R(X)= {Zaixi :n>0, z; € X, oy € R},
i=1
so R(X) denotes the linear subspace spanned by X. Note R() = {0}. For z1,...,x, € RY,
we let R{xy,...,2,) = R{{x1,...,2,}), and likewise define Q(z1,...,z,) and Z{zy,...,x,).
For a subspace & C RY we let dim& denote the dimension of £ and let £+ C R? denote
the orthogonal complement to £. A subset X = {x1,...,2,} C RY of size n > 0 is said to

n

be linearly independent modulo € if > «a;z; € € with all o; € R implies every «; = 0.
i=1

Equivalently, 7(X) is a linearly independent set of size | X| = |7(X)| (so 7 is injective on X),

where 7 : R — £ denotes the orthogonal projection.
Let Z, Q4+ and R, denote the set of non-negative integer, rational and real numbers, respec-
tively. A positive linear combination of some x1,...,x, € R" is an expression of the form
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n

> ax; with all a; € Ry. A positive linear combination is nontrivial if some «; > 0, and it is
i=1
strictly positive if every o; > 0. A set X C R?is convex if z, y € X implies az+(1—a)y € X

for all real numbers a € [0, 1], that is, all points on the line segment between x and y lie in
X. A set C C R?is a cone if z € C implies ax € C for all real numbers o > 0, that is, the
entire ray R, 2 is contained in C'U {0}. A convex cone is a set C C R? that is both a cone
and convex, i.e., C' is closed under nontrivial positive linear combinations: z, y € C implies that
ax+ By € CU{0} for all o, B € R;. The convex cones spanned by a subset X C R are defined
as

n n
Cz(X) = {Zaixi :n>0,x€X, a; €2y}, Co(X)= {Zaixi :n>0,x; € X, 04 € Qp

i=1 i=1

and C(X)=Cr(X)= {Zaixi :n>0, z€X, oy € Ry}
i=1

If X is finite, then C(X) is a closed convex cone. We likewise define

C'(X) = {Zaixi n>1, € X, o € Ry, o >0}
i=1
Note C*(X) differs from C(X) only in that 0 € C(X) is trivial while 0 € C*(X) is not. As
special cases, we have C() = {0} and C*(0) = 0. For x1,...,z, € R we use the abbrevi-
ations C(z1,...,2z,) = C({z1,...,2n}), Colz1,...,2,) = Co({z1,...,2n}), Czlz1,...,20) =
Cz({x1,...,xn}) and C*(x1,...,2y) = C*({z1,...,2n}).

Given a subset X C R% we let X° denote the relative interior of X, which is the interior of
X relative to the topological subspace R(X — X) 4+ X (called the affine subspace spanned by
X), let 9(X) denote the relative boundary of X, which is the boundary of X relative to the
topological subspace R(X — X) + X, let X denote the closure of X (which is the same in both
R(X — X) + X and R?), and let int(X) denote the interior of X in R?. Note, if 0 € X (e.g., if
X is a convex cone), then R(X — X) + X = R(X) is simply the linear subspace spanned by X.
Note

R ={a€R: a>0}

is the set of strictly positive real numbers. We set
C(X):=C(X)* and C%(x1,...,mpy):=C(x1,...,2,)°.
A cone C C R? of the form C = C(X) for some finite subset X C R? is called a finitely
generated or polyhedral cone. If X is linearly independent, then C(X) is a simplicial cone,
in which case C°(X) = {ilaixi : «a; > 0}, where X = {z1,...,2,} [106, Theorem 4.17]. A
=

co-dimension one subspace H C R? naturally divides R? into two closed half spaces H . and H_
whose common boundary is H.
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The texts [29] [40] [65] [70] [71] [106] contains many of the basic properties of convexity that we
will regularly use with little further reference. The following are several important highlights.
We remark that the slightly more general version of Carathéodory’s Theorem given below is
rather difficult to find so stated despite encapsulating what is actually proved, particularly the
portion regarding the representation of 0. The latter can be derived with ease from the argument
used to prove Carathéodory’s Theorem or from the basic theory of positive bases (see Section
4). It is also a special consequence of Theorem 4.6, whose brief proof we provide. Let X C R,

e (Carathéodory’s Theorem) If z € C*(X), then there exists a subset Y C X with |Y]| <
d+1 and x € C*(Y'). Moreover, if x # 0, then Y is linearly independent, and if z = 0,
then any proper subset of Y is linearly independent [106, Theorem 4.27].

o C(X)N—C(X), called the lineality space of C(X), is the unique maximal linear subspace
contained in C(X') [106, Theorem 4.15], and is nontrivial if and only if 0 € C*(X \ {0}).

e (Minkowski-Weyl Theorem) C(X) is a polyhedral cone if and only if C(X) is the inter-
section of a finite number of closed half-spaces [29, Theoerem 11.9].

e (Duality) A closed convex set X C R? is either the empty set or the intersection of all
closed half-spaces that contain X [65, Theorem 2.7].

o If C(X) # R(X), then C(X) lies in a closed half-space of R(X) [40, Corollary 1].

e (Relative Interior and Closure) If X C R is convex, then X° = X~ and X = X°, with
both these sets convex [106, Theorem 2.38] [106, Theorem 2.35] [106, Corollary 2.22].

e If X C R? is convex and X # (), then X° # () [106, Corollary 2.18].

2.2. Lattices and Partially Ordered Sets. A lattice is a discrete subgroup A < R?, where
d > 0, meaning any bounded subset of R% contains only finitely many lattice points [23] [72]
[69]. In particular, any convergent sequence of lattice points stabilizes, that is, if {z;}?°, is a
convergent sequence of lattice points x; € A with lim; o, z; = z, then x € A and z; = z for
all sufficiently large i. As is well-known [23, Theorem VI] [72, Theorem 1], being a lattice is
equivalent to there existing a linearly independent generating subset X C A, so Z(X) = A with
X C R? linearly independent. Such a subset X C A is called a lattice basis. The rank of the
lattice A is n = dimR(A) = |X|, and we say A has full rank in R? if n = d, that is, R(A) = R
In particular, A = Z" for a rank n lattice A.

The following basic consequence of the Smith Normal Form [88, Theorem II1.7.8] [72, Theorem
2] will be very important for us. We remark that the hypothesis that the kernel be generated
by a subset of lattice points is quite necessary.

Proposition 2.1. Let A C R? be a full rank lattice and let 7 : RY — R? be a linear transforma-
tion with ker m = R(X) for some X C A. Then w(A) is a lattice having full rank in the subspace

imm.

Proof. By passing to a subset of X, we can w.l.o.g. assume the elements z1,...,zs € X C A
are linearly independent lattice points, and thus form a linear basis for kerm = R(X) with



THE CHARACTERIZATION OF FINITE ELASTICITIES 15

Z(X) < A a sublattice of rank s. Via the Smith Normal form, we can find a lattice basis

el,...,eq € A and integers my | ... | myg, where m; > 0 for ¢ < s and m; = 0 for i > s,
such that y; = mge; for all ¢ < s with Z(y1,...,ys) = Z(X) = Z{x1,...,xs). Since kerm =
R{z1,...,xs) = Ry1,...,ys) = R{myeq,...,mses), it is now clear that 7(e;) = 0 for i < s
while 7(esy1),...,m(eq) € m(A) are distinct linearly independent elements which generate the

subgroup 7(A). This shows 7(A) < im7 is a lattice, and since A has full rank in R?, it follows
that 7(A) has full rank in im 7. O

A partially ordered set (poset) (P, <) is a set P together with a partial order =<, so < is
a transitive, reflexive, anti-symmetric relation on P [99]. In such case, we use = < y to indicate
x =y but x # y. Any subset X C P is also a partially ordered set using the partial order =<
inherited from P, and we implicitly consider subsets of posets to be posets using the inherited
partial order. A maximal element x € P is one for which there is no y € P with x < y. Likewise,
a minimal element x € P is one for which there is no y € P with y < . We let

Min(P)C P and Max(P)CP

denote the set of minimal and maximal elements of P, respectively. Given a subset X C P, we
let

I X={ye P: y<zforsomere X} and 1tX={yeP: z=<yforsomexc X}

donate the down-set and up-set generated by X, respectively. We likewise define Jx = [{z} and
Tz = t{x} for z € X. An anti-chain is a subset X C P such that no two distinct elements
of X are comparable. A chain is a totally ordered subset of P. An ascending chain is a
sequence r] X r3 X ... Xz, =X ... with z; € P. Likewise, a descending chain is a sequence
X1 > X9 > ... = Xy = ... with 2; € P. In both cases, the chain can either be finite (stopping at
n) or infinite, and the chain is strict if each < or > in the chain is always a strict inclusion <
or >.

If (P,=1) and (@, <2) are both posets, then P x @ is also a poset using the product partial
order: (z,y) < (¢/,y') when z <; 2’ and y <2 ¢'. An important example of a partially ordered
set is P = Z‘fr equipped with the product partial order: (x1,...,24) < (y1,...,yq) when z; < y;
for all 7. It is easily seen that the poset Z‘j_ has no infinite strictly descending chain. Indeed,
there are at most 1 + ...+ x4+ 1 elements in any strictly descending chain whose first element
is (x1,...,24). A well-known consequence of Hilbert’s Basis Theorem [88, Theorem 4.1] is that
the poset Zi contains no infinite anti-chain: The points of Zi correspond naturally to the
monomials in Fa[zq,...,z4], and if X C Zﬁlr were an infinite anti-chain, then the monomial
ideal generated by the monomials corresponding to the elements from X would not be finitely
generated, contrary to Hilbert’s Basis Theorem.

We will be interested in posets which neither contain an infinite anti-chain nor an infinite
strictly descending chain. Such posets are called well-quasi-orderings [85]. We include the
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following basic propositions about such posets (mentioned in [85] without proof) for complete-
ness, which together give an alternative proof (as opposed to Hilbert’s Basis Theorem) that any
subset X C Z‘i has only a finite number of minimal points (a result known as Dickson’s Lemma
[54, Theorem 1.5.3]).

Proposition 2.2. If (P, <) is a poset that contains neither infinite anti-chains nor infinite
strictly descending chains, then Min(X) is finite and tMin(X) N X = X for any subset X C P.

Proof. The set of minimal points in a poset is an anti-chain and the hypothesis that P contains
no infinite anti-chain inherits to X. Thus Min(X) is finite. If Y = X \ TMin(X) is nonempty,
then Y = Y N X C X can contain no minimal point, and we can recursively select elements
from Y to form an infinite descending chain in X, and thus also in P, contrary to hypothesis. [

Proposition 2.3. If both (P, <) and (Q,=') are posets that contain neither infinite anti-chains
nor infinite strictly descending chains, then the poset P x @Q, equipped with the product partial
order, also contains no infinite anti-chains nor infinite strictly descending chains.

Proof. Assume to the contrary that {(x;,vy;)};2; is a strictly descending chain. Then, per defi-
nition of the product partial order, both {z;}°, and {y;}°; must be descending chains. Since
neither P nor () contains infinite strictly descending chains, it follows that there exists some
index M such that x; = x; for all 4, j > M, and likewise some index N such that y; = y; for all
i, j > N. Hence (z;,y;) = (xj,y;) for all 4, j > max{N, M}, contradicting that {(z;,y;)}2; is a
strictly descending chain. This shows that P x ) contains no infinite strictly descending chain.

Next assume to the contrary that Z = {(x1,v1), (z2,y2),..., } is an infinite anti-chain. Let
X ={x1,29,...,}and Y = {y1,y9,...}. If X is finite, then the pigeonhole principle ensures that
there is some x € X that occurs as the first coordinate of an infinite number of pairs from Z.
Thus, by passing to a subset, we can w.l.o.g. assume Z = {(x,y1), (x,¥y2),..., }, in which case
Z can only be an infinite anti-chain, per definition of the product partial order, if {y1,y2,...,}
is an infinite anti-chain in @), which is assumed to not exist by hypothesis. Therefore instead
assume that X C P is infinite. Consequently, since any infinite poset contains either an infinite
chain or an infinite anti-chain, and since any infinite chain contains either an infinite strictly
descending or infinite strictly ascending chain [99, Theorem 1.14], our hypotheses ensure that
X C P contains an infinite strictly ascending chain. Hence, by passing to a subset of Z and re-
indexing the elements of Z, we can w.l.o.g. assume {z;}9°, is an infinite strictly ascending chain

in P. Repeating the same argument using Y instead of X, we conclude that Y also contains an
oo
Jj=
Z = {(x1,y1), (x2,¥2), ..., } is an anti-chain, the definition of the product partial order forces

infinite strictly ascending chain, say {y;, }52,. However, since {z;}{°, is an ascending chain but

ij > 141 for all j. Thus 4; > i > ... is an infinite strictly descending chain in Z, which is not

possible, completing the proof. O

2.3. Sequences and Rational Sequences. Let G =2 Z¢ @ G be a finitely generated abelian
group with torsion subgroup Gp. We let exp(Gr) denote the exponent of Gp, which is the
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minimal integer m > 1 such that mg = 0 for all ¢ € Gp. Let Gy C G be a subset. Regarding
sequences and sequence subsums over G, we follow the standardized notation from Factorization
Theory [45] [60] [54] [73]. The key parts are summarized here.

A sequence S of terms from G is viewed formally as an element of the free abelian monoid
with basis Gy, denoted F(Gp). Context will always distinguish between a sequence S € F(G)
and a sequence {z;}°; of terms x; € Go. A sequence S € F(Gp) is written as a finite multi-
plicative string of terms, using the boldsymbol dot operation - to concatenate terms, and with

the order irrelevant:
[ ]

=gy ... qy = [vg (5)]
S=girg=]] ™
with g; € Gy the terms of S, with v4(S) = [{i € [1,4] : ¢; = g}| € Z the multiplicity of the
term g € G, and with

|S| =1 = ng(S) >0 thelengthof S and vx(95)= va(S),

geGo reX
where X C Gy. Here gl = g..... g denotes the sequence consisting of the element ¢ repeated
N——n
n times, for g € Gy and n > 0. The notation is extended to sequences as well: S —=g.....5.

n

If S, T € F(Gp) are sequences, then S - T € F(Gy) is the sequence obtained by concatenating
the terms of T after those of S. We use T' | S to indicate that T" is a subsequence of S and let
7. S or S« T denote the sequence obtained by removing the terms of T from S. Then

Supp(S) ={g € Go : v4(S) >0} C Gy is the support of S,  and

l

o(S) = Zgi = Z vg(S)g € G is the sum of terms from S.
i=1 9€Go

Given two sequences S, T € F(Gyp), we let ged(S,T) € F(Gp) denote the maximal length

sequence diving both S and T.

Given a map ¢: Gy — Gy, we let p(S) = ¢(g1) ... ¢(g9¢) € F(Gp). The sequence S is called
zero-sum if ¢(S) = 0, and we let B(Go) C F(Go) be the set of all zero-sum sequences over
Go. A nontrivial sequence S € F(Gy) is called an atom or minimal zero-sum sequence if
a(S) = 0 but o(S’) # 0 for all proper, nontrivial subsequences S’ | S. We let A(Gy) C B(Gy)
denote the set of all atoms over Gg. The Davenport constant for G is

D(Go) = sup{|U|: U € A(Go)} € Z4 U {0},

namely, the maximal length of an atom. Assuming G is finitely generated and every g € Gy is
contained in some zero-sum sequence over Gy, it is known that D(Gy) is finite if and only if Gy
is finite [54, Theorem 3.4.2], and we have the general upper bound D(G) < |G| [54, Propositoin
5.1.4.4] [73, Theorem 10.2].

A sequence S € F(Go) has the form S = []7 gs with v, (S) € Z, the multiplicity of
g in S and v4(S) > 0 for only finitely many g € Go. Thus F(Gp) can viewed as tuples from
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the monoid (Zfo, +) with finite support, with the sequence S =[] 9€Go g9 corresponding to
the tuple (v4(5))gec,- It will be useful to sometimes allow more general exponents for terms
in a sequence. This was done based on ideas from Matroid Theory in [7]. We continue with a
natural framework utilizing Convex Geometry instead. The setup is as follows, which we present
only in the context when G is torsion-free (though a similar framework holds for general abelian
groups provided one restricts to rational multiplicities whose denominators are relatively prime
to every ord(g) < oo for g € G). We let Frat(Go) denote the multiplicative monoid whose
elements have the form S = H;EGO gl with vg(S) € Q4 the multiplicity of ¢ in S and
vg(S) > 0 for only finitely many g € Go. We refer to the elements S € Fr,:(Go) as fractional
or rational sequences. Thus the rational sequences Fr.t(Gp) can be viewed as tuples from the
monoid (QEO, +) with finite support, with the sequence S = H;EG’U g9 corresponding to the
tuple (v4(S))geqo- Any S € Frat(Go) has some positive integer N > 0 such that SV € F(Gy)
(simply take the least common multiple of all denominators of the nonzero v4(.5)). We extend all
notation regarding F(Go) to Frat(Go). In particular, Supp(S) = {g € Gy : v4(S) > 0}, which

is always a finite set by definition, and |S| = ) v4(5). We would also like to speak of the sum
9€Go

of a rational sequence S € F(Gp). Since G is torsion-free, we have G = Z(X) = ZX! for some
independent set X, and we can then embed G into Q = Q!X (thus we embed G into a divisible

abelian group @ [81]). This means that the sum o(S) = ) v4(5)g € Q of a rational sequence
g€Go
S € Frat(Go) is now well-defined. Let Byat(Go) consist of all rational sequences S € Frat(Go)

whose sum is zero o(S) = > v4(S)g = 0. This means Byat(Go) is a rational generalized Krull
g€Go
Monoid [27, Proposition 2|. For S € F.:(Go), we define

1T [Lvg (S)]] 1T [{vg(5)}]
LSJ = HgEG’Og 9 and {S} = ngGog g ,

where {v,(S)} :=v4(S) — [vg(S5)] denotes the fractional part. Thus S = |S] - {S} with [S] | S
the unique maximal length subsequence with | S| € F(Gyg), and with v4({S}) < 1 for all g € Go.
It may be helpful to view the elements in {S} as ‘damaged’, and they will need to be avoided
in some arguments as much as possible. Note g € Supp({S}) if and only if v4(S) ¢ Z, while
g € Supp(|S]) if and only if v4(S) > 1. The following properties for S, T" € Frat(Go) are
immediate from the definitions but quite useful:

(2.1) {S} < [Supp({S})],

(2.2) | Supp(S)[, IS < [[S]]+ [Supp({S})],

(2.3) LS+ [T][[S-T] and  Supp([S])USupp([T]) € Supp(|S-T]),
(2.4) {5-T}|{S}-{T} and  Supp({S-T}) C Supp({S}) USupp({T}),
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(2.5) Supp({S - T17"1}) € Supp({S}) USupp({T'}) ~ for T'| S,
(2.6) 7| [S] and [S-TEU 18] (TP for T S.

While generally the order of terms in a sequence will be irrelevant, there are times when we
will need to view our sequences as indexed, so that two distinct terms of a sequence S € F(Gy)
that are equal as elements can still be viewed as distinct terms in the sequence S. For such

occasions, we fix an indexing of the terms of S, say

S=g1-...-
with g; € Go. Then for I C [1,/], we let

S(I) = H:elgi € F(Go)

denote the subsequence of terms indexed by I.

2.4. Arithmetic Invariants for Transfer Krull Monoids. Let H be a unit-cancellative
(associative and multiplicatively written) semigroup with identity 1z. A semigroup homomor-
phism is map ¢ : H — H' between semigroups with identity such that (1) = ¢(1g/) and
o(ry) = p(z)e(y) for x,y € H. Let H* C H denote the subgroup of units (invertible ele-
ments) in H. If a non-unit « € H \ H* has a factorization a = u; - ... - uy with each v; € H
a non-unit, then we call k£ the length of the factorization. We are generally interested in the
case of factorizations into irreducible elements of H, called atoms, so u; € A(H) for all i with
A(H) the set of all atoms (irreducible elements) in H. Let L(a) denote the set of all k£ > 1 for
which a has a factorization into atoms of length k and let L(H) = {L(a): a € H\ H*} denote
the system of sets of lengths. Since, for purposes of factorization, elements of H equal up to
units are essentially identical, it is often convenient to replace H (for H commutative) with the
reduced quotient monoid H ey = H/H”* where this has been formally implemented.

A Krull Monoid is a commutative, cancellative semigroup H with identity 1z such that
there is a divisor homomorphism ¢ : H — F(P) into a free abelian monoid such that every
p € P has some nonempty X C H with p = ged(p(X)). That ¢ is divisor homomorphism
means ¢ is a semigroup homomorphism such that z | y in H if and only if ¢(z) | ¢(y) in F,
where z, y € H [54, Theorem 2.4.8] [64, Definition 4.]. The monoid B(Gy) of zero-sum sequences
is always a Krull Monoid, for any subset Gy of an abelian group G, and the reduced monoid
H,eqg = H/H*of a Krull Monoid H is also always a Krull Monoid. A Transfer Krull Monoid
is a unit-cancellative semigroup H with identity 1z such that there is a (weak) transfer
homomorphism 0 : H — B(Gg) for some subset G of an abelian group G. The latter means
0 is a surjective semigroup homomorphism such that 6(z) is the trivial sequence if and only
if z € H* is a unit, for z € H, and whenever 0(z) = Uy « ... - Uy with Uy,..., U € A(Gy),
for z € H, then there is permutation 7 : [1,k] — [1, k] and factorization z = x; - ... -z} with
r1,..., 7% € A(H) such that 0(z;) = U, for all i € [1,k] (see [50] [5] [8] [104] [105]). Then
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z € H is an atom if and only if §(z) € B(Gy) is an atom, and the permutation 7 may be taken to
be the identity when H is commutative. Moreover, L(H) = L£(B(Gy)), meaning any arithmetic
invariant regarding the factorization of elements from H that depends only on L£L(H) reduces to
the study of the corresponding invariant for B(Gy).

We now briefly review the basic theory of Krull Monoids. To this end, consider a Krull
Monoid H with divisor homomorphism ¢ : H — F(P). The elements of F(P) are sequences
S = H;epp[vp(s)] with v,(S) € Z4. The set P does not live in an abelian group apriori, but
this can be resolved by formally defining Gp to be a free abelian group with basis P, in which
case P C Gp = ZP. Now let Hp = (o(p(z)) : = € H) < Gp, let G = Gp/Hp, and let
[]:Gp — G = Gp/Hp be the natural homomorphism. For § = H;epp[vp(s)] € F(P), we have
[S] = H;ep[p][vp(s)] € F(Gop), where Go = {[p] : p € P} C G, referred to as the set of classes
containing primes. We remark that our notation is slightly different from the presentation given
in [54] [60]. There, the formal quotient group q(F(P)) of F(P) is used in place of Gp, with
a(p(H)) used in place of Hp, at times leading to confusion since [S], for § € F(P), can both
represent a sequence [S] € F(G) as well as an element [S] € G, the latter corresponding to the
sum of terms in [S] when considered as a sequence. The reformulation followed here avoids this
potential confusion.

Any sequence S = H;epp["l’(s)] € o(H) C F(P) will have [S] € B(Gp) by definition of [-].
This means the composition map 0 : H — B(Gy), defined by 6(z) = [p(z)], is a semigroup
homomorphism taking each element of H to a zero-sum sequence over the subset Gg of the
abelian group G. Now further assume H is reduced, that is, assume we reduce our original
Krull Monoid H by replacing it with the reduced Krull Monoid Hyy = H/H*. Under this
assumption, the map 6 is a transfer homomorphism, showing that the Krull Monoid H,eq is a
commutative Transfer Krull Monoid [60, Theorem 1.3.4]. Thus (up to units) every Krull Monoid
is also a Transfer Krull Monoid. Moreover [54, Proposition 2.4.2.4, Corollary 2.4.3.2] (see also
[60, Theorem 1.3.4.1]),

(2.7) Hea=o(H) and  o(H) = {S € F(P): [5] € B(Go)}.

We then say H is a Krull Monoid over the subset G of the abelian group G.

We continue by describing some of the most commonly studied arithmetic invariants for
factorizations that depend only on £(H). For an integer k > 1, we let Uy (H) denote the set of
all ¢ > 1 for which there are atoms Uy, ..., U, V1,...,V; € A(H) with

(2.8) U Up=Vi-...- Vi
Thus Uy, (H) is the union of all sets from L£(H) containing k. We then define
pr(H) =sup Up(H) for k>1, and
(

p(H):sup{pkkH): kZl}:sup{

sup L(.9)

m: SGH}.
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The equality in the definition of p(H) follows by a simple argument [54, Proposition 1.4.2.3].
Note ¢ < pi(H) must hold for any re-factorization of k atoms as in (2.8). A basic argument [54,
Proposition 1.4.2.1] shows

(2.9) pl(H)ﬁpg(H)S....

Moreover, the inequalities are strict when the pp(H) are finite. The constant p(H) is the
elasticity of H, and the px(H) are its refinements, which we call the elasticities of H. Worth
noting, if H is a Transfer Krull Monoid, then it is know that, for every ¢ € Q with 1 < ¢ < p(H),
there is some L € L(H) with ¢ = maxL/minL [63, Theorem 3.1]. When H = B(Gy), we
abbreviate p(Go) = p(B(Gp)), and likewise for all other arithmetic invariants.

Given a set X C Z, we let A(X) C Z, denote the set of successive distances in X, so A(X)
consists of all elements of the form ko — k1, where ks, ko € X and k1 < ks, such that X contains
no elements from [k; + 1, k2 — 1]. Then the set of successive distances for H is

AH) = |J A= |J Al()cz.
LEL(H) a€H\H*

A stronger measure of well-behaved factorization is indicated by structural results for Uy (H).
A finite set X C Z is said to be an almost arithmetic progression with difference d > 1 and bound
N >0if X = P\Y, where P is an arithmetic progression with difference d and Y C P is subset
contained in the union of the first N terms from P and the last N terms from P. If there exists
a constant N > 0 and difference d > 1 such that Uy (H) is an almost arithmetic progression with
difference d and bound N for all sufficiently large k, then we say that H satisfies the Structure
Theorem for Unions. As shown in [46, Theorem 4.2], if A(H) is finite and there is a constant
M > 0 such that pg1(H) — p(H) < M for all k > 1, then the Structure Theorem for Unions
holds for H, providing additional motivation for the study of the elasticities.

The next invariant does not depend solely on £(H) but is known to nonetheless reduce to
the study of B(Gy) for a large class of monoids, including Krull Monoids. Suppose we have two
factorizations S = Uy ... Ui and S = Vq -... -V} of the same S € H. Re-index the U; and V;
such that I C [1,min{k, ¢}] is a maximal subset with U; = V; for all ¢ € I, meaning U; # V; for
alli € [1,k]\ I and j € [1,¢]\ I. Then we say that the factorizations V; -...-Vyand Uy -...- Uy
differ by max{¢ —|I|, k — |I|} factors. The catenary degree c(H) is defined as the minimal
integer N > 0 such that, given any two factorizations Uy -...- Uy, = S = Uj ... Uj, of the same
S € H into atoms U;, Uj’- € A(H), there is a sequence of factorizations S = Ul(l) coe U,g) of S

into atoms Ui(j) € A(H), for j =0,1,...,¢, such that

o ko =rkand U = U, for all i € [1, k],

o ky =k and U = U/ for all i € [1,¥], and

e cach factorization U l(j .U Ig ) differs from the previous factorization Ul(j . U,gj jll),
for j € [1,/], by at most N = c(H) factors.
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If no such integer N exists, then ¢(H) = co. Having finite catenary degree indicates that any
factorization can be transformed into any other factorization of the same element by a sequence
of small modifications, and we have c(Gy) < c(H) < max{c(Gy), 2} when H is a Krull Monoid
over the subset G [54, Theorem 3.4.10.5].

Finally, we define one further invariant. Let U € A(H). If U is prime, we set t(H,U) = 0.
Otherwise, we let t(H, U) be the minimal integer N > 1 such that, whenever Uy, ..., U, € A(H)
with U | Uy-...-Uy, then there exists I C [1,k] and Va,...,V, € A(H) with [[,c; U; = U-Va-...-V,
and max{|I], r} < N. If no such N exists, we set t(H,U) = oo. The constant t(H,U) is called
the local tame degree, and H is called locally tame if t(H,U) < oo for all U € A(H) [54].

2.5. Asymptotic Notation. Given sequences {a;}°; and {b;}?°, of positive real numbers
a;, bj € Ry, we use the following notation for gauging their comparative asymptotic growth:
a; € o(b;) means a;/b; — 0; a; € O(b;) means {a;/b;}?2, is a bounded sequence, and thus
a;/b; — M for some real number M > 0 by passing to appropriate subsequences; a; € ©(b;)
means there exist positive real numbers a, 5 € R, such that ab; < a; < 8b; for all i, i.e.,
a; € O(b;) and b; € O(a;), in turn ensuring a;/b; — M for some positive real number M > 0 by
passing to appropriate subsequences; and a; ~ b; means a;/b; — 1. We sometimes use o(b;) to
represent some existent sequence {¢; }5°; with |¢;| € o(b;), and likewise with the other asymptotic
notation. In general, with only a few clear exceptions, all asymptotics will be with regard to the

variable 7 in this work.

3. ASYMPTOTICALLY FILTERED SEQUENCES, ENCASEMENT AND BOUNDEDNESS

3.1. Asymptotically Filtered Sequences. Given a subset X C R? we will need a precise
way to describe the directions in which X escapes to infinity, allowing us to characterize when
X remains within bounded distance of another subset Y C R%. As a first approximation, we
say that a sequence {z;}32; of nonzero points x; € R? is radially convergent with limit u,
where u € R? is a unit vector, if lim;_, ||2;]| € Ry U{oo} exists and the sequence of unit vectors
{xi/||xi]| }22, is convergent with limit lim; ,o 2;/||2;|| = u. Since the unit sphere is a compact

metric space, any sequence of nonzero points contains a radially convergent subsequence.

Definition. For X C R%, let X denote all unit vectors which are a limit of an unbounded

radially convergent sequence of terms from X.

The set X*° is a crude notion of the “directions” in which the set X escapes to infinity
satisfying the following closure property.

Lemma 3.1. Let X C RY, where d > 0. Then X is a closed subset of the unit sphere in R,

Proof. For d =0, X°° is empty, and there is nothing to show, so assume d > 1. To show X is
closed, it suffices to show it contains all its limit points. To this end, let {u;}°; be a sequence of
terms u; € X with u; — u. Then u is another unit vector. By passing to a subsequence, we can
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w.l.o.g. assume d(uj,u) < 1/27 for all j. For each u; € X, there exists a radially convergent
sequence {z;;}>°; with z;; € X, |zj;|| — oo, and lim;_,oc z5/||zi;|| = wj. Thus we may take
y; = x;; for some fixed sufficiently large i such that ||y;|| > 27 (possible as ||z;;|| — oo) and
d(y;/llyjll,u;) < 1/27. Now consider the sequence {y;}32, of terms y; € X. By construction,
llyj|| = oo while the triangle inequality ensures that d(y;/||y;|l,w) < d(y;/|ly;ll, us) + d(uj, u) <
1/29 4+ 1/29 = 1/2971, which tends to 0 as j — oo. Thus {y;}32, is an unbounded radially
convergent sequence of terms from X with limit u, showing that u € X*°. As u was an arbitrary
limit point, it follows that X is closed. O

While the set X*° provides a crude notion of the directions in which X escapes to infinity, it
will turn out to be insufficient for our needs, leading us to the following more refined notion.

Definition. Let @ = (u1,...,us) be a tuple of t > 0 orthonormal vectors in R A sequence
{z:}52, of elements x; € R? is called an asymptotically filtered sequence with limit i if

T agl)ul +...+ al(-t)ut +y; foralli>1,

(

for some real numbers aij) > 0 and vectors y; € R{uq, ..., u)" such that

o lim; az(-j) € Ry U{oo} exists for each j € [1,1],
e |lyi| € o(a(t)), and o™ € o(agj)) forall j € [1,t—1].

i i
The first bulleted condition above is added mostly for convenience and is not essential to the
()

i

definition. We say that the limit @ = (u1,...,u) is fully unbounded if a
)

— oo (and thus
agj — oo for all j € [1,t]). Note this requires ¢ > 1. The empty tuple, corresponding to when
t = 0, is referred to as the trivial tuple. We call the limit @ = (uq, ..., u;) anchored if t = 0 or
{a,(t)}?il is instead a bounded sequence. The limit # is complete if y; = 0 for all 4, and @ is a
complete fully unbounded limit if « is fully unbounded but {y;};°; is bounded. Given any
limit @ = (u1,...,u) and j < t, we refer to (u1,...,u;) as a truncation of @, which is strict
when j < t. For t > 1, we let
a0 = (ug, ..., up_1)

denote the principal truncation of @ = (uy,...,u;). The choice of using tuples of orthonormal
vectors to represent the limit of an asymptotically filtered sequence is purely a matter of canonical
representation. Indeed, the tuple (ug, ..., u;) really represents an ascending chain of half-spaces
{0} € RS ur C R(up) + RSus C R{ug,ug) + RSuz C ... C Ruy,...,u—1) + RS u; (or more
compactly, the set U;zO(RWl, ..., uj—1) + RGu; ), where ug = 0, from which this chain can be
recovered), and any tuple 7 = (vq,...,v;) of vectors v1,...,v; € R? such that R{v; ... V1) +
RS v; = R{uy ..., uj—1) + RSu; for all j € [1,¢] is considered an equivalent tuple.

Proposition 3.2. Let @ = (uy,...,us) be a tuple of t > 0 orthonormal vectors in R® and let

{2;}2, be a sequence of elements x; € R? with

T; :agl)ul +...+a§t)ut+yi for alli > 1,
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for some real numbers al(j) > 0 and vectors y; € R{uy,...,u;)*>. For j € [0,], let T R? —
R{uy,...,u;)* denote the orthogonal projection. Then {x;}2°, is an asymptotically filtered se-
quence with limit @ if and only if {mj_1(x;)};2, is a radially convergent sequence with limit u;
for all j € [1,t]. Moreover, when this is the case, we have lim;_,o ||mj—1(x;)|| = lim; 00 al(j) for
every j € [1,t].

Proof. For j € [0,¢], let y(J) (]H)u 1 a(t)ut + y; and observe that

Dy 4 @ — 0D

mi—1(z;) = a;
for j € [1,¢]. If {z;}32, is asymptotically filtered with limit 4, then ||y(j)\| € o(a Ej)) for j € [1,1].
In view of the triangle inequality and HyZ(])H € o(al@), we have ||a(3)u] + y(] | = Z(]) + o(agj)).

Thus Hy H € o(a; 4 )) further implies that

1 /1lew; + 5PN = 1211/ (@ + 0(a)) = (1y 1 /a) /(1 + 0(1)) — 0,

ensuring that yfj)/||a(j)uj + y(j)|| — 0 and

Jim i (3) /[l (@) = Jim (o + )/ llaf us + 91| = lim af /g + )| = .
Also, 1im;_e |51 (z:)]| = limyeo [laPu; + 47| = limiee(@?) + o(a!?)) = limi_e a'? €

R4 U {oo} exists, showing that {m;_1(z;)}:2, is radially convergent with limit w;.
Next assume that {m;_ 1 gvz)}Z , is radially convergent with limit u; for each j € [1,t], so

( ) @)

a;” uj + yZ )/Ha ])u] + y H — uj for all j € [1,¢]. In partlcular since u; and y;” are linearly

independent, Hy H/||a(] u; ‘1‘3/1])” — 0 and ||a; ])uj +y(] | — a; ) Thus

0= lim [lyll/llaf” + 4|l = lim [lyll/a”,

ensuring that Hy/)H €o(a l( ) for j € [1,¢]. In particular, |y;|| = Hyz )H c€oa Et)) while
1)

+1 + + + (j+1)
Iyl = Nl P ujar + 97V € af ™V + Oy V) € 0V + o(al )
(

for 7 € [1,t — 1]. Thus ||yz || € o(a Z(]) for j € [1,t] ensures that a( D ¢ ( ZJ)) for j €
[1,t — 1]. Furthermore, lim; al(-J) = limiﬁoo(agj) + o(al(]))) = limz_wo(Hai uj + yz(])H) =
lim; o0 ||mj—1(2;)|| € Ry U {oo} exists as {mj—1(x;)}2, is radially convergent, completing the

proof. O

Suppose {x;}:°, is a sequence of elements z; € R? that is not eventually the constant zero
sequence. By passing to a subsequence, we can assume all ; are nonzero with {xz;}°, a radially
convergent sequence with limit (say) u;. Moreover, if {x;}:°; is unbounded, then we can assume
lim; o0 ||2;]] = 0co. Write each z; = a(l)ul + y( ) with yfl) € R(uy)*t. Since z;/||zi|| — u1, we
can assume aZ( ) 0 for all i by discarding the first few terms. Proposition 3.2 implies that the

)

resulting subsequence is asymptotically filtered with limit w; and lim; o0 a; 7 = limy_so0 ||| If

{ygl)}fil is eventually zero, then discarding the first few terms allows us to assume z; = agl)ul
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for all 7+ > 1. Otherwise, we can repeat the above procedure and, passing to a yet more refined
(1) (2) (2)

subsequence, conclude that x; = a; u1+a, ug+y,” is asymptotically filtered with limit (w1, us).
Continuing to iterate the procedure, we find that any sequence of terms from R? contains an
asymptotically filtered subsequence with complete limit. Likewise, truncating appropriately, any
unbounded sequence in R¢ must contain an asymptotically filtered subsequence with complete
fully unbounded limit. Note Proposition 3.2 also ensures that if {z;}3°, is an asymptotically
filtered sequence both with limit « and with limit ¢/, then either ¥ is a truncation of @ or % is a
truncation of .

The following proposition is routine but important and requires the following notation. Let

il = (u1,...,us) be a tuple of orthonormal vectors u; € R%, let £ C R? be a subspace, and let
7 : R* — &1 be the orthogonal projection. Then

’/T(ﬁ) = (ﬂl, .. ,ﬂg),
where the u; are defined as follows. Recursively define indices
(3.1) 0:T0<T‘1<...<TZ<T5+1:t+1

by letting r; € [rj—1 + 1,t] (for j € [1,/]) be the minimal index such that m;_1(u,;) # 0, where
i1 : R? — (£ 4+ R{ug, uy.. .,urj_l))l is the orthogonal projection and ¢ € [0,¢] is the first
index such that mg(u;) = 0 for all ¢. In particular, 79 = 7 and r; € [1,¢] is the first index
such that m(u,, ) # 0 (unless £ = 0, in which case no index with this property exists). Then
w; = mj—1(ur,)/||mj—1(ur,)|, ensuring that m (@) is a tuple of orthonormal vectors from £+,
Equivalently, the indices r; are those with R(m(u1),...,m(ur,)) # R(m(u1),...,7(ur;~1)), and
m(i) = (uy,...,Uy) is simply the canonical tuple of orthonormal vectors equivalent to the tuple

1

(), ..., m(uy,)). From this viewpoint, it is clear that, if 7/ : R? — (£/)1 is an orthogonal
1 4

projection with £ C &', then 7'(u) = 7' (7 (w)).

Proposition 3.3. Let X C R?, where d > 0, let £ C R? be a subspace, and let w: R — L be

the orthogonal projection.

1. Let {z;}32, be an asymptotically filtered sequence of terms x; € X with limit 4@ =
(ug,...,up), say x; = al(-l)ul +... +al(-t)ut +y;. Then the sufficiently large index terms in
{m(x)}2, form an asymptotically filtered sequence with limit w(4@) = (..., us) with

m(x;) = bgl)ﬂl + ...+ b(g)ﬂe + yé,

i
bgj) € @(al(-rj)) for all j € [1,4], and ||y}]] € O(||lyil|), where the indices 11 < ... < 1y are
those given by (3.1).

2. If {yi}52, is an asymptotically filtered sequence of terms y; € w(X) with limit U, then
there is an asymptotically filtered sequence {x;}2, of terms x; € X with limit @, such
that, replacing {y;}32, with an appropriate subsequence, we have m(z;) = y; for all 1,

<

(1) = U, and w(u") = w(@)? = 09 (if U is nontrivial).



26 DAVID J. GRYNKIEWICZ

Proof. 1. Let the r; and m; be as given in the definition of w(@). For j € [1,¢], we have
mi—1(z;) = a§1)7rj_1(u1) + ...+ az(t)ﬂj_l(ut) + mj—1(y;). Since al(»j) € o(agj_l)) for all j > 2
and ||mi—1(yi)|| € O(||luill) < o(agt)) (the first inclusion follows as any linear transformation
mj—1 : RY — R is a bounded linear operator), it follows that ||m;j_q(z;)|| ~ agrj)||7rj,1(urj)\|.

Now m(z;) = bgl)ﬂl +...+ b(é)ﬂg + y; with

%

] T ri+1
b9 = al"|lmj 1 ()| £ @l D b ()| £ £ @ () | (|5 ()|

(2
and y, = me(y;), where 7734- : R? — Ru; is the orthogonal projection onto Ru;. For each j € [1,4],

we have ai" |m;_1 (up,)| > 0 for all 4, [l (y;)]] € O(lyill) € o(al"”) and a{* € o(a]"") for all

i
k > r;. Thus bgj) € @(aETj)) with bgj) > 0 for all sufficiently large i. Also, ||yl|| = ||me(yi)| €
O(|lyill) < o(al(”)) = o(bz@)), and Item 1 now follows.

2. Since each y; € w(Gyp), there exists some x; € Gy such that w(x;) = y;, for i > 1.
By passing to a subsequence, we can assume {x;}:°; is asymptotically filtered with complete
limit «’, in which case Item 1 implies that the sufficiently large index terms in the sequence
{m(zi)}2, = {yi}52, are asymptotically filtered with complete limit 7(a’). Since {y;}5°, is also
asymptotically filtered with limit ¥, we conclude that ¢ is a truncation of 7(u’) (cf. Proposition
3.2), whence 7(@) = ¢ for an appropriate truncation @ of @'. Moreover, if ¥ is nontrivial, then
so is 4, and choosing a truncation @ = (uq,...,u;) with ¢ > 1 minimal such that = (@) = U, we
obtain that m(49) = 7(@)“. We may consider {z;}5°, as an asymptotically filtered sequence with

the truncated limit @, and Item 2 now follows. O

Definition. Given a set X C R?, we let X'"™ denote the set of all fully unbounded limits

= (u1,...,u) of an asymptotically filtered sequence of terms from X.

Each element of X occurs as a singleton tuple in X'"™ and we view the fully unbounded
limits from X'"™ as the more complete set of “directions” in which the set X escapes to infinity.

3.2. Encasement and Boundedness. The following definition associates a family of cones
that “hug” the boundary of each potential direction from X'™.

Definition. Let @ = (u1,...,u;) be a tuple of linearly independent vectors uy,...,u; € R?,
where t € [0,d]. A cone C encases U if, for each j € [1,t], there are a1 j,. .., 0 € Ry with
Qg g > 0, Zj = QU+ Q1 U1+ QU and C(Zl, ce Zt) cC.

In the context of convex cones, we will often also say a subset X C R? encases i when C(X)
does, and that X minimally encases u if, additionally, no proper subset of X encases .

When t = 1, we often speak of encasing the element w; rather than the tuple (u;). Re-
moving the requirement that aq j,...,a;-1,; € Ry in the definition of encasement results in a
seemingly weaker definition that is nonetheless equivalent. Indeed, if C(yi,...,y) € C with
each y; = Bjju; + Bj—1,uj—1 + ... + Bijur for some B;; € R with 8;; > 0, then y; =
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y; + max{0, —B’fjﬂ}yj_l € C(y1,-..,yt) is an element of the form y; = 8} ju; + B juj—1 +

j—1,5—1

..+ By jur for some B; ; € R with 8 ;> 0 and ;_; ; > 0. Repeating this process sequentially

for y;_1,...,y1 results in an element z; = o ju; + a1 juj—1+...+ o1 jur € Clyr,...,y) € C,
where o; ; € Ry and «;; > 0, showing that C encases (u1,...,ut). Thus C encasing (u1, ..., us)
is equivalent to there existing a convex cone C" C C that intersects RS u; + R(u1, ..., uj—1) for

each j € [1,t]. In particular, if C' encases i, then C encases all equivalent tuples to @ too.

Lemma 3.4. Let (u1,...,u;) be a tuple of linearly independent vectors ui, ..., u; € R, where
t €10,d]. If the cones C, C' C R both encase (uy,...,us), then C N C" encases (uq, ..., uz).

Proof. Since C, C' C R? each encase (ug,...,u;), there are subsets X = {z1,...,2;} C C
and Y = {y1,...,y} € ¢’ with C(X) C C and C(Y) C C’ such that, for each j € [1,¢],
Tj = a1ul + ...+ aju; € C(X) and Yj = Bl,jul + ...+ ﬁjvjuj € C(Y) for some Qs Bz’,j >0
with o j, Bj; > 0. Let A = (v ;)i,; be the upper ¢ x t triangular matrix given by the a; ; with
i, j € [1,t], so a; ; = 0 whenever ¢ > j, and likewise define the upper ¢ x ¢ triangular matrix
B = (B;,)i;- For j € [1,t], we aim to construct z; = v1 ju1+...+7;,u; € C(X)NC(Y) C CNC’
with ~; ; > 0 for all 1 <7 < j <t and each v;; > 0.

Fix j € [1,t] arbitrary. Since the u; are linearly independent, z; = v1 jui + ...+ v; ju; lies in
C(X) precisely when there exists a vector x = (ry,...,7;,0,...,0) with all entries non-negative
such that Az =y, where y = (v1,5,...,7;,;,0,...,0). By well known back substitution formulas,

i = D k—ie1 CikTh

3.2 : for i € [1, 5].
(3.2) r s or i € [1, ]

Likewise, zj = y1,ju1+. .. +7;,ju; lies in C(Y) precisely when there is an 2’ = (r{,...,77,0,...,0)
with all entries non-negative such that Az’ = y. As before, we have

j
L D i1 BikTh,
Z‘ - .

(3.3) for i € [1, j].

ﬁi,z
Taking v;; = 1, we observe that both (3.2) and (3.3) ensure that r; > 0 and 7} > 0. But
now we can recursively construct the ~;; > 0 for i = 7,7 —1,...,1 with 7, 7} > 0 by simply

choosing 7; ; > 0 sufficiently large. Indeed, taking v; ; = max{z:f;:iJrl QG kT Ei:iﬂ Bi kry} for
i € [1,j — 1] suffices, completing the proof. O

One of the main goals of this section is to give a local containment characterization of the
more subtle notion of being bound to Y, which we will introduce in the next subsection. Finding
a satisfying such characterization for a general set Y C R¢ is more difficult, so we will instead
restrict our attention to a suitably broad class of subsets of R?, namely, the class consisting of
all finite unions of polyhedral cones. We formally allow the empty set to be considered a finite
union of polyhedral cones, viewing it as an empty union. Since polyhedral cones are closed, a
finite union of polyhedral cones is also closed. This class has several useful closure properties,

summarized in the following lemma.
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Lemma 3.5. Suppose X, X1,...,Xs C R% are finite unions of polyhedral cones.

1. Ui, Xi and N;_, X; are both finite unions of polyhedral cones.

2. If V. C R? is a subspace containing R(X), then V \ X is a finite union of polyhedral
cones with O(V \ X) C 9(X).

3. If C1,...,Cs C R? are polyhedral cones with R(C;) =V for all i € [1,s], then 9(X) =
O(V\ X), where X = U;_, C;

Proof. 1. That |J;_, X; is a finite union of polyhedral cones is immediate, as this is the case for
each X;. That the intersection of a finite number of polyhedral cones is itself a polyhedral cone
follows from the characterization of a polyhedral cone as the intersection of a finite number of
half spaces. By hypothesm each X is a finite union of polyhedral cones, say X, = Ul 1 C(J )

Thus (;_; X; = =y U ( ) = U Ni=1 C 7 with each ;=1 C. Z(_) a polyhedral
i1€[Lt1],.vis€[L,ts] ’
cone as previously remarked.

2. By hypothesis, X C V C R? is a finite union of polyhedral cones, say X = U;:1 C; with
each Cj a polyhedral cone, so each C; = ﬂ:]: 1 H; ; for some closed half spaces H; ; C V. We
may w.l.o.g. assume V = R? Then

s s tj s t; s t;
vix=v\(Jc UNH) =N\ Hy)=UV\Hi=
j=1 Jj=1li=1 j=1 =1 Jj=1li=1
U ﬂ V\Hij»j = U ﬂ zm
11€[L,t1],0yis€[1,ts] 5=1 i1€[Lt1],..,is€[L,ts] J=1

where each int(—H;; ;) is an open half space in V. Thus

s

V\X = U ()int(—H;, ;) = U () int(—Hi, )

11€[L,t1],...,0s€[L,ts] J=1 i1€[Lt1],...,is€[1,ts] J=1

(3.4) = U '”t< ﬂ zm)

i1€[1?t1]7"'7i5€[17ts]

Each ﬂ H;, ; is a finite intersection of closed half spaces, and thus a polyhedral cone.
In partlcular, ﬂjzl —H;, ; is convex. If |nt(ﬂj:1 ZH) # (), then |nt(ﬂ Hi].J) =

(o]
(ﬂjzl —Hi].,j> (as any nonempty open set contains a ball of positive radius, which is a full

dimensional subset), whence

s s
int( _Hij,j> = (ﬂ —Hij,]) ﬂ H’L],] - ﬂ VR
j=1 Jj=1

with the penultimate equality above in view of the convexity of ﬂj:1 —H;, j, and the final

equality in view of ﬂ;zl —H;; j being an intersection of closed subsets, and thus itself closed.
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Thus int(ﬂjz1 —HZ-N-) = ;=1 —Hi; j is a polyhedral cone in such case. On the other hand, if

int(ﬂ?z1 —Hij,j) = (), then int<ﬂj:1 —HijJ) = () too. As a result, (3.4) shows that V' \ X is a
finite union of polyhedral cones, as desired.
Let & = R(X) CV =R%. If V properly contains &, then V\ X =V \ =V and 9(V \ X) =

(V) =0 C 9(X). On the other hand, if V = &, then
X)=0(V\X)=V\X)\(V\X)" and

OVANX)=(VAX)\(V\X) = (VAX)\ (V\X),

where the equality 0(X) = 0(V \ X) follows in view of X being closed (so that V' \ X lying in
a proper subspace of V is only possible if X = V). Consequently, since (V' \ X)° C (V\ X )O
(as both V'\ X and V' \ X span the same subspace), it follows that 9(V \ X) C 9(X). This
completes the proof of Item 2.

3. BEach Cj has full dimension in V, and we can w.l.o.g. assume V = R?. Since X is closed
and spans the subspace V, it follows that V' \ X is open in V and is thus either empty or has full
dimension. If V'\ X = ), then V' \ X = () too, whence d(V \ X) = d(X) = 9(V) = (), as desired.
So instead assume V \ X has full dimension, whence V' \ X and X both span the entire space
V. Asaresult, 9(X) =9(V\X)=(V\X)\(V\X)?and 9(V\ X) = (V\ X))\ (V\X)O =
(VAX)\ (V\ X)O. Letting Y = V' \ X, it remains to show ¥~ = Y°. The inclusion Y° C Y is
trivial (as Y and Y span the same subspace). Since Y = V \ X is open in V, we have Y° =Y.
Thus we need to show Y° C Y. Let z € Y° be arbitrary. Then = € Y and there exists an
open ball B(z) C Y for some € > 0. Assume by contradiction that = ¢ Y = V \ X, whence

z e X = Uj‘:1 Cj, so w.lo.g. x € Cq, which is a polyhedral cone spanning V' by hypothesis.

Since (] is a convex set with = € (1, we may take a point y € C7 and consider the line segment
between y and x. As Cj is convex, all points on this line segment (apart from x) lie in CY,
ensuring that B¢(x) N C} contains some point xg € C7. Thus zg € C7 N Be(z). However, since
Be(z) CY =V \ X, we also have o € V\ X C V \ C;. Now C] is a closed set which spans
the space V', which implies V' \ C} is open in V, and thus also spans V' (it is nonempty else its

closure could not contain (). Since C7 and V' \ C span the same subspace V, it follows that
aﬂV\Cl = 8(01) = 6(‘/\01) But now xg € V\Cl ﬂCf - V\Cl ﬂa: 8(01) :a\Cf,
which contradicts that xg € C7, completing the proof. O

Next, we need a notion of what it means for a set X to be bounded relative to another set
Y, extending the notion of a bounded set (which is the case Y = {0}).

Definition. Let X, Y C R? be subsets. We say that X is bound to Y if there is some real
number € > 0 such that every x € X is distance less than € from Y, i.e., X CY + B.(0). A
sequence {x;}?° is bound to Y if the set X = {x; : i > 1} is bound to Y.

We continue with a basic connection between boundedness and encasement.
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Proposition 3.6. Let {z;}?°, be an asymptotically filtered sequence of terms x; € R? with limit
i@ = (u1,...,us) and let 7 : RT = R{uy,...,u;) be the orthogonal projection. Suppose the cone
C C R? encases .
1. {m(z;)}2, is an asymptotically filtered sequence in R{uq, ..., uy) = R with limit 4.
2. w(xz;) € C for all sufficiently large i.
3. If @ contains a complete fully unbounded limit of {z;}3°, as a truncation, then the se-
quence {z;}32, is bound to C. Indeed, d(x;,C) < sup; ||m(z;i)|| < oo for all sufficiently
large i, where w; : RS — R(uy, ..., u;)" is the orthogonal projection.

Proof. For j € [0,t], let m; : RY — R{uy,...,u;)* be the orthogonal projection. Since the cone
C encases (u,...,ut), there is some Y = {y1,...,y:} C C with C(Y') C C such that, for every
Jj € ,t], yj = arjur + azjus + ...+ o ju; for some a; ; > 0 with all a;; > 0. Item 1 follows
immediately from the definitions.

2. In view of Item 1, we may w.l.o.g. assume z; € R(uy,...,u;) for all 7, so that each
m(x;) = z; = aPuy + ...+ Py for some i) > 0 with az(.j) € o(a(j_l)) for 5 > 2. Let

A = ()i be the t x t upper triangular matrix given by the «; ; with 4, j € [1,t], so a; j; =0

whenever ¢ > j. Then x; € C(Y') precisely when there exists a vector x = (rgl), e ,rgt)) with all

rl(j) > 0 such that Az = z;, where z; = (a(l), .. a(t)). As in the proof of Lemma 3.4, by well

known back substitution formulas,

(4) t (k)
. a”’’ — L O RT
(3.5) P T kgt ATy for j € [1,1).

i -
Qjj

Consequently, since al(-k) € o(al@) for all £ > j, we find that TZ@ € @(al(-j)) for all j € [1,¢]. In
particular, rgk) € o(az(j )) for k > j+1, whence (3.5) ensures that rgj )~ 0 for all sufficiently large
i. But this means x; € C(Y') C C for all sufficiently large i, completing Item 2.

3. By Item 2, 7(z;) € C for all sufficiently large i, say all i > N. Since {x;}$°, is asymptot-
ically filtered with limit (uq,...,u;) containing a complete fully unbounded limit of {z;}°,, it
follows that {m(x;)}32, is bounded, implying sup; ||m(z;)|| < co. We have z; = m(x;) + m (),
whence d(x;, w(2;)) = ||me(x;)|| < sup; ||me(x;)|| for all i. Thus, for i > N, we see 7(x;) € C is
a point with distance at most sup; ||m(z;)|| < oo from z;, showing that the sequence {z;}7°; is

bound to C with the desired bounds. OJ

For finite unions of polyhedral cones, the next proposition provides the key link between
asymptotically filtered sequences and encasement, helping explain why we have restricted atten-
tion to this class of sets.

Proposition 3.7. Let Y C R be a finite union of polyhedral cones. If {yi}2, is an asymptot-

ically filtered sequence of terms y; € Y with limit @, then Y encases .

Proof. Let @ = (uy,...,us) and extend (uq,...,us) to an orthonormal basis (uq,...,uq) of
RY. Since Y is a finite union of polyhedral cones, by replacing {y;}°, with an appropriate
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subsequence, we can w.l.o.g. assume y; € C C Y for all ¢ for some polyhedral cone C. Let
7 : RY — R{us,...,u;) be the orthogonal projection. Observing that C(ug,...,u;) encases
i, we can apply Proposition 3.6.2 to conclude 7(y;) € C(uy,...,u;) for all sufficiently large i.
Thus, by passing to a subsequence, we can w.l.o.g. assume all y; lie in the polyhedral cone
C" = Clug, ..., u, Tupy1, ..., ug). As a result, since C N C’ C Y is also a polyhedral cone,
with y; € C N C’ for all i, we see that we can replace C' with C' N C’ and thereby assume
C CCuy,...,up, T, ..., Tuqg).

Since C is a polyhedral cone, so too is 7;(C) for each j € [0,¢], where m; : RT — R{uy, ..., u;j)*
is the orthogonal projection. Since lim; oo mj—1(x;)/||mj—1(x:)|| = uy, for j € [1,t], is a limit
of points mj_i(x;)/||mj—1(x;)| from the closed cone 7;_1(C), it follows that u; € m;_1(C) for
all j € [1,t]. Consequently, since kerm;_1 = R(uy,...,uj_1), there must be some z; € C with
mj—1(2j) = uj, meaning z; = oy jui + g jus + ... + o ju; with oy ; € R and o ; = 1. However,
since each z; € C C C(u, ..., us, £upy1, ..., *ug), we must have a; ; > 0 for all 7 and j. This
shows that C encases u, and since C C Y, it follows that Y encases , as desired. O

Lemma 3.8. Let {z;}5°, be an asymptotically filtered sequence of points in R? with fully un-
bounded limit i@ and let Y C R, If {x;}52, is bound to Y, then there is an asymptotically filtered
sequence {y;}>2, of points y; € Y having fully unbounded limit .

(1) )

Proof. Let @ = (u,...,u;) and let each z; = a; g+ ) with o) € R(uq, .. ., ug)t

()

to Y, there exists some finite € > 0 such that, for each term x;, there is some y; € Y with

UL +...+a
Since # is fully unbounded, we have a;”/ — oo for every j € [1,t]. Since {z;}°; is bound
d(zi,y;) < e. Consider the sequence {y;}°,. For each i > 1, write y; = x; + 2 and write
z = bgl)ul +...+ bgt)ut + 2/ with 2/ € R(us,...,us)t. Then {2}, is a bounded sequence
in view of d(z;,y;) < €, ensuring that ||z;|| € O(1), and thus also bgj) € O(1) for j € [1,t] and
z; € O(1). Since agt) — 00, we have O(1) C o(agt)) - o(az(j)) for all j € [1,¢]. In consequence,
since ||z} € o(al@), it follows that y; = (agl) + bl(»l))ul +... 4 (agt) + bz(»t))ut + (2} + zf) gives
an asymptotically filtered representation of the y; having fully unbounded limit @ (passing to
sufficiently large index terms to ensure at + b > 0), as desired. U

i i
We now come to the main result of this section, giving a local containment characterization
for a set to be bound to a finite union of polyhedral cones. We remark that, if Y C R? is only a

cone, not a finite union of polyhedral cones, then the argument below shows 4. = 1. = 2. = 3.
It is the implication 3. = 4. that requires Y to be a finite union of polyhedral cones.

Theorem 3.9. Let X, Y C RY be subsets with Y # () a finite union of polyhedral cones. Then
the following are equivalent.
1. X is bound to Y.

2. Every asymptotically filtered sequence {x;}°, of terms x; € X with fully unbounded limit
is bound to Y.
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3. Xlim C Ylim_

4.Y encases every @ € X'™,

Proof. The implication 1. = 2. is trivial. The implication 2. = 3. follows from Lemma 3.8. As
Y is a finite union of polyhedral cones, the implication 3. = 4. follows from Proposition 3.7. It
remains to establish the implication 4. = 1. To this end, assume by contradiction that Y encases
every i € X'"™ but X is not bound to Y. Then there exists a sequence {z;}32, of points z; € X
with d(z;,Y) — oco. In particular, {|z;||}32; is unbounded (as Y # ). Thus, as discussed
at the beginning of the section, there exists a subsequence which is asymptotically filtered
with complete fully unbounded limit. Replacing {z;}°; with this subsequence, we can w.l.o.g.
assume {z;}22, is itself an asymptotically filtered sequence of terms z; € X with complete fully
unbounded limit @ = (u1,...,u;) and d(z;,Y) — oo. Since Y encases 4@ = (ug,...,us) by
hypothesis, Proposition 3.6.3 implies that {x;}3°, is bound to Y. However, this contradicts that
d(x;,Y) — oo, completing the proof. g

Corollary 3.10. Let X, Y, Z C R? be subsets with X and Y each finite unions of polyhedral
cones. If Z is bound to X as well as to'Y, then Z is bound to X NY.

Proof. By Lemma 3.5, X NY is also a finite union of polyhedral ones. Thus the corollary follows
from Theorem 3.9.4 and Lemma 3.4. g

4. ELEMENTARY ATOMS, POSITIVE BASES AND REAY SYSTEMS

4.1. Basic Non-degeneracy Characterizations. We begin with a few basic properties re-

garding atoms and the representation of 0 as a positive linear combination.

Lemma 4.1. Let A < R? be a full rank lattice, where d > 0, let x1,...,z, € A and suppose
@121 + ...+ apxy = 0 for some «; € R. Then, for all e > 0, there exists of,...,a. € Q with
Az + ...+ alz, =0 and oy — o] < € for all i.

Proof. Let E = {e1,...,eq} C A be a lattice basis for A. The lemma is vacuous for » = 0 and
trivial if a; = 0 for all 4, so assume r > 1 and that not all «; are zero. Let x be the nonzero
column vector whose i-th entry is «;. Then, letting M be the d x r integer matrix whose j-th
column is x; expressed using the basis F, we see that z lies in the null space of M. Since the
entries of M are integers, the null space of M is generated by integer vectors, say y1,...,ys € Z"
with s > 1. Thus z = S1y1 +. . . + Bsys for some §; € R. Since the rational numbers approximate
the reals, we can find rational numbers f,..., 8, € Q with |5; — 3!| sufficiently small so as to
guarantee that, for every i € [1,7], the i-th coordinate o of the vector @’ = Biy1 + ... + BLys
satisfies |of — ;| < €. Moreover, ojz1 + ... + oLz, = 0 (as 2’ lies in the null space of M) with
o € Q for all ¢ (as each y; is an integer vector and each ! € Q), as desired. O

Proposition 4.2. Let A < R% be a full rank lattice, where d > 0, and let Go C A. Then
A(Go) #0  if and only if 0 € C*(Gp).
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Moreover, if there exist x1,...,x, € Gp, where r > 1, and real numbers o; > 0 such that
a1x1 + ... + apx, = 0, then there is a zero-sum subsequence S € B(Go) with Supp(S) =

{z1,..., 2, }.

Proof. If U € A(Gy) is an atom, then ) v4(U)g = o(U) = 0 shows that 0 € C*(Gp). On the
g€Go
other hand, if 0 € C*(Gy), then there are x1,...,z, € Gp, where r > 1, and real numbers «a; > 0

such that ajz1 + ... + a,z, = 0. Applying Lemma 4.1 with € = min; a; > 0, we conclude that
ayxi+...+alz, =0 for some o € Q with o, > 0 for all ¢ € [1,7]. By multiplying by a common
denominator, we can w.l.o.g. assume the o € Z for all i, and now S = a:[laﬂ S ‘xLa,T] € B(Gy) is
a nontrivial zero-sum sequence with Supp(S) = {z1,...,2,} C Gy, showing that A(Gp) # 0. O

Proposition 4.3. A subset X C RY, where d > 0, has 0 ¢ C*(X) if and only if 0 ¢ X and
there exist a sequence of subspaces HO C M C ... CHY with dimH = i such that X NHI is
contained in the closed half space Hifl CHI forj=1,...,d.

Proof. The case d = 0 is trivial, so we assume d > 1. A simple inductive argument shows that
any X C R? satisfying the stated conditions has 0 ¢ C*(X). On the other hand, if 0 ¢ C*(X),
then 0 ¢ X and C(X)N —C(X) # R? (as d > 1). Thus C(X) # RY, ensuring that C(X), and
thus also X C C(X), must be contained in a closed half space of some subspace H%~! with
dim #?! = d — 1. Repeating this argument for X N %%! and iterating then yields the desired
result. g

When studying zero-sum subsequences, it natural to focus on those subsets Gy such that
every g € G is contained in some atom. Otherwise, we could simply pass to a subset of Gy
having this property. The next proposition characterizes such sets Gg C A.

Proposition 4.4. Let A < R? be a full rank lattice, where d > 0, and let Go C A. Then every
g € Go has some U € A(Gy) with g € Supp(U) if and only if C(Go) = R(Gy).

Proof. We may w.l.o.g. assume R(Go) = R? (by passing to the lattice Z(Go) < R{(Gp)). If
d = 0, then Gy C {0} and the result is clear. Therefore we may assume d > 1. Recall that
Gy is contained in a closed half-space if and only if C(Go) # R(Gp) = R?. First assume every
g € Go has some U € A(Gy) with g € Supp(U). If Gy were contained in a closed half space H,
then it is clear by reduction modulo H that no atom can contain a term outside of . Thus, as
each gg € Gy lies in some atom by hypothesis, we must have Gy C H # R¢, contradicting that
R(Gy) = R?. It remains to prove the other direction, for which we proceed by induction on d.
The cases d < 1 are easily verified, so we assume d > 2.

Let G{; C Gy be the subset of all ¢ € G that are contained in the support of some atom.
Assuming G{, # Go, we need to show that Gy is contained in a closed half space of R?. For this,
we can w.l.o.g. assume 0 € Gy, and thus that G{, is nonempty. Let & = R(GY})). First suppose
that dim & = 0, i.e., that G{, = {0}. Then A(Gp \ {0}) = A(Go \ Gj)) = 0, whence Propositions
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4.2 and 4.3 imply that Gy \ {0} is contained in a closed half space of R%, and thus so too Gy, as
desired. So we now assume dim €& > 1.

Since every g € Gy is contained in some atom over Gy but no element in Gy \ G, is contained
in an atom over Gy, we actually have that every g € G}, is contained in some atom over G{. Thus
by the already established direction of the proof, we conclude that C(G{)) = £. Consequently,
any sequence T' € F(Gp) with o(T) € £ can be completed to a zero-sum sequence 1" € B(Gy)
with Supp(T) C Supp(7”) in view of Proposition 4.2. This means no element of Gg \ Gj, # 0 is
contained in a zero-sum modulo £. Thus, by the induction hypothesis, we conclude that 7(Gy)
is contained in a closed half space H, of £, where m : R? — £1 is the orthogonal projection,
which implies Gy is contained in the closed half space 771 () of R, as desired. O

As a corollary to Propositions 4.4 and 4.2, we have the following.

Corollary 4.5. Let A < R? be a full rank lattice, where d > 0, let Go C A, let £ = C(Gp) N
—C(Gyo), and let Go = {g € Go : g € Supp(U) for some U € A(Go)}. Then Go = GoNE and

C(Go) = €.

Proof. By definition of éo, any U € A(Gp) must have Supp(U) C Go. Thus Proposition 4.4
applied to Gy (contained in the full rank lattice A N R(C:’(ﬁ of R(é@) implies that

C(Go) = R(Go).

If g € Go NR(Gy), then C(Go U {g}) = C(Goy) = R(Gy), in which case Proposition 4.4 applied
to Go U {g} (contained in the full rank lattice A N R(Go) of R(Gy)) implies that g is contained
in the support of some atom U € A(Gy), whence g € Go by definition of G. This shows that

éo =GonN R<C~;0>.

Let m : R? — R(Go)L be the orthogonal projection, so Go = {g € Go : w(g) = 0}. Clearly,
C(Gy) = R(Gy) is contained in the lineality space £ for C(Go). If 0 € C*(m(Go) \ {0}) =
C*(m(Go \ Go)), then there will be a nontrivial positive linear combination of elements from
Go \ Go contained in R(Gy) = C(Gp). But then Proposition 4.2 ensures that there is some
zero-sum U € B(Gp) whose support contains elements from Gy \ éo, and thus an atom as well,
contradicting the definition of Go. Therefore 0 ¢ C*(m(Go) \ {0}), ensuring that C(w(Gp)) has
trivial lineality space, meaning R(Gp) = kerm = & is the lineality space for C(Go). Hence
C(Go) = R(Go) = € and Gy = Gy NR(Gy) = Gy N &, as desired. O

4.2. Elementary Atoms and Positive Bases. The set of atoms .A(Gp) is central to the study
of factorizations over B(Gy), being the basic building block of all zero-sum sequences. However,

some atoms are more elementary than others.

Definition. Let Gy C G be a subset of a torsion-free abelian group. An atom U € A(Gy) is called
elementary if A(X) = 0 for every proper subset X C Supp(U). We let A*™(Gy) C A(Gyo)

denote the set of all elementary atoms.
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The notion of an elementary atom was introduced to the context of factorization theory in [7]
(with a variation in the definition), but has independent and much older origins in both Convex
Geometry and Matroid Theory [98]. The approach taken in [7] followed the Matroid theoretic
branch. However, the vein from Convex Geometry provides a natural framework for adapting
the arguments, and one which we will generalize quite extensively in this work. We begin
with the following theorem explaining why elementary atoms can, in some sense, be considered
the basic building blocks for all atoms. Theorem 4.6 is essentially Carathéordory’s Theorem
translated into the language of zero-sum sequences. At the very least, the key idea used in the
proof of Carathéordory’s Theorem is the same used to prove Theorem 4.6. The details are given
in [7, Theorem 3.7] albeit using an alternative definition for an elementary atom. To avoid any
confusion, we include the short proof below.

Theorem 4.6. Let Gy C G be a subset of a torsion-free abelian group G. Any zero-sum
S € Brat(Go) can be written as a product of rational powers of elementary atoms, i.e., there are
elementary atoms Uy, ..., Uy € A¥™(Go) and positive rational numbers aq, ..., € Q such
that

_I71° [ces] :
S = Hie[l,Z}Ui with £ < |Supp(S)|.

Proof. We show the theorem holds for any rational zero-sum S € B,:(Go) by induction on
| Supp(S)|. When | Supp(S)| = 1, then S is itself a rational power of an elementary atom, and
the theorem holds trivially. This completes the base of the induction. Given S € By.:(Go), there
exists an elementary atom U € A*™(Gy) with Supp(U) € Supp(S). Indeed, simply consider an
atom U € A(Gy) with Supp(U) C Supp(S) = Supp(S™) and Supp(U) minimal subject to this
constraint, where SIN € B(Gp). Let a = min{v,(S)/v.(U) : z € Supp(U)}, which is a positive
rational number as Supp(U) C Supp(S) with U, S € Bat(Go). Then v, (Ule]) < v, (S) for all
x € Supp(S) with equality holding for any x attaining the minimum in the definition of or. Thus
Ulel | S with S - Ul € B,:(Go) a rational zero-sum having | Supp(S - U=)| < | Supp(S)|.
Applying the induction hypothesis to S - U= now completes the proof. O

Given a convex cone C' C R? asubset X C C such that C(X) = C but C(Y') # C for all proper
subsets Y C X is called a frame of C [31]. A frame for a positive dimensional subspace & C R?
is called a positive basis. This is the natural extension of a linear basis to Convex Geometry.
Unlike ordinary linear bases, positive bases can exhibit complex algebraic structure. Clearly, any
positive basis X of an n-dimensional subspace & must have | X| > n + 1. If equality holds, X is
called a minimal positive basis for the subspace £, though the name is somewhat misleading.
We do not allow positive bases of zero dimensional subspaces for technical reasons. While a
general positive basis can be complex, minimal positive bases are easily described and closely
related to elementary atoms, as the following proposition shows. In particular, Proposition 4.7
shows U is an elementary atom precisely when Supp(U) is a minimal positive basis or {0}.

Proposition 4.7. For X C R? with £ = R(X) a nontrivial space, the following are equivalent.
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1. X is a minimal positive basis for £.

2. 0 € C(X) and any proper subset Y C X is linearly independent.

3. X\ {z} is linearly independent with —x € C°(X \ {z}) for every z € X.

4. X \ {z} is linearly independent with —x € C°(X \ {z}) for some z € X.

5. If M is the d x| X | matriz whose columns are the elements from X, then the null space of
M has dimension 1 and is generated by a vector having all coordinates strictly positive.

6. 0 € C*(X) but 0 ¢ C*(Y) for all proper subsets Y C X.
If X C A with A < R? q full rank lattice, then the above are equivalent to each of the following.

7. X = Supp(U) for some elementary atom U.
8. |AX)| =1 and A(Y) =0 for all proper Y C X.

Proof. 1. = 2. Since X is a positive basis, C(X) = &, thus containing the subspace £ of
dimension dim £ > 1, whence 0 € C*(X), showing that X is linearly dependent. Since C(X) = €,
it follows that R(X \{z}) = £ for all x € X, for otherwise C(X) would be contained in the proper
half space R(X \ {z}) + Riz C &, contradicting that C(X) = £. If a proper subset Y C X were
linearly dependent, then X \ Y is nonempty and dim& < (|[Y|—-1)+|X\Y|=|X|—-1=dim¢,
with the last equality following as X is a minimal positive basis. This forces X \ Y to be a
basis for £ modulo the subspace & = R(Y). In particular, R(X \ {z}) # £ for any z € X \ Y,
contrary to what we established above. This shows each proper subset is linearly independent.

2. = 3. For x € X, we have X \ {z} linearly independent by Item 2. Since 0 € C*(X),
there must be a strictly positive linear combination of all elements from X equal to zero, since
any proper subset is linearly independent. Thus —z can be written as a strictly positive linear
combination of the linearly independent elements from X \ {z}, showing that —x € C°(X \ {z}).

3. = 4. This is immediate.

4. = 5. The dimension of the null space of the d x | X | matrix M is equal to |X| —dimR(X),
which equals 1 by Item 4, since X \ {z} is linearly independent but —z € C°(X \ {z}) C
R(X \ {z}). Since X \ {z} is linearly independent, C°(X \ {z}) consists of all elements which are
a strictly positive linear combination of all element from X\ {z}, in which case —zx € C°(X \{z})
ensures that the null space of M must contain a vector whose coordinates are all strictly positive,
which must then be a generator.

5. = 6. Let x1,...,2, € X be the distinct elements of X. Let z = (aq,...,a,) be the
generator for the null space of M. Then «; > 0 for all ¢ by item 5 and a1y + ... 4+ apz, =0
showing that 0 € C*(X). On the other hand, if 0 € C*(Y") for some proper subset Y C X, then
there would be 1,..., 8, € Ry with S1z1+...+ Sz, = 0, not all 3; zero, and some 3; = 0. But
then (f1,..., ;) would be a nonzero element of the null space of M and clearly not a multiple
of z (as any non-zero multiple of z has all non-zero coordinates), contradicting Item 5.

6. = 1. Since 0 € C*({0}) and R(X) is nontrivial, the hypotheses of Item 6 force 0 ¢ X. Let
Z1,...,2, € X be the distinct elements of X. Observe that C(Y') = R(Y'), for a nonempty subset
Y C X, implies C(Y') contains the positive dimensional subspace R(Y), yielding 0 € C*(Y'). By
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assumption of Item 6, the only nonempty subset Y C X for which this can hold is ¥ = X.
Thus to show X is a positive basis, we only need to show C(X) = R(X). Since 0 € C*(X)
but 0 ¢ C*(Y) for all proper subsets Y C X, it follows that there is a strictly positive linear
combination ajx1 + ...+ a,x, = 0 using all elements from X. Let y € C(X) be nonzero. Then
y = f1x1 + ...+ Brx, for some By,...,5. € Ry. Let f = max; 3; > 0 and let o = min; o;; > 0.
Then —y = (—f1z1 — ... — fre) + E(onzs +. ..+ arzy) = 3 (— i + L)y, with —Fi + Loy > 0

i=1
for all ¢, showing —y € C(X). As y € C(X) was an arbitrary non-zero element, this means the

convex cone C(X) is in fact a subspace, which is only possible if C(X) = R(X) = £. This shows
that X is a positive basis for £.

Assuming X is not a minimal positive basis, we obtain r = |X| > dim & + 2. In such case,
there must be a linear combination of a proper subset of X equal to 0. Thus, by re-indexing the
x;, we can w.l.o.g. assume Y121 + ...+ vszs = 0 for some s € [1,dimE + 1] C [1,r — 1] and some
~vi € R with not all 7 = 0. If 7; > 0 for all ¢, then this contradicts the hypothesis 0 ¢ C*(Y") for
Y = {x1,...,25} C X. Therefore we can define v = min{a;/|vi| : v <0, ¢ € [1,s]} > 0, which
ensures that a; +7v; > 0 for all i € [1, s], with equality holding for any ¢ attaining the minimum
in the definition of v. But now (a1 +7y71)x1 +. ..+ (s +77s)Ts + @s12s41+ ...+ oy, = 0is a
positive linear combination equal to zero. Moreover, the coefficient of x, is a,, > 0 as r > s, and
the coefficient of some z; with i € [1, 5] is zero (namely, any i € [1, s] attaining the minimum in
the definition of ), contradicting that 0 ¢ C*(Y") for all proper subsets Y C X. This completes
the equivalence of the first 6 items.

Now assume X C A with A < R? a full rank lattice. Then, in view of Proposition 4.2, we
see that Items 6 and 7 are equivalent reformulations of each other. The implication 8. = 7. is
also immediate. To complete the proof, we show that 5. = 8. Since X C A, each vector x € X
can be expressed as an integer linear combination of the elements from some lattice basis E for
A, which is then also a linear basis for R, If we use E to express the column vectors in M, it
follows that M is an integer matrix, whence the generator z of the null space of M from Item 5
will have each of its i-th coordinates «; > 0 being a rational number. By clearing denominators,
we can further assume «; € Z with ged(aq,...,a,) = 1 and «; > 1 for all i. It is then clear
that any positive multiple of z = (ay,...,a,) having all of its coordinates integers must be an
integer multiple of z. This means every zero-sum sequence S € B(X) has the form S = U for
some integer n > 1, where U = H:G[l,r] xga"] € B(X), which implies that U € A(X) is the unique
atom with support contained in X. Hence |A(X)| = 1, and since Supp(U) = X, it follows that
A(Y) = 0 for all proper Y C X, completing the proof. O

4.3. Reay Systems. Much of the material from this subsection can be extracted by a careful
examination, variation and reformulation of key ideas from the proofs found in the early works
[15] [31] [92] [93] [90] [102]. The material in the format and generality we require is not readily

available, so this section will serve as the foundation for more extensive generalizations in later
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sections. The key definition is the following, which may be found buried in a proof of Reay in
the specialized case when X = X; U...U X is a positive basis [92]. Since the authors of the
aforementioned references were rather focussed on the study of positive bases, their notions were
not developed beyond this context in the fuller generality needed for this paper.

Definition. Let X1,..., X, C R? be nonempty subsets, where s > 0 and d > 0. For j € [0, s],
let mj R - R(X;U...U X)L be the orthogonal projection. We say that R = (X1,...,Xs) is
a Reay (coordinate) system for the subspace R(X; U...UX,) C R? if

mj—1(X;) is a minimal positive basis of size |m;j_1(X;)| = |X;|, for every j € [1,s].

We view the empty tuple as a Reay system for the trivial space. Let R = (X1,...,X;) be a
Reay system for the subspace £ C R? and let X = X; U...U X,. We say that a subset Y C R¢
contains the Reay system R if X C Y. If the Reay system R has X = X; U...U X, being a
positive basis, then we call R a Reay basis. We call s > 0 the depth of the Reay system, in
which case a minimal positive basis is just a Reay system of depth 1, and an element x € X with
x € X is said to be at depth j. The basic existence result for Reay systems is the following.

Proposition 4.8. Let X C RY, where d > 0, and let £ = C(X) N —C(X). Then X contains
a Reay system for £. Moreover, if Y C X is a minimal positive basis, then X contains a Reay
system (X1,...,Xs) for & with X; =Y.

Proof. Recall that £ is the maximal subspace contained in C(X). If dim &€ = 0, then X contains
no positive basis, and the empty tuple gives the desired Reay system. Therefore assume dim £ >
1 and proceed by induction on dim &, the base case having just been completed. Since C(X)
contains the positive dimension subspace &£, we have 0 € C*(X \ {0}), and thus there must be
a minimal (by inclusion) subset X; C X \ {0} with 0 € C*(X;). In view of Proposition 4.7.6,
such a subset X7 C X is a minimal positive basis contained in X. Let 7y : R4 — R(Xl)L be
the orthogonal projection. Since there is nothing otherwise special about X, we can w.l.o.g.
assume X7 is equal to any minimal positive basis Y C X. In view of the maximality of &,
we have C(X;) = R(X;) C €. If R(X;) = &, we are done. So instead assume dimR(X;) <
dim&. Then 7 (&) will be the maximal subspace contained in m(C(X)) = C(m1(X)), so by
induction hypothesis 71(€) has a Reay system (71(X2),...,m1 (X)) with X; C X for all 4, and
by discarding elements with equal images under 71, we can w.l.o.g. assume |X;| = |m1(Xj)| for
all j. It now follows that (X1, ..., Xs) will be a Reay system for £. O

We continue with some basic observations regarding Reay systems.

Proposition 4.9. Let R = (X1,...,X,) be a Reay system for a subspace £ C R? of dimension
nandlet X = X1 U...UX;. Forje€[0,s], let & =R(X1U...UX,) and let 7j : R? —><‘:jL be
the orthogonal projection.

1. C(X) =R(X), and \J;_, X; \ {z:} is a linear basis for € for any z; € X;.
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2. X =Xy U...UX is a disjoint union with | X| =dim& +s=n+ s < 2n.

3. (X1,...,Xj) is a Reay system for & and (mj—1(Xj),...,mj—1(Xs)) is a Reay system for
mj—1(E), for any j € [1, 5].

4. If X is a positive basis, then any Reay system (Y1,...,Ys) for € contained in X is a
Reay basis and has X = Y1 U...UY;s. Moreover, the Reay systems given in Item 8 are
all Reay bases.

Proof. 1. A quick inductive argument on j =0, 1,..., s shows that C(X;U...UX;) = &;. Using
Proposition 4.7.3 and an inductive argument on j = 1,2,...,s shows that ngl Xi\ {z;} is a
linear basis for R(X; U...U X};) for any z; € X;. The case j = s yields Item 1.

2. That the elements in X7 U...U X; are distinct follows by a simple inductive argument
on j = 1,...,s utilizing that m;_; is injective on X, with all elements in a minimal positive
basis m;_1(X;) nonzero. Hence n = dim& = i(\XZ] — 1) = |X| — s by Item 1. Moreover, since

i=1
1 <dimé& <dimé& < ... <dim& = dim& = n (as each minimal positive basis 7;_; (X;) must

span a nontrivial subspace), we have s < n, completing Item 2.

3. This follows immediately from the recursive definition of a Reay system.

4. That any Reay system (Y7,...,Ys) for £ contained in the positive basis X must have
X =Y1U...UYs, and therefore be a Reay Basis, follows from Item 1, for otherwise C(Y') = & for
the proper subset Y = Y1 U...UYj, contradicting that X is a positive basis. If Y C X;U...UX|
is a subset with C(m;—1(Y)) = 7;—1(€), then C(X; U...UX;_1 UY) = & follows in view of
C(X1U...UXj1) = -1 = kermj_1 (which holds by Item 1 applied to the Reay system
(X1,...,Xj-1)). Likewise, if Y C X;U...UX; with C(Y) = &;, then C(YUX;11U...UX,) =&
follows in view of C(7;(X;41) U...7m;(Xs)) = 7;(€) (which holds in view of Item 1 applied to
the Reay system (7;(Xj41),...,m;(Xs))). Thus R being a Reay basis implies that (X7,...,X;)
and (m;-1(Xj),...,mj—1(Xs)) are Reay bases too, for any j € [1, s]. O

The key property of Reay systems is that they allow for a certain type of unique expression,
a fact not highlighted in the original work of Reay.

Proposition 4.10. Let (X1,...,X,) be a Reay system for the subspace & C R%. Then every
z € £ has a unique expression as

with all o, € Ry but, for every j € [1,s], not all o with x € X; are nonzero.

Proof. 1f € is trivial, then x = s = 0 and the unique expression for x is the empty sum. Therefore
assume dim & > 1. We proceed by induction on s. The first nontrivial case is s = 1, when we
have only the minimal positive basis X;. In view of the characterization given in Proposition
4.7.3, one can apply a linear transformation ¢ mapping the first | X;| — 1 elements of X; to the
standard basis vectors in R%, and then the remaining element of X; will map to an element
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with all coordinates strictly negative, a case for which the uniqueness of expression for ¢(z)
is easily verified, and one which implies the same property for the original element z. This
completes the base case. Now assume s > 2 and that we have unique expression for all smaller
values of s. For j € [0,s], let & = R(X; U...UX;) and let 7; : R — Sjl be the orthogonal
projection, so & = €. By Proposition 4.9.3, (Xi,...,Xs-1) is a Reay system for &_1 and
ms—1(Xs) is a minimal positive basis for m5_1(E). Since E,_1 C & = &, every z € £ has a unique
expression as z = a+b with a € kermy_1 = &_1 and b € L NE = ms_1(£). Applying the base
case to the minimal positive basis ms_1(Xs) for ms_1(€), we find there is a unique expression

b= > agms_1(z) = ms—1 | DY apz | with o, € Ry for all z € X and not all o, nonzero.
CﬂGXs JUGXS
Thus there is a unique expression b = u, + Y, a,x with u, € kerms_1 = E5_1, with a, € Ry,
IEXS

and with not all a;,; nonzero (since b € m5_1(€) with ms_1 a projection, we have ms_1(b) = b).
Since b is uniquely determined by z, the element uw, € £s_1 is uniquely determined by z. But

now there is a unique expression z = a’ + > a,z with o’ € &_1, with a, € R, and with not
reXs
all a;; nonzero (namely, ' = a + u,). Applying the induction hypothesis to the element a’ and

Reay system (X1,...,Xs-1) for &_1 now yields the desired unique expression for z. O

There is another way to view Proposition 4.10. If R = (X1, ..., X;) is a Reay system for the
subspace £ C R? with X = X; U...U X, then define

B={CY): YCX and X; Y forevery i€ [1,s]}.

For every choice of elements z; € X;, for i € [1,s], the set Y = (J;_; X; \ {z;} is a linear basis
for £ by Proposition 4.9.1. Thus Proposition 4.10 implies that & = (Jgeq C° is the disjoint
union of the relative interiors of the cones in %. Combining these observations, we see that if
we intersect each cone from B with the unit sphere in £, we obtain an object homeomorphic to
a simplicial complex of dimension dim £ — 1 whose union is the unit sphere in £. In the parlance
of topologists, such an object is called a simplicial sphere or triangulated sphere. Indeed, owing
to the method of construction, we obtain a more restricted class of simplicial sphere known as
a starshaped sphere (somewhat surprisingly, not every simplicial sphere can be constructed this
way). We direct the reader to [20] for a more comprehensive account, including more details of
what follows below.

A fan is a finite collection B of polyhedral cones C(Y) C R? each having trivial lineality
space C(Y)N—=C(Y) = {0}. The faces of C(Y) are the sub-cones C(Z) with Z C Y obtained by
intersecting C(Y') with a hyperplane defining a closed half-space that contains C(Y'), and it is
required that each face of a cone from the fan be an element of the fan, and that the intersection
of any two cones in the fan be a face of each. It is a simplicial fan if every C(Y) € B is
generated by a linearly independent set Y, in which case there is a face for each subset Z C Y,
and it is a complete fan if the union of all cones in B equals an entire subspace. Thus, the
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set B defined above from a Reay system is a special type of complete simplicial fan for the
subspace & C R?. Complete simplicial fans are in bijective correspondence with starshaped
spheres, and rational fans (those whose vertices come from a lattice) are central to the definition
of Toric Varieties, though we will only need their more basic properties.

One easily notes that a Reay system (with depth s > 2) is not always stable even under small
perturbations of its defining vectors. This forces us to work with the more general concept of a
complete simplicial fan, which maintains many of the essential features of a Reay system while
gaining the important property of being stable under small perturbations. Worth noting, any
complete fan must be pure (that is, all maximal cones must have the same dimension). Indeed,
if 9B is a complete fan for R?, then the sub-collection of all d-dimensional cones from 9B, together
with all their faces (sub-cones), would also be a fan. Their union must be all of R?, for if it were
not, then its complement would be a d-dimensional subset of R?, which clearly cannot be written
as a union of a finite number of lower dimensional objects. But once we know their union is
all of R, it then follows that any lower dimensional cone must lie in one of the d-dimensional
cones, and thus only d-dimensional cones are maximal.

Let B be a simplicial fan in R?. For an integer k € [0, d], we use B}, to denote the subset of B
consisting of all k-dimensional cones in 8 (generated by k elements). Thus the elements of By,
when intersected with the unit sphere give rise (up to homeomorphism) to (k — 1)-dimensional
simplices. A vertex set V for B is a collection of nonzero elements, one chosen from each C' € 8.
For instance, the set V = Joem, (C N A(B1(0))) consisting of the elements of the unit sphere
contained in some B € 9B, (i.e., the O-dimensional vertices of the associated starshaped sphere)
is one possible set of vertices for 8. Note that |V (B)| = |B1] is finite. Whenever dealing with
a simplicial fan B, we will fix a vertex set V(B), and if none is explicitly mentioned, the unit
sphere representatives are assumed to be the vertices. Every x € (Joeq C has a unique cone
C € % for which x € C°. The cone C' is generated by a set of linearly independent vectors
Be CV(B), so C = C(B¢) and z is a strictly positive linear combination of the elements of B¢
(note: if x = 0, then Bo = () and C' = {0}). If B is defined using a Reay system (Xi, ..., Xj),
then we take V(8) = X U... U X, for the vertices. The coefficients in the linear combination
correspond to the baricentric coordinates for points inside the simplicial cone C. We define
Suppg () = Be € V(B) to be the support set of the element = with respect to the simplicial
fan B, which is then the unique subset Suppg(z) C V such that z € C°(Suppg(z)). If B arises
from a Reay system R, then we let

Suppg (z) = Suppg ()

and call this set the Reay support of the element x. By Proposition 4.9.1, Suppg(z) is always
a linearly independent set. We carry on with some basic properties about Reay systems and

positive bases.
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Proposition 4.11. Let R = (X1,...,X,) be a Reay system for a subspace & C R? and let
E=R(X1U...UXj) for j €0,s]. For every k € [1, 5],

C(Xk) N &1 = Ryuy
for some (possibly zero) uy, € Ex—1. Moreover,
X} = Suppr(—ur) UXp C X3 U...UXg
is a minimal positive basis for some subspace &, C Ej.

Proof. Let k € [1,s] be arbitrary. Since X \ {zx} is linearly independent for any zj € Xj
by Proposition 4.9.1, it follows that dim R(X}) = |Xj| or |X%| — 1, depending on whether the
elements of X, are linearly independent or linearly dependent. If they are linearly dependent, so

dimR(X}y) = | Xg| — 1, then, since & = &1 + R(X}), we have dim(E;_1 NR(X})) = dim 1 +
k—1 k
dimR(X}) — dim & = (Z (|1Xi| — 1)) Xy -1 (Z(|Xi| - 1)) = 0, meaning R{X;) N&_1 =

i=1 i=1

{0}. In this case, C(Xj) N Ek—1 = Ryuy for up = 0. On the other hand, if they are linearly
independent, so dimR(X}) = |Xj|, then we instead have dim(Ex_; N R(X})) = 1, meaning
R(X%) N E;_1 is a one-dimensional subspace. Since 0 € C*(m;_1(X%)) (in view of Proposition
4.7.6), it follows that there is a nontrivial positive linear combination of elements from X} that
lies in &,_1. Since the elements of X are linearly independent, this linear combination must
be a nonzero element of &1, say ur € Ex—1 N C*(Xy). If —uy were also contained in C(X}),
then 0 € C*(X}), contradicting that the elements of X}, are linearly independent. Therefore we
instead conclude that & _1 N C(Xj) = Riuy in this case as well.

If up, = 0, then Xy is linearly dependent and Supp(—ux) = 0, so X = Xj. By Proposition
4.9.1, every proper subset of X}, is linearly independent, in which case X; = X}, is a minimal
positive basis by Proposition 4.7.2, as desired. Therefore we now assume ug # 0 with X}, linearly
independent.

Since —uy € E_1, we have Suppgr(—ur) € X3 U...U Xk_1. Since ux € C*(Xi) and —uy €
C(Suppgr (—u)), we have 0 € C*(X}). Consequently, to show X is a minimal positive basis,
it suffices by Proposition 4.7.6 to show 0 ¢ C*(Y) for all proper subsets ¥ C X;. To this
end, consider an arbitrary subset Y C X} with 0 € C*(Y'). Since Suppg(—uy) is a linearly
independent subset, Y C Suppg(—uy) is not possible, implying Y N X # (. However, since
0 ¢ C*(mp—1(Z)) for any proper subset Z C X}, (per Proposition 4.7.6), any strictly positive
linear combination of a proper subset of terms from X}, lies outside the subspace £._1, and thus
cannot be combined with any linear combination of terms from &£,_1 to yield 0. In consequence,
we conclude that X C Y. Thus 0 € C*(Y) ensures that 0 = a + b with a € C*(X}) and
b € C(Suppr(—ug) NY) C E—_1. However, since 1 N C(Xy) = Riug, we must have a = auy,
for some positive o > 0, and by re-scaling we may w.l.o.g. assume « = 1. Hence —up = —a =
b € C(Suppr(—ur) NY). However, by definition of Suppy(—us), there is no proper subset of
Suppr (—ug) that contains —uy in its positive span, so we must have Suppg (—ux) C Y, which
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together with X C Y implies that Y = X,. AsY C X, was an arbitrary subset with 0 € C*(Y"),
we conclude that no proper subset Y C X, has 0 € C*(Y'), completing the proof. O

Let R = (X1,...,Xs) be a Reay system for R? and let X = X; U...U X,. Then each
z € R? corresponds via Proposition 4.10 uniquely to a tuple a(z) = (@z(2))zex € R‘f' with

ZXam(z)a: = z such that, for every j € [1,s], not all a,(z) for + € X; are non-zero. Unlike
S

Euclidean coordinates, if y, z € R%, we may not have a(y + z) = a(y) + a(z). The problem
is that, in one (or more) of the s groupings of coordinates in a(y) + a(z) corresponding to
the X, all coordinates may be strictly positive, which is not allowed. Proposition 4.11 gives a
means to quickly transform a(y) + a(z) into a(y + z). For each k € [1, s], there is an expression

> (ag(ck))w =y = kz_:l > ﬁ;k)x with all ag,;k) > 0 and Bék) > 0. We have ﬁ;k) > 0 precisely
2€Xy i=1zeX;
when z € Suppg (uz). Let ap = (ap(x))zex € RXI be the vector with ag(z) = —a for z € Xy,
with ag(x) = Bék) for z € X1U...UX}j_1, and will all other coordinates zero. Then, if the k-th
grouping in a(y) + «a(z) has all its coordinates positive, there will be a unique multiple of a,
namely biay, with by, = min,ecx, W, such that a(y)+«a(z)+bray has all coordinates non-
negative but has at least one zero in the k-th grouping Xj. Since only coordinates in grouping
k and lower change by adding brax, we can sequentially apply the relations bra; as needed for
k=s,s—1,...,1 until we reduce a(y) + a(z) to a(y + z) in at most s < d steps.

The following proposition is a refined statement of one of the main goals in the original work

of Reay [92].

Proposition 4.12. Let X C R? be a positive basis for R® with d > 1. Then there exists a Reay
basis R = (X1,...,Xs) for R* with X = X1 U...U X, and

X1 2 [X5] 2 1Xa] 2 X5 2 1X5] > .. > X > X, > 2,

where each X} = (Suppg(—uj) \ €j-2) U Xj with &2 = R(X1 U... U X o) and u; as given in
Proposition 4.11, for j € [2,s].

Proof. If X is a minimal positive basis, then X = X is itself a Reay basis of depth s = 1,
in which case the proposition is trivial. Therefore we can assume otherwise. In particular, the
proposition is true when | X | < 2, allowing us to proceed by induction on | X|. By Proposition 4.8,
X contains a minimal positive basis Xy for some subspace, so we may w.l.o.g. assume X; C X
is a maximal cardinality minimal positive basis contained in X. Let 7y : R4 — R(X 1)l be the
orthogonal projection. We can take any Reay system (m1(X3),...,m(Xs)), where X; C X are
subsets with |71 (X;)| = | X;|, and then (X, Xs,..., X;) will be a Reay system. By Proposition
4.8, there is some Reay system (Xi,...,X) with X = X; U... U X,. Now 7 is injective on
X \ X; (by definition of a Reay system) while Proposition 4.9.4 ensures that m1(X \ X;) is a
positive basis with |m (X \ X7)| = |X \ X1| < | X|. Apply the induction hypothesis to 71 (X \ X1)
to find a Reay system R’ = (m1(X2),...,m1(X;)) satisfying the conclusion of the proposition
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with |71 (X;)| = | X;| for all i > 2 and XoU...UX; = X\ X;. Then R = (X1,...,X;) is a Reay
basis with X = X U...U X, as noted above. Let X; and uj, for j € [2, s, be as defined by the
proposition for the Reay Basis R, and let m(X;)" and u;, for j € [3,s], be the corresponding
quantities for the Reay Basis R'. Then 71 (u;) = v} and m1(X}) = m1(X;)’ for j > 3. Thus the
induction hypothesis and injectivity of 3 on X \ X7 yield

| Xo| > |X3] > [X5| > ... |Xg| > [X| > 2.

By definition, |X5| > | X3, while Proposition 4.11 implies that X/ is minimal positive basis, so
that the maximality of X ensures |X;| > | X}|, completing the proof. O

Reay Bases can be used to help better understand positive bases. However, most of the useful
properties of Reay Bases hold for the more general class of Reay systems or even complete
simplicial fans. If one needs more refined structure for a positive basis, there is a geometric
interpretation given by Shephard [102] involving the Gale diagram of a linear representation
of the positive basis. We conclude the subsection with some important properties of complete

simplicial fans.

Proposition 4.13. Let B be a complete simplicial fan for R with d > 1, and let {x1,..., x5} =
V(B) be the distinct vertices of B. Let x € R and let B4(x) C By consist of all cones
C(B) € B, with Suppg(z) C B C V(B).

If C(B) € B with Suppy(xz) € B C V(B), then C(B) NRyz = {0}.
z € Int(Uces, () C) with z ¢ Int(Ugey C) for any proper subset Y C By(z).

ﬂcE%d(I) C = C(Suppg (2)).

There is a sufficiently small € > 0 (dependent on B) such that, for any yi,...,ys €
RIN {0} with d(z;/ |2, vi/llysll) < € for all i, the map ¢ : B — B given by o(C) =
C{yi}ier) for C = C({zmiticr) € B, where I C [1,s], is a simplicial isomorphism between
B and B := {p(C): C € B}. In particular, B’ is a complete simplicial fan for RY.

5. If X = {x1,...,xs} is a minimal positive basis for € C R, then there is an € > 0 such

=

that any set {y1,...,Ya+1} € € with d(z;/||zi|, vi/|yill) < € for all i is also a minimal
positive basis for E.
6. Let B’ and ¢ be defined as in Item 4. Then, for all sufficiently small e > 0 (dependent

on B and ), ¢(Suppg(z)) C Suppy (z).

Proof. 1. Per definition of a complete simplicial fan, we have a disjoint decomposition of R¢
given by R% = Weoeaw C°. Each polyhedral cone C' € 9B corresponds uniquely to some linearly
independent subset of vertices Bo C V(B) with C(B¢) = C, with the faces of the cone C
corresponding to the subsets of Bo. Thus C' C C' is a face when €’ = C(B¢r) with Ber C Be.
By definition, the cone C(B,) € B, where B, := Suppg (), is the unique cone in B that contains
RS 2 in its relative interior. If C(B) € 9B is a cone that contains Ry .z, then « will be contained
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in the relative interior of some face of C(B). Consequently, since all such faces of C(B) lie in B,
the uniqueness of C(B;) ensures that this face must be C(B;), i.e., B, C B.

2. If x = 0, then Suppg(0) = ) and B4(0) = B, in which case the statement follows trivially
in view of 28 being complete. Otherwise, in view of Item 1, it follows that there is a small
neighborhood around each cone C' € B, \ By(z) with the property that the closure of this
neighborhood does not contain x. Thus this is also true for the finite union UCE‘Bd\‘Bd(x) C,
implying © € Int(Ucep, () €) in view of Upeg, € = R (as B is complete). Recall that the
relative interiors of the cones from 9B form a disjoint partition of R? with x contained in the
relative interior of the cone C, := C(Suppg(z)). Let C' € By be arbitrary. By definition of
By, we have C,, € ', so z € C, C C" = (C")°, with the latter equality following since C’ is
a convex set. It follows that B.(z) N (C")° # () for all € > 0, and since (C")° is disjoint from
Uces,a)ncry C (as the relative interiors of the cones in B form a disjoint partition of R%),
it follows that B.(x) ¢ Uces, @y C for all € > 0, showing that 2 ¢ Int(Uces, 2\ (o3 C)-
Since C" € By(x) was arbitrary, this implies = ¢ Int({| sy C) for any proper subset Y C B4(x).

3. Let Cp = C(Suppgy(z)). By definition of B4(x), we have Cp C (\oep, ) C- If the
reverse inclusion fails, then there must be some vertex z ¢ B, := Suppg(z) contained in every

C € B,(x). In particular, By U {z} is linearly independent (as the generating vertices of each
cone are linearly independent) and linearly spans some subspace €. For any C' = C(B) € Bg4(x),
we have B, U {z} C B with the vertices in B C V(8) linearly independent. Thus C N & =
C(B; U{z}). As this is true for every C € B4(z), we conclude that <UCe%d(m) C) nNéE =
C(B; U{z}). Consequently, since B, U {z} is linearly independent with =z € C°(B;), it follows
that <UC€%d(w) C) NC(—z,z) = C(ByU{z})NC(—z,x) = Ryx, ensuring that x is not contained
in the interior of Jpeg,(,) C (else all points @ — az € C(—z,x) with o > 0 sufficiently small
would be contained in (Jgeg, () C), contrary to Item 2.

4. For each vertex xj, there are only a finite number of C(B) € B with z; € B C V(B),
defining a finite number of subspaces linearly spanned by the sets B\ {z;}. Each such subspace
‘H does not contain z;, as the elements of B are linearly independent, so there is some finite
positive distance (along the unit sphere) between z;/||x;|| and any such subspace H intersected
with the unit sphere. Let ¢ > 0 be the minimum such distance, where the minimum runs
over all possible vertices z; € V(8) and all possible subspace pairings. Given a subspace H
generated by linearly independent unit vectors, if we perturb the generators of H by a small
amount, replacing each with a new unit vector generator some sufficiently small distance € > 0
from the original vector, then the resulting set of perturbed generators will generate a perturbed
subspace H’' of equal dimension which, when intersected with the unit sphere, has all its points
some small distance away from the original hyperplane H intersected with the sphere. Thus,
by this continuity property, we may choose ¢ > 0 sufficiently small with respect to € > 0 to
ensure that each perturbed point y;/||y;|| remains disjoint from each perturbed paired subspace
‘H’ (ensuring that each cone in 9B’ is still generated by linearly independent elements) and on the
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same side (in the case of the maximal co-dimension 1 subspaces) as the original vector x;/||z;]|.
By doing so, we ensure that the simplicial structure of 9B is preserved in B’, and the result
follows. See also [20, Section 5.2].

5. This is a special case of Item 4 in view of Proposition 4.7.

6. If © = 0, we have Suppg(z) = 0 = Suppg (), and the result is clear. Therefore we
may assume x is nonzero. Now, if z is a positive scaler multiple of a vertex of 9B, then we
can assume by rescaling x that x € V(8). On the other hand, if = is not a positive scaler
multiple of any vertex of 23, then we can perform a baricentric subdivision at x in 93 to create
a new complete simplicial fan € having V(€) = V(B) U {z} (so we remove each C(B) with
Suppg () € B C V(*B) and replace it with the collection of cones of the form C(B\ {y} U {z})
for y € Suppg(x)). In the former case (when z € V(*8)), set € = B. By item 4 applied to €, for
sufficiently small € > 0, replacing each vertex of € with a new vertex at radial distance at most €
from the original vector results in a new complete simplicial fan ¢’ isomorphic to €. Let B’ C ¢’
be the complete simplicial fan associated to the image of the original vertex set @(V(‘B)), in
which case ¢(C) € B’ for C' € B. In view of Item 2 applied to B, we have z € Int(Uceg () C):

whence

(4.1) reht( | »(©)
CeBy(z)
in view of our choice of € > 0. By Item 2 applied to B’, we know that = € Int(U‘p(C)e%&(x) o(C))
with this failing for any proper subset of 9B/(z). Combining this with (4.1) and Item 1, we
conclude that
By(x) C p(Ba(x)).

Consequently, since every element of B,(x) contains the set Suppg(x), it follows that

(4.2) C(pSuwps@)) € () #(C) = C( Suppa (@),

o(C)eBy(x)
with the final equality above in view of Ttem 3 applied to B’. However, (4.2) is equivalent to
o(Suppy (7)) € Suppgy (z), which completes the proof. O

4.4. F-filtered Sequences, Minimal Encasement and Reay Systems. Next, we extend
the concept of an asymptotically filtered sequence, which we introduced in Section 3. Note, if
we specialize below to the case when ng) =0 forall j € [1,/] and i > 1 with & = R(uy,...,u;)
for j € [1, 4], then we recover the notion of an asymptotically filtered sequence. We extend much
of the terminology introduced in Section 3 from asymptotically filtered sequences to F-filtered

sequences.

Definition. Let @ = (u1,...,us) be a tuple of £ > 0 orthonormal vectors in RY and let {0} =
E C & C...C & CR? be a chain of subspaces such that uj € &N 5]-{1 forall j € [1,4]. A
sequence {x;}2, of terms x; € R? is an F-filtered sequence with filter F = (E1,...,&) and



THE CHARACTERIZATION OF FINITE ELASTICITIES 47
limit @ if
x; = (agl)ul + wgl)) +... 4+ (a@)ue + w@) +vyi  foralli>1,
for some real numbers a( D 0, vectors uj, w ( ) ¢ &n 5l 1, and y; € EE such that

o lim; az(» ) e Ry U{oo} exists for each j € [1,4],
‘ (4) () : (7+1) (4) : _
o |lyill, |w;”|| € o(a;”’) for all j € [1,4], and a; €o(a;”’) forall j € [1,0—1].

Let @ = (uy,...,us) be a tuple of orthonormal vectors u; € R? and let F = (&1,...,&) be a

tuple of subspaces with
{0} =& cé&c...cé& and  Rug,...,u) C&.

Then, for each i € [1,¢], there is a unique j € [1,¢] with u; € £\ £j_1. Let J C [1, /] consist of
all indices j for which &; \ £;_1 contains some u; with i € [1,t], and for each j € J, let r; € [1,1]
be the minimal index with u,; € &\ 1. If J = [1,/] and 7; < r; holds whenever i < j, for
i, j € [1,4], then we say that F is a compatible filter for i, define

f(ﬁ) = (ﬂl,...,ﬂg)7

where u; = mj_1(uz,)/||mj—1(upr,)|| with 75— : RY — 5]{1 the orthogonal projection, and set
rey1 = t+ 1, in which case

l=ri<re<...<rp<rpp1=t+1,

which refer to as the associated indices for F(@). Note ¢ > 1 except when « is the empty

tuple, in which case F (%) is the empty tuple.

Proposition 4.14. Let @ = (u1,...,u;) be a tuple of t > 0 orthonormal vectors u; € R? and let
F = (&1,y...,&) be a compatible filter for @ with 1 =r1 < ... <71y <rpy1 =t+ 1 the associated
indices. Then

u; € &1 foralli <rjandj <l+1.

1)

Moreover, if {z;}2, is an asymptotically filtered sequence with limit @, say with x; = ag ui +

-+ a( Jug + yi, then {z;}5°, is an F-filtered sequence with limit F (i), say with

(1) © ©)

x; (a u1+w(1))+. —i—(a Uy +w —l—y§,

where a( e @( ) for j € [1,4] and ||y;|| € O(Jlyill)-

Proof. If u; ¢ €1 with i < r;, then u; € &\ 1 for some k > j (as R{uq,...,u) C &),
whence r, <@ < r;, contradicting that F is a compatible filter for # in view of k > j Therefore
we instead conclude that u; € &1 for i < r;. For j € [0,4], let m; : R — SL and 77 R — &
be the orthogonal projections, where & = {0}. We may assume ¢ > 1, for £ = 0 implies
t = 0, in which case z; = y; = y, is trivially an F-filtered sequence. By definition of the u;,
we have u; € &; ﬂE -, for j € [1,¢]. For j € [1,4], let yz(]) 5 () — 7T]l 1(z;), and set
Y = () = m(ys) € & (since R{uy, ..., ut) € & = kerm). Then x; = y( I yy) + v

)



48 DAVID J. GRYNKIEWICZ

with each yZ(j) €e&n EJ-L , and y} € &F. Let ozl(j) = agrj)ij,l(urj)H > 0 (since u,, ¢ £-1) and
let

ol =9 el =4y sl ) = 751087 o) €816

(since yi(j) e&in EJ-L_I and u,; € & by definition of r;). Thus

(1) 1) () (¢

zi = (o U Fw;7) + . A (o T+ w )+

U) ¢ &n é'j{l and y; € £. By definition of 7, we are assured that ||7;_1(uy,)| > 0.

with @;, w;

Thus O%(j) € @(agm) and ||yl = |me(yi)|l € O(Jlyil|) (since linear operators between finite dimen-

sional spaces are bounded). Consequently, since x; = agl)ul +...+ al(t)ut + y; is asymptotically

flered, we have o’ € o(a{"™) € o(al""™) = ofal™) and |y}l € O(uil) < o(al”) <
(re) ‘

o(a; ') = o(a; ). Since u; € 51 C &; for i < rj, and since u,; € &; \ &1, it follows that
j j ; ; i+1
ng) = Wj_l(yi(]) — agrj)urj) = Wj_lﬁj‘(dii — agrj)u,,j) = ﬂj_le‘(agrj )urj_H + ...+ az(»t)ut + vi).

In consequence, if r; < t, then le(j)H € O(al(-rjﬂ)) C o(al(-rj)) = o(agj)), and if r; = t, then j = /¢
and ngj)H € O(Jlyil]) < o(al(t)) = o(agrj)) = 0(045])), and the proof is complete in either case. [

Lemma 4.15. Let X C R? be a linearly independent subset, let {z;}32, be a sequence of terms

z; € R(X), and let z; = ozgm)a: with agx) €R fori>1. Then ]az@)| € O(||x;||) for allz € X.
zeX

Proof. Let | X| = s < d (as X is linearly independent). Let M’ be the d x s matrix with column

vectors the elements from X. Since X is linearly independent, the matrix M’ has rank s, allowing

us to add an additional d — s columns to the right of M’ to create an invertible d x d matrix

M. Since z; € R(X), for each i, there is a vector y; = (a;1,...,®is,0,...,0) with My; = z;.

Then ||y;|| = [|M " a;|| < ||[M~Y| ||lzs]|, where |[M 1| is the matrix operator norm induced by
the Euclidean Lo-norm. This shows agjj <aiy+...4af, = |lyll* < C?|a|? for each j € [1, 5],
where C' = |[M~!|| > 0, implying |a; ;| < C||x;|| for all i and j € [1, 5], as desired. O

The next proposition links minimal encasement, Reay systems and F-filtered sequences.

Proposition 4.16. Let X C R?, and let @ = (u1,...,uz) be a tuple of t > 0 orthonormal vectors
u; € R, where d > 0. Then —X minimally encases @ if and only if
1. there exists a disjoint partition X = Ule X; such that F = (&1,...,&) is a compatible
filter for i, where & =R(X; U...UX};) for j € [1,4], and
2. (Xiu{un}, ..., XeU{u,,}) is a Reay system, where 1 =1 < ... <1y <rpyp =t+1
are the associated indices for F(u).

Moreover, the Reay system (X1 U {uy, },..., XU {uy,}) satisfying Items 1 and 2 is unique.

Proof. If t = 0, then only the empty set X = () minimally encases the empty tuple, and the
empty partition with £ = 0 satisfies the desired conditions. Likewise, if such a partition exists
for a set X when t = 0, then ¢ = 0 follows, implying that X = (). Thus we may assume ¢ > 1.
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Suppose Items 1 and 2 hold. Item 2 allows us to apply Proposition 4.9 to conclude that
—ur;, € R(X7U...UXj) = C(Xy U{up}U...UX;U{u,}) for every j € [1,/], whence
—Up; = z+ a1y + ... + aj_1uy;_, for some z € C(X1U...UXj) and a; > 0, implying that
Up, + a1ty + ..o+ aj Uy, € C(=X1U...U—X;) C C(~X). By item 1 and Proposition 4.14,
we have u; € £_1 whenever ¢ < rj and j < £+ 1. Thus, for any ¢ € [1,¢] with r; < i < rjq
and j € [1,/], we have u; € R(X7U...UXj;) = C(X1 U{up }...UX;U{u.,}), so that a similar
argument yields u; + aiup, + ... + aju,; € C(=X1U...U—-X;) € C(—X) for some a; > 0.
This shows that —X encases @ = (u1,...,us). It remains to establish the minimality of the
encasement. To this end, it suffices to show, for an arbitrary x € X, that C(—X \ {—=x}) does
not encase (ug,...,u;). Let j € [1,£] be the index such that = € X; and let 7;_1 : RY — Ejl_l
be the orthogonal projection. Then R = (mj—1(X; U {us}), ..., mj—1(X, U {us,})) is a Reay
system and Suppg (—m;—1(u,)) = 7j—1(X;). Assume by contradiction that —X \ {—x} encases
(u1,...,u¢). Then, since mj_1(u;) = 0 for all i < r; (by Proposition 4.14), it follows that
—mj—1(ur;) € C(mj—1(X \ {7})) = C(mj—1(X; \ {z}) U...Umj_1(Xy)), implying that 7;_1(z) ¢
Suppg (—mj-1(ur;)). However, this contradicts that Suppg(—mj-1(u;;)) = mj—1(X;) with x €
Xj. So we conclude that —X minimally encases 1, as desired.

Next suppose —X minimally encases @. Then X must be finite (by the minimality of —X),

and there are vectors vy,...,v; € C(—X) with each
(43) Vj = Qg Ul ..o Uy € C(*X)

for some real numbers «;; > 0 with «;; > 0. In particular, u; € C(—X), so there must
be a subset X; C X such that X; U {u1} is a minimal positive basis (in view of Proposition
4.7.4 and Carthéordory’s Theorem). Let r1 = 1, let & = {0}, and let & = R(X;). We
proceed to recursively construct, for j = 1,2,..., nonempty subsets Xi,...,X; C X, subspaces
& =R(X;...UXj;), and indices 1 =7 < rg <...<r; <tsuch that r; € [1,¢] is the minimal
index with u,, ¢ &1, and (X1 U {up },...,X; U{u,}) is a Reay system. We have just shown
this is possible for j = 1, so assume j > 2 and that the sets X1,...,X;_1 € X and indices
1 =7 < ... <rj1 have already been found such that (X1 U {u },..., X;1U{us_,}) is a
Reay system and each r; € [1,¢] is the minimal index with u,, ¢ &_1 = R(X; U... U X,_;) for
i < j—1. Let rj € [1,¢] be the minimal index such that u,, ¢ & 1 = R(X; U...UX;_1) (if
such an index exists), and otherwise set 7; =t 4+ 1. By Proposition 4.9.1, we have

gj—l = R<X1 U...u Xj_1> = C(X1 U {url} Uu...u Xj—l U {uTj—l})'

Thus rj > rj1. If rj =t +1, then —u; € &1 = C(X1U{upy JU...UX; 1 U{u,,_,}) foralli e
[1,t]. In such case, for each i > r;_;, we have u; +a; 1ur, +. .. Qi j—1Up;_y € C(—X1U...U=-X;_4)
for some o p, ... s Qs € Ry

If no such index rg exists (so 7o = t+1), then —u; € & = C(X; U{u1}) for all i > 1, meaning
each —u; = b; + a;uy for some a; > 0 and b; € C(X;). But then u; + a;u; € C(—X3) for all
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i > 2, implying that C(—X1) encases (uq,...,u;). In this case, the minimality of X ensures that
X = X, and the desired partition of X follows with ¢ = 1 and F = (&) compatible with @ (as
up € & \ {0} with R{uq,...,u) C &1). So we may now assume the index 7y exists. Moreover,
the previous argument ensures that C(—X;) encases (u1,...,ur,_1). Now let 7 : R — Sf-
be the orthogonal projection. Since uy,...,ur,—1 € &1, we have —mi(u,,) € C(m (X)) by
(4.3). Thus, as before, we can find a subset Xo C X \ Xj such that |m(X2)| = |X2| and
71(X2 U {ur, }) is a minimal positive basis, in which case (X1 U {uy, }, Xo U {u,,}) is a Reay
system. Since 71(X2) U {m1(ur,)} is a minimal positive basis, we have u,, + b € C°(—Xs) for
some b € kerm; = & = C(X1 U {uy, }), in turn implying u,, + ar,uy, € C(—X7 U —X2) for some
ar, > 0. Thus —X;U— X3 encases (u1,. .., Ur,). Let & = R(X1UXy) = C(X1UXoU{uy,, ur, }) (in
view of Proposition 4.9.1) and let r3 be the minimal index such that u,, ¢ &. If no such index r3
exists, then —u; € & = C(X1UXoU{u,,, up, }) for all ¢ > 1, meaning each —u; = ¢;+b;uy, +a;uy,,
for some a;, b; > 0 and ¢; € C(X1 U X3). But then u; + a;uy, + bju,, € C(—X; U —X>) for all
i > rg, implying that C(—X; U —X3) encases (ug,...,us). As before, the minimality of X then
ensures that X = X7 U X5, and the desired partition follows with ¢ = 2. So we may now assume
the index r3 exists. Moreover, C(—X; U —X5) encases (ug,...,ur,—1). Continuing to iterate
these arguments (as in Proposition 4.8) now leads to the desired partition of X after ¢ < ¢ steps.

Finally, it remains to show R = (X7 U {u,, },..., X, U{u,,}) is unique, which we handle by
induction on £. To this end, suppose R’ = (Xj U{uy },..., Xp U {ur;/}) is another Reay system
satisfying Items 1 and 2, s0 1 =7] < ... <7, < 7“2’+1 =t+ 1. Thus —u; = —u,, € C°(X;) and
—uy = —u,, € C°(X7) by Proposition 4.7.3. Let m : R? — & be the orthogonal projection.
Since R is a Reay system, it follows that w1 (X2)U. ..U (X)) is a linearly independent set of size
| X2| 4. ..+ | X¢| (per definition of a Reay system and Proposition 4.9). Consequently, any linear
combination of elements from X equal to —u; € & = kerm; can only involve terms from Xj.
Thus —uy = —u,, € C°(X7) implies X] C X;. Exchanging the roles of R and R’ and repeating
the argument, we find that X; C X7{, whence X; = X{. As a result, u,, = Uy, NOW follows from
Item 1 (since R(X;) = R(X7)). This completes the base case when ¢ = 1, so we can assume
{ > 2. Now (7T1(X2) U {7['1(717,2)}, - ,7['1(X@) U {m(uw)}) and (7T1(Xé) U {Wl(uré)}, ceey 7['1(X2/) U
{m1(us,)}) are both Reay systems (per Proposition 4.9.3) showing that —my (X \ X1) minimally
encases 71 (). Thus, by induction hypothesis, £ = ¢' and m (X;) = m(X]) for all j € [2,],
implying X; = X for all j € [2,/] as 7 is injective on X \ Xj. This shows F = (€1,...,&) is
uniquely defined, where £ = R(X; U... U Xj), in which case Item 1 ensures that the indices
1=r <...<ry<rgq =t+1 are also uniquely defined, i.e., r; = 'r;- for all j € [1, 7). O

If —X minimally encases @, we have a unique Reay system R = (X7 U {u,, },..., X, U {uy,})
and indices 1 =r; < ... <71y <71p31 =t+ 1 given by Proposition 4.16, which we refer to as the
Reay system and indices associated to the minimal encasement of & by —X.
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Proposition 4.17. Let @ = (u1,...,us) be a tuple of orthonormal vectors u; € RY, where

t,d > 1, let X C R be a subset minimally encasing —i, and let X = Ule X,and1l=1r <

. <rp<rpp1 =t+ 1 be the Reay system and indices associated to the minimal encasement.
If {z;}5°, is an asymptotically filtered sequence with limit i, say x; = al(l)ul +.. .—i—al(t)ut + Ui,

and y; € R(X) for all i, then X U {x;} is a minimal positive basis for R(X) for all sufficiently

large i. Moreover, letting —x; = > az(»x)q: be the unique positive linear combination with aiz >0
zeX

(for i sufficiently large), we have az(x) € @(agrj)) forz e X;.

Proof. For j € [1,4],1et £ = R(X;U...UX;) and let 7; : R — Sjl be the orthogonal projection.
Then X = X; U...U Xy is linearly independent by Proposition 4.9.1, so X U {x;} is a minimal
positive basis if and only if z; € —C°(X) (by Proposition 4.7.4). By Proposition 3.6, {z; —y;}72,
is asymptotically filtered with limit @ and z; — y; € —C(X) for all sufficiently large i.

Let us first show that, if the proposition holds for the sequence {z; — y;}2,, then it holds

for the sequence {z;}°, as well. To this end, suppose z; —y; = — > aﬁx)x for all sufficiently
zeX
large i, for some al@ > 0 with al(x) € @(agrj)) for all € X; and j € [1,/]. Since y; € R(X)
with X linearly independent, Lemma 4.15 implies that y; = — > ,BZ-(x)x for some Bi(x) € R with
zeX

8% € O(lluill) € (@) C o) for all @ € X and r € [1,£]. Thus a{”) + 8 € O(al"")

7

for all x € X; and j € [1,/]. Moreover, al@) + ﬁl@) > 0 for all sufficiently large . Thus, since
= (xi—yi)+yi=—>, (ozz(m) + Bi(x))x, it follows that x; € —C°(X) for all sufficiently large 1,
zeX

ensuring that the proposition holds for {z;}°,, as desired.

We proceed by induction on the depth ¢ to show the proposition holds when y; = 0 for all
(1)

i, which will complete the proof by what was just shown. If £/ = 1, then z; = a; 'u; with u; €
—C°(X1) (as X7 U{uy, } is a minimal positive basis and r; = 1). Then there is a unique strictly

positive linear combination —u; = ) agz, implying that —z; = a(l)(—ul) = > (agl)az)x.

i
zeX reX
(1)
i

Since o, > 0 and a; 7 > 0, we have az(.l)ax € @(agl)) = @(agrl)) with agl)ax > 0, ensuring

—x; € C°(X1) = C°(X), as desired. This completes the induction base, so now assume ¢ > 2.

Ew’lJrl)u,nZAH 4+ ...+ agt)ut. Write 2z; = 2 + z:iL with 2 € &_; and ziL € Egl_l, SO
(

)

Let z; = a
1 _
xi:az( )ul—i—...—i—aw l)urzfl—i—zf%—zf.

Since mp—1(X¢) U{m—1(ur,)} is a minimal positive basis, Proposition 3.3 allows us to apply the
(z)

base case to {my_1(—z;)}32, yielding that —z* = mp_1(—z;) = agm)m_l(m) for some ;" > 0
zeXy
with ozz(-x) € @(al(-”)) C o(ay“l)), for all x € X, and all sufficiently large i. Thus

(4.4) Y o=zt g

zeXy



52 DAVID J. GRYNKIEWICZ

for some & € &_1. Since 27 and z are orthogonal, we have |zF||, ||z;-|| < |z, ensuring

1221, 121 € O(|zil) = O(al" ™) C o(al"* V). Thus 2} +& € &1 with ||z} +&| € o(al),

i

allowing us to apply the induction hypothesis to the sequence {z; — ziL + & }i2, to conclude

—zit+zr—& = 3 al(x)x for some al@ > 0 with ozl(»x) € @(agrj)), for all z € Xj, all
.”EGX\X@
j € [1,£— 1] and all sufficiently large i. Combined with (4.4), it follows that —z; = 3 oz
reX
with az(x) > 0 and OJEI) € @(agrj)), for x € X; and sufficiently large 4, showing that z; € —C°(X),
which completes the induction and the proof. ]

5. ORIENTED REAY SYSTEMS

If x C R?% is a half-space inside the subspace R(x) with partial boundary (meaning x is
obtained from a closed half-space in R(x) by removing elements from the boundary subspace),
so x° C x C X with X = x° a closed half-space in R(x) and x° an open half space, then we call
x a (relative) half-space, though we will henceforth simply refer to such sets as half-spaces
for brevity. With regards to Convex Geometry, there is little difference between a nonzero point
z € R? and the one-dimensional ray R,z that it defines, which is a one-dimensional half-space.
In this way, we informally view a higher dimensional half-space x C R? as a type of higher-
dimensional element. We will later see that, in many ways, half-spaces share similar behavior
with ordinary elements. An element x € x° is called a representative for the relative half-space
x. Thus X = 9(x) + Rz for any representative x. Recall that a simplicial cone is set of the form
C(X) with X C R? a linearly independent set. If 7 : R — R is a linear transformation with
ker m NR(x) C d(x), or equivalently, with x Z ker 7w 4+ 9(x) (as both are equivalent to m(z) # 0
for all z € x°), then m(x) will also be a relative half-space with

(5.1) A(r(x) = 7(0(x)), w(x)NI(r(x)=n(xNI(x)) and w(x°) = m(x)°.

We define a blunted simplicial cone to be a set of the form £ 4 C(X) with & C R? a subspace
and X C R? a subset for which 7(X) is a linearly independent subset of |X| elements, where
7 : R? — £+ is the orthogonal projection. In order to avoid excessive use of dummy variables,
given a set X whose elements x € X are subsets x C R?, we let

RY(X) = R(UXGXX>, CY(x) = C(Uxexx), and CY(X)°=C (XLGJX X).

We adapt the convention that relative half-spaces will be denoted in boldface, e.g. x, and
that the corresponding non-boldface symbol denotes a fixed representative for the half-space,
e.g., x € x°. Likewise, a collection of relative half-spaces will be denoted in calligraphic script,
e.g. X, with the corresponding non-calligraphic symbol denoting a set obtained by replacing
each half-space x € X with a fixed representative x € x°, e.g., X denotes a set of representatives
for X. Generally, we will use a representative set X only in contexts where it is irrelevant which
representative is chosen for each x € A'| and the representative sets will be fixed.
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Definition. For j € [1,s], let X;U{v;} be a subset of relative half-spaces in R? with distinguished
element vj ¢ X;j, where d >0 and s > 0. For j € [0,s], let & = RY(X, U{vi}U...UX;U{v;})
and let 7j : R? — EjL be the orthogonal projection. Suppose, for each j € [1, s], that the following
hold.

(OR1) For every x € X; U{v;}, we have d(x) = RY(Bx) and d(x) Nx = CY(Bx) for some
By C X1 U...UXj_1 (which we will later denote by 0({x}) = Bx).
(OR2) mj—1(X; U{v;}) is a minimal positive basis with |m;—1(X; U {v;})| = |X;| + 1.

Then we call R = (X1 U{v1},..., X U{vs}) an orientated Reay system for the subspace ;.

Note, in view of (OR1), that m;_1(X; U {v;}) is a set of rays in Ej‘_l, so (OR2) does not
depend on the choice of representatives. Using (OR1) and (OR2) and a recursive argument
for j = 1,2,...,s, it follows that (X; U {v1},...,X; U {v;}) is a Reay system for &; with
E=R(XjU...UX;) =RY(XU...UX;) for all j € [0,s]. Also, (OR2) ensures that mj_1(x) # 0
for every x € X;U{v;}, whence x € £;_1 = &;_1 + 9(x), and thus x € &_1 + 9(x) for any ¢ < j
as well. Consequently, for any j € [1, s],

71'3;1(7—\),) = (7‘1’];1(.)(']') U {ﬂjfl(vj)}, - ,ﬂ‘jfl(Xs) U {TI‘J',l(VS)})

is also an orientated Reay system in view of (5.1), while it is clear from the recursive nature of
the definition that (X; U {x1},...,&; U{x;}) is an orientated Reay system for any j € [0, s].
IfBC X U...UX;s and x C CY(B) with x € X; U {v,} for j € [1,s], then

(5.2) x € X; and there is some y € B with x C y,

which can be seen by the following short inductive proof on s using (OR1) and (OR2). When
j = s, applying 7s_1 and using (OR2) yields the desired result, which covers the case s = 1. Let
Bs = BN Xs. Observe that (OR2) ensures there is no nontrivial linear combination of elements
from Bs lying in £_1, whence E_1 N CY(Bs) = C(UyEBS(gS—l Ny)) = C(UyeBs(a(Y) ny)),
with the latter equality in view of (OR1) and (OR2). As a result, when j < s, we have
x C & _1NCYB) =CYBN\ Bs) + (Es—1 NCY(Bs)) = CY(B\ Bs) + C(Uyegs(a(y) Ny)). In
view of (OR1), there is a subset X’ C X} U...U Xs_1 with CY(X') = C(UyeBs(a(y) Ny)),
namely X' = UyeBs By. Moreover, if y € Bs and z € By, then z C CY(By) = d(y) Ny Cy,
meaning every z € X’ has some y € B with z C y. Applying the induction hypothesis to
B\BsUX'C X;U...UXs_1 now yields the desired result.

We define a partial order on the elements x, y € X3 U{v1}U...UX;U{vs} by declaring x <y
when x Cy. If x, y € X; U{v;}, where j € [1,s], then x <y is only possible if x =y (which
can be seen by applying the map 7;_; and using (OR2)). If x € Xy U{v;} and y € &; U {v;}
with x <y, then j° < j (which can be seen by applying the map 7; to x and y to conclude
j' < j and then using the previous observation). In such case, we have x C &;_1 Ny = d(y) Ny
(the equality follows in view of (OR1) and (OR2) as before), whence (OR1) and (5.2) ensure
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that x € Xj. Thus each v; is a maximal element. If B C X3 U{vi}U...UX, U {v}, we let
B={xeX3U{vi}U...UX;U{vs}: x 2y for some y € B}

denote the down-set generated by B. Likewise, we let | B denote the set of representatives for
1B, where B C X1 U{v;}U...UX;U{vs} is the set of representatives for B. Indeed, since (OR2)
ensures there is a bijective correspondence between X3 U{vi}U...UX;U{vs} and X1 U{v;} U
... UX U {vs}, the partial order defined above inherits to one on X3 U{v1}U... U XU {vs}.
We let B* C B denote the subset of all maximal elements of B, that is, all x € B for which there
is noy € B with x < y. Clearly, [(B*) =B, (IB)* =B,

(5.3) CY(B*) = CY(B)=CY(lB) and RY(B*)=R"(B) =R“(/B).

A short argument now shows there is a uniquely defined subset By satisfying (OR1) with
the additional property that Bi = Bx. Indeed, the existence of such a set follows in view of
CY(B%) = CY(Bx). On the other hand, if Cx C X;U...UX,_; is another set satisfying (OR1) with
Ci = Cx, then we have CY(Cx) = 9(x) Nx = CY(B;). Consequently, if y € By is arbitrary, then
y C CY(Bx) = CY(Cx), whence (5.2) implies y C z for some z € Cx. Thus Bx C |Cx, implying
IBx C [Cx. Swapping the roles of By and Cx and repeating this argument shows |Cx C |Bx.
As a result, we find that |Bx = |Cx, in turn implying Bx = B = (I Bx)* = ({Cx)* = C} = Cx,
establishing the uniqueness of Bx. We now henceforth use 9({x}) := Bx to denote the unique
set satisfying (OR1) with 0({x})* = 0({x}), and let ({z}) denoting the set of representatives
for 0({x}). Note, if x, y € X1 U{vi}U...UX,U{vs} withy < x and x € &; U {v;}, then
y C&-1Nx=09(x)Nx = CY(I({x})), whence y € |O({x}) by (5.2). In consequence, since
CY(Jo({x})) = CY(0({x})) = O(x) Nx C x, we find that

10({x)) = 1\ {x}.
Also, if 9(x) = {0}, then 9({x}) = 0, which will be the case for any x € X} U {v1}.

In view of (OR1), it follows that, for any subset B C X1 U{vi}...UX;U{v;}, where j € [1,s],
there exists a subset 9(B) C X U... U X;_1 with

(5.4) R(J__,0(0)) =R (A(B))  and c(UxeB(a(x) N x)> = CUA(B)).

For instance, we could take 0(B) = (Uycp Bx)*. Moreover, as argued in the previous paragraph,
if we set
o) = (U Bo)" = (U atxh)",
xeB xeB
then 9(B) C X1 U...UX;_; will be the unique set satisfying (5.4) with the additional property
that 0(B)* = 0(B), which we henceforth assume is the case. We let 9(B) € X3 U...U X,
denote the set of representatives for 9(B). Note, from its definition, if A C B, then 9(A) C LI(B).

Indeed, |0(B) = Uyep +0({x}), ensuring
(5.5) JO(AUB) =10(A)Uld(B) for A, BC X U{vi}U...UX;U{vs}.
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We extend the partial order < to the subsets of X1 U{vi}U...UXsU{vs} as follows. Given
any subset B C X1 U{vi}U...UX;U{vs}, we define the immediate predecessors to B to be the
sets B = B\ {x} UJ({x}) for x € B. Since the tuple (|BN (XsU{vs})|,..., BN (X U{v1i})|)
associated to B strictly decreases in the lexicographic order under this operation, extending this
relation transitively then defines the partial order <. From its definition and a short inductive
argument on (|[BN (Xs U{vs})|,...,|BN (X1 U{v1i})|), we find that

(5.6) A=<B implies AC |B,

thus ensuring that the partial order on the subsets of X1 U{v1}U...UX;U{vs} is compatible
with the pre-order induced from the partial order for the elements of X3 U{vi}U.. . UX;U{vs}.
As a result, (5.3) implies that, if A < B, then CY(A) C CY(B). Also,

ACB implies A=2B,

as the following argument shows. Note, it suffices to show B\ {x} < B for x € B, as this can
then be iterated. To see this, we observe that we may simply replace each x with the half-spaces
from O({x}), and then replace each y € 9({x}) \ B with the half-spaces from 0({y}), and so
forth, until all such elements and their successors are replaced either using the empty set or an
element already in B\ {x}.

Next,

ACB implies (B\.A)UOJ(A) <X B,

which can be seen as follows. Sequentially replacing each x € A with 9({x}), always choosing
the next x € A in the sequence to be an element minimal among the remaining elements
of A with respect to < (for instance, we could first take all x € AN (X; U {vy}), then all
x € AN(AX3U{v2}), and so forth), shows (B\ A)UU, 4 O({x}) = B. Then, since (B\.A)UJ(A) =
(B\ A) U (Uxen 8({x}))* C (B\ A) UlUxea 9({x}) = B, the claimed result (B\ A)UJ(A) < B
follows. In particular, 9(A) < B when A C B.

We remark that

(5.7) {(xeA: A=<B} =B,

as can be seen by an inductive argument on s. Indeed, the inclusion {x € A: A < B} C |[B
follows from (5.6), while x € |B implies x <y for some y € B. If x =y € B < B, the reverse
inclusion holds. Otherwise, x C &1 Ny = d(y) Ny = CY(9({y})), where y € X; U{v;}. In
view of (5.2), we have x < z for some z € 9({y}) < B, i.e.,, x € lO({y}), and now applying the
induction hypothesis to d({y}) C X1 U...U X5 yields the reverse inclusion.
Let 0"(B) = 9(d(...0 (B))...)) for n > 0, so 3°(B) = B. A similar inductive argument on s
—_——

n

yields

s—1
(5.8) 1B=|JomB).
n=0
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Note 9*(B) = ) for any B C Xy U{vi1}U...UX; U {v,} and that the case s = 1 is clear since
d({x}) = 0 for all x € B in this case. The inclusion |J_{ 9"(B) C U:Z},49™(B) C 1B follows
in view of *}(B) < 0°72(B) < ... < 9°(B) = B and (5.6). On the other hand, if x € B,
then either x € B = 8°(B) C |JS_{,8"(B), or else x C &1 Ny = d(y) Ny = CY(9({y})), for
some y € B with y € &; U {v;}, in which case (5.2) yields x € |0({y}), and now applying the
induction hypothesis to d(B) C X} U...U X5 yields x € [O0({y}) C Ufl;11 1o™"(B) = lo(B) =
UsZh 07(B) C UP_{, 8"(B), establishing the reverse inclusion.

It may be helpful to view the half-spaces from X;U{v}U.. . UXsU{vs} as vertices in a directed
graph with each half-space x connected to the half-spaces from 9({x}) by a directed edge. Let
B C XiU{vi}U...UX;U{vs} and let Y denote the subset of vertices reachable from some x € B,
soy € ) means there is a sequence yo, ...,y, withy; € 0({y;—1}) fori > 1, yp € Bandy, =y.
Note (5.8) and (5.5) imply 0(}.A) = 10(Us_p0"(A)) = U2} 10"(A) = Ha(A) = 10(A)
for any A C X3 U{vi} U...UX;U{vs}. This can be used in an inductive argument on
i=0,1,...,7 to show y; € [0)(B) for i € [0,7]. Indeed, yo € B ensures yo € |B = |0°(B), while
yi € 0({yi_1}) and y;_1 € [0""1(B) then ensure y; € [d(L0"1(B)) = 19*(B), completing the
induction. In particular, y =y, € |9"(B), so that (5.8) yields ) C |B. The reverse inclusion
follows more directly from (5.8), meaning |8 = ) consists of all vertices which can be reached
via a directed path starting at some vertex from the subset B. The grading condition that
OB) CX 1 U...UXj_y for BC XjU{vi}U...UX;U{v;} ensures there are no directed cycles.

As already remarked, A < B implies A C |B. The partial converse to this is

(5.9) AC |B implies A* < B.

To see this, we modify the argument for showing A C B implies A < B. Order the elements
of B\ A. Beginning with the first x € B\ A, replace x with the half-spaces from 9({x}), and
then replace each y € 9({x}) \ A with the half-spaces from 9({y}), and so forth, until all such
elements and their successors are replaced either using the empty set or an element already in
A. Let B’ C BUA be the resulting set. Take the next x' € B'N(B\ A) = B'\ A and repeat the
procedure. Continue until all elements from B\ A have been exhausted and let C C A be the
resulting set. By construction, C < B. Since A* is the set of maximal elements in A, it follows
from A C |B and (5.8) that A* C C, whence A* < C < B, as desired.

If A C |B, then 9(A) C JO(B) can be seen as follows. Let x € 9(A). Then x € I({x'})
for some x’ € A C |[B, in which case there is some y € B with x < x' < y. If X' =y, then
x € O({x'}) C L9(B). Otherwise, x C ;-1 Ny = d(y) Ny = CY(0({y})), where y € X; U{v;},
in which case (5.2) implies x <y’ for some y’ € 9({y}), i.e., x € JO({y}) C 19(B), as desired.
Combining this with (5.9), we conclude that

AC B implies 9(A) < I(B).
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Definition. Let R = (X} U {v1},...,Xs{vs}) be an oriented Reay system for the subspace
EsCRY and let BC Xy U{vi}U...UX,U{v,}. We say that B is a support set for R if
B*=B and X U{v;} LB foralli€ll,s].
We say that B is a virtual independent set if

B*=B and B is linearly independent.

We remark that Proposition 5.1.3 ensures that the definition of a virtual independent set does

not depend on the choice of representative set |B.

Proposition 5.1. Let R = (X1 U {vi},...,Xs U {vs}) be a an orientated Reay system for
the subspace £ C RY and let B C X1 U{vi}U...UXs U {vs}. Forj € [l,s], let -1 =
R{(X U...UXj1), let & | = &1 +RYIB)), let 7, : RY — ( J’»_I)L be the orthogonal
projection, and let Bj = BN (X; U {v;}).

1. R({B) =RY(B).

2. CY(B) = z1 + ...+ 2z is a convex cone containing 0, and CY(B) =z, + ... + 7 is a

polyhedral cone, where z1,...,2z; € B are the distinct half-spaces in B.

3. B is a virtual independent set if and only if w(B) is a linearly independent set of size
|B|, where 7 : RY — RY(A(B))* is the orthogonal projection.

4. If B is virtual independent, then CY(B) = z; + ...+ 2y is a blunted simplicial cone with
lineality space RY(O(B)), CY(B) has trivial lineality space, and C°(B)° = 2§ + ... + 2§,
where z1,...,2z¢p € B are the distinct half-spaces in B.

5. If B is a support set for R, then B is a virtual independent set.

6. If B is a support set for R, then W;_l(Uf:j Bi) is a linearly independent subset of

i\BJ > 0 distinct elements, for any j € [1, s].

7. If]B is virtual independent and A C B, then C = (B\ . A)UO(A))* is virtual independent
with B\ A C C. Moreover, if B is a support set, then so is C.

8. If BC X1 U...UAX,, then B* is a support set. In particular, O(B) is always a support
set for any BC Xy U{vi}U...UX;U{vs}.

9. f BCXU...UX;s, xe X1 U...UX; and x C RY(B), then x € |B.

Proof. 1. We proceed by induction on the depth s. In view of (5.8), we have
(5.10) B=B,UloB)Ul(B\Bs) and |B=BsUlI(B)UL(B\ Bs).

By induction hypothesis, R(1O(B)UL(B\Bs)) = RZ(d(B)U(B\ B;)) (note L(d(B)U(B\B;)) =0
for s = 1). But now (5.10) implies that

R(B) = R(B.) + RULO(B) UL(B\ By)) = R(B,) + RV (A(B)) + RV(B\ B,) = RY(B),

as desired.
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2. Suppose B C XjU{vi}U...X;U{v;}, where j € [0, s], and let z1, ...z, € B be the distinct
half-spaces in B. For j = 0, we have B = () and CY(B) = CY(B) = {0}, which is the sum of an
empty number of half-spaces. For j = 1, we have 9({z;}) = 0, 9(z;) = {0} and z; = z; = Ry z;
for all 7 (by (OR2)), in which case CY(B) = C(z1,..., z») with the result clear. Thus we assume
j > 2 and proceed by induction on j. By induction hypothesis applied to 9({z;}), we have
0 € CY(0({zi})) = z; N I(z;), ensuring each z; is a convex cone with 0 € (z; N d(z;)) C z;, for
i € [1,4], in turn implying 0 € CY(B) = z; + ... + 2z, with CY(B8) a convex cone.

Note z; = Ry z; + 9(z;) = C(Y; U {z}), where Y] is any positive basis for the subspace 0(z;).
Thus z1 + ... +Zp = C(Ule(Y} U {zl})), which is polyhedral cone, and thus closed. Hence

CYB)=2z1+...+2¢CZ1 + ...+ 2 CZ1+...4+Z¢. On the other hand, since 0 € z; for all i with

CY(B), and thus also CY(B), a convex cone, it follows that z; +...+2%; C z1 + ... + z¢ = CY(B),
establishing the reverse inclusion, showing CY(B) = z; + ... + 24 = C(Ule(Y; U{z}) is a
polyhedral cone.

3. Suppose B* = B and |B is linearly independent. Since B* = B, it follows that B is
disjoint from [O(B). By Item 1, R({9(B)) = RY(9(B)). Thus ker 7 is generated by the linearly
independent subset |O(B) C |B (by Proposition 4.9.1), ensuring 7(B) is a linearly independent
set of size |B\]J(B)| = |B|, with the equality since B is disjoint from |0(B). Next instead suppose
m(B) is linearly independent of size |B|. Since m(B) is linearly independent, no half-space in B is
contained in RY(9(B)). If x <y with x, y € B, then we must have x € [9({y}), contradicting
that x ¢ RY(9(B)) = RY({9(B)). Therefore we instead conclude that B* = B. Since [9(B) C
X1 U...U X,_1, Proposition 4.9.1 ensures that |O(B) is always a linearly independent set.
Consequently, since 7(B) is a linearly independent set of size |B| with kerm = R({9(B)) (by
Item 1), it follows that B = B U J(B) is linearly independent, as desired.

4. In view of Items 2 and 3, CY(B) =z + ... + 2, is a blunted simplicial cone with lineality
space RY(9(B)), and CY(B)° = z§ + ... + zp. In particular, if d(B) = 0, then C”(B) has
trivial lineality space. Assuming Items 5 and 8 have been established, d(B) will be virtual

independent. We can then use an inductive argument on ||B| to show CY(B) has trivial lineality
space for a general virtual independent set 3. Indeed, in view of the established portions of
Item 4, the lineality space of CY(B) must be contained in (z1 N d(z1)) + ... + (z¢ N I(z¢)) =
CY(0({z1})) +...+CY(0({z¢})) = CY(D(B)), and so applying the induction hypothesis to 9(B),
completes the proof.

5. This follows from Proposition 4.9.1.

6. By definition, m}_;(x) is either zero or a ray for any x € B and j € [1,s], so mj_1(z) is
a representative for the half-space mj_i(x) whenever m;_1(x) # {0}. We proceed by induction
onj=s,s—1,...,1. If Item 6 fails, then there must be a nontrivial linear combination of the

elements of |J;_; B; equal to an element of &;_;, say

(5.11) Z apx + Z Byy € &1,

r€B;j11U...UB;s yEB;
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where the oy, 8, € R are not all zero. But then > apx € &1+ & = & = kerm).
CCEBJ‘+1U...UBS

S
By induction hypothesis, ({;_;, Bi) is a linearly independent set of > |B;| > 0 elements,
i=j+1
meaning this is only possible if o, = 0 for all z € Bj;1U...UB; (note this is trivially true when
j =s). Hence

(5.12) DBy € Ejy =&+ RUA(B)).

yEB;
In view of Item 1, we have RY(9(B)) = R(}d(B)). Since B* = B for the support set B, it follows
that |O(B) and B are disjoint subsets of | B, which is linearly independent by Item 5 as B is
a support set. Also, all elements from [O(B) N (X; U...U X;_1) are contained in £_;. Thus
(5.12) implies that there is a nontrivial linear combination

(5.13) Z Byy + Z'yzz €&,

yEB; 2€Z
for some 7, € R, where Z := [0(B)N(X;U...UX,). Since B;UZ C | B is a disjoint union with
B a support set, Propositions 4.9.3 and 4.9.1 imply that m;_1(B; U Z) is a linearly independent
set of size |B; U Z| = |B;| + |Z|. Thus, applying 7;j_; to (5.13), it follows that £, = 0 for all
y € Bj, and v, = 0 for all z € Z, contradicting that the linear combination was nontrivial, which
completes the proof of Item 6.

7. By definition of C, we have C* = C. Since A C B (implying 0(.A) =< B and then 0(.A) C |B),
we have |[C = [(B\ A) UlJ(A) C |B. If B is a support set, then X; U {v;} ¢ |B for every

€ [1,s]. As a result, since |C C B, we also have X; U {v;} € |C for every j € [1,s], which
shows that C is a support set. If B is virtual independent, then |B is linearly independent,
whence |C C | B is also linearly independent, showing that C is virtual independent.

Suppose B\ A ¢ C. Then, in view of the definition of C, there must be some x € B\ A and
y € (B\A)UIA) with x <y. If y € B\ A, then x < y contradicts that B* = B for the
virtual independent set B. Therefore we must have y € 0(.A), implying that x < y < z for
some z € A C B, which again contradicts that B* = B for the virtual independent set B. So we
instead conclude that B\ A C C, completing the proof of Item 7.

8. Since B C X U...UX, implies |B C X3 U...UX;, we have X; U {v;} € |B = [(B*) for
all j € [1,s], while B** = B*, which shows that B* is a support set.

9. In view of Item 1, we have RY(B) = R(/B). Thus z € x C RY(B) = R(}B). Since
BC XiU...UX,, we also have | B C XjU...UX,, whilexz € X;U...UXgsincex € XjU...UX;.
Proposition 4.9.1 implies that X; U ... U X, is a linearly independent set, whence z € R{|B)
withx € X7 U...UX;and [B C XjU...UXj is only possible if x € | B, implying x € |[B. [
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Next, we show that we have a well-behaved quotient oriented Reay system defined modulo
RY(B), for any B C X; U...UX;s. We will use the notation C™ = 7(C) \ {{0}}, 7(R) and 7~ 1(D)
defined in Proposition 5.2 for the remainder of this work.

Proposition 5.2. Let R = (X1 U {vi},..., X U{vs}) be an orientated Reay system for the
subspace £ CRY, let BC X U...UX, be a subset, let £ = RY(B), and let m: RY — £+ be the
orthogonal projection. For a subset C C Xy U{vi}U...UX;U{vs}, set

CT = m(C)\ {{0}}

For j € [L,s], let Xj C Xj be all those x € X; with m(x) # {0}, and let J C [1,s] be all
those indices j with XT # 0, say J = {j1,---,j¢} with 1 < j1 < ... < ji < s. For a subset
D C Uje s (X7 U{m(vi)}), set

YD) = {xe XU .UX,Ufvi: i€ J}: n(x) ep} c [J@u{vid).
ieJ

w(R) = (X7 U {n(vi)}) = (4 U{m(v)) o XU (n(vi0))

is an oriented Reay system for m(E,) with 7 injective on | J;c ;(X{U{vi}) and 7(v;) # {0}
foralli e J.
2. IfCC X U...UX;U{v,: je J}, then

(€)=, U =10 and D(CT)=0(C)".

3. (a) IfC1, Co C X1 U...UX;U{v;: j € J} withCy < Ca, then CT = C3. Moreover, if in
a sequence of replacing elements x by 0({x}) showing that C; < Cy there is some X
with m(x) # {0}, then CT < C3.

(b) If D1, D2 C Uje (X7 U{m(v))}) with Dy < Dy, then 7= (D1) < 7~ H(Dy).

4. If D C U, s (X7 U{m(vi)}), then

(" HD))*) =D, (= YD) C (= ' (D)uB)* and ((x'(D)UB)*)" =D

In particular, D* = D if and only if (r~*(D))* = =~ 1(D).
5. (a) If D C U;ey (X7 U{m(vi)}) is a virtual independent set, then (x~'(D)U B)* and
71 (D) C (7~ YD) UB)* are virtual independent sets.
(b) If D C U  (XF U {m(vs)}) is a support set for m(R), then (x~'(D) U B)* and
7 1(D) are support sets for R.
In either case, if B* = B, then (r7(D) U B)* =7 1 (D) U (B\ Lo(7~1(D))).
6. () fCCXU...UX;U{v;: je€ J} is a virtual independent set with B C |C, then
C™ is a virtual independent set.
(b) IfC C X1 U{vi}U...UX;U{vs} is a support set with B C |C, then C™ is a support
set withC C Xy U...UX;U{v,: jeJ}
(¢) IfCC X U...UX; is a support set, then C™ is a support set.
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Proof. For j € [1,s + 1], let -1 = RY(A; U... U X;_1) and let 71 : RY — 53‘{1 and
(7B R — (5]-_1+<9)L be the orthogonal projections. Note wy = 7. Since ker m;_; < ker w;_1,
we have w;j_1 = wj_imj_ for all j € [1,s]. In view of Proposition 5.1.1,

R(JB) =RY(B) = £

with |[B C X;U...UX; (since BC X3 U...UXs). Thus 5]/-_1 =&;_1 +R({B), while X; C &;
and &1 C &;, implying &1 + R(IB N X;) C 5]’.71 N &;. Any element = € 8]’471 N &; has
x =y+z with y € £_1, 2z a linear combination of elements from |B and 2 =y + z € £;. Then
7j(z) = mj(x) = 0. Applying 7; to the linear combination representing z and using Propositions
4.9.1 and 4.9.3 shows that z =y + z € £;_1 + R(]B N Xj). Hence

(5.14) gj/;l NE =E&-1+ R{}BN Xj).
Since Wj—1 = W;—1Tj—1, We have ker wji—1 M Wj_1(5j> = Trj_l(ker w]-_l) N Wj_l(gj), meaning
(5.15) kerwj_l N Wj_l(gj) = 7Fj—1(5]/‘_1) N Wj_l(gj).

Any element z € 7;-1(}_4

) N mj—1(&;) is a linear combination of terms m;_1(b) € m;_1({B)
(with each b € |B) that lies in 7;_1(£;). Applying 7; to this linear combination and using
Propositions 4.9.1 and 4.9.3, we find that only those b € | B N &; have non-zero coefficients,
meaning r € m;j—1(£;_1 N &;). Thus m_1(E;_y) Nmj—1(&;) = m—1(Ej_1 N Ej) (the reverse

inclusion is trivial), which combined with (5.14) and (5.15) yields
kerwj_l N ﬂj_l(gj) = R<7Tj_1(¢B N XJ)>

Thus the kernel of @;_; restricted to m;_1(€;) is generated by a subset of the linearly independent
set m;_1(X;). Consequently, since m;_1(X;)U{m;j_1(v;)} is a minimal positive basis for m;_1(&;)
of size | X;| + 1, it follows that (X; U {v;})®i-! is either empty or a minimal positive basis for
wj'_l(gj) of size
(5.16) (X5 U v )™ = 1(X U{oi )\ (&1 + )] = X + 1 - LB N Xl

Let j € J. If wj_1(z) = 0 for some x € X; U{v;},s0ox € &_1NE = &1 + RIBNXj) (the
equality follows from (5.14)), then 7;_1(z) € R(mj—1({ BN X)) with ;1 ({BNX;) C m;—1(Xj).
Thus, since 7;_1(X;)U{m;—1(v;)} is a minimal positive basis of size | X;|+1 and z € X; U{v,},
we must either have |B N X; = X; or x € |B. In the former case, X; C |B, ensuring that

Xl = (), which is contrary to the definition of j € J. Therefore we must instead have the latter

case, x € | B, meaning 7(x) =0, x € |B and 7(x) = {0}. As a result, we find that
(6.17)  wj_1(x) # {0} ifand only if w(x)# {0}, forallxe X;U{v;}andje J.
Moreover, since each v; ¢ |[B C Xy U...U X, the above work yields

(5.18) wj_1(v;) #{0} forany je J.
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If m(x) # {0} for some x € X;U{v;} with j € J, then w;_;(x) # {0}, meaningx ¢ £;_1+& =
kerw;_1 4 9(x) for x € XU {v;} and j € J, and thus also x € kerw; + d(x) for any i < j.
This ensures that, given any x € (J,c;(X; U {v;}) and j € [1, 5], we either have w;_;(x) = {0}
or else wj_1(x) remains a relative half-space. In particular, 7(x) is a relative half-space for all
x € Uses (XU {vi)).

Suppose X, y € ;e (X U{vi}) and j € [1,s] with w;_i(x) = w;_1(y) # {0}. We aim to
show x = y. Now wlo.g. x € X;U{v;} andy € Xy U{vy} with 4,7 € J and 7,7 > j.
Moreover, if ¢ > 4/, then w;_1(x) = wi—1wj-1(x) = wi—1wj-1(y) = wi—1(y) = {0}. Thus, since
i € J, it follows from (5.17) that w;_1(x) = m(x) = 0, implying w;_1(x) = wj_17(x) = {0},
contrary to assumption. Hence i < ¢/, and likewise i’ < 4, whence 7 = ¢/. This argument also
shows that w;_;(x) = wi—1(y) # {0}. Since 9(x), d(y) C &-1 C kerw,;_1, it follows from
wi—1(x) = w;—1(y) # {0} that Rew;—1(x) = Rew;_1(y) # {0}. However, since z, y € X; U {v;},
this contradicts that (X; U {v;})®i-! is a minimal positive basis of size |(X; U{v;})\ (Ei—1 + E)|
(cf. (5.16)) unless = y, in which case x = y. In summary, we have just shown that w;_;(x) =
wj_1(y) # {0}, for x, y € U,;c;(A; U{v;}), implies x = y. In particular, m = twy is injective on
Uies (X U{vi}).

From (5.17), (5.18) and the injectivity of 7 just established, we conclude that
(5:09) 105U )\ (Et+6)] = 15 U{ )\ El = IX7| +1>2  forany je J.

In view of (5.16), (5.18) and (5.19), it follows that X;ﬂj*l U {wj_1(vj)} is a minimal positive
basis for @;_1(&;) of size [XT| + 1, for j € J. Hence m(R) satisfies (OR2) in the definition of
an orientated Reay system (note w;_;m = w;_1 since kerm < kerw;_1). Also, if x € X]{ U{v;}
and j € J, then m(x) # {0} is a relative half-space with w;_1(x) # {0} as shown earlier, so
x ¢ &_1 +kern, in which case (OR1) holding for R together with (5.1) implies (OR1) holds

for m(R) with
(5.20) Brx) = Bx = 0({x})",

showing that m(R) is an oriented Reay system for 7(&;). This establishes Item 1.
2. We begin by showing

(5.21) (CH"=(C™)* forany CC X U...UX;.

Let m(x) € (C*)™ be arbitrary, so x € C* with m(x) # {0}. If w(x) ¢ (C™)*, then there must be
some y € C with {0} # 7(x) < 7(y). Thus x C y +& C RY({y} UB), in which case Proposition
5.1.9 ensures that x € [{y}U]B (since x, y € CUB C XjU...UX;). Since 7(x) # {0}, we have
x ¢ B, forcing x € [{y}, i.e., x <y. However, since x € C* and y € C, this is only possible if
x =y. Hence n(x) = 7(y), contradicting that 7(x) < m(y). This shows that (C*)™ C (C™)*.
Next let 7w(x) € (C™)* be arbitrary, so x € C and w(x) # {0}. If x ¢ C*, then there is
some y € C with x < y, implying {0} # m(x) < 7(y). Thus, since w(x) € (C™)*, we must
have {0} # 7m(x) = 7(y), in which case the injectivity of 7 given in Item 1 implies x =y,
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contradicting that x < y. Therefore we instead conclude that x € C*, whence 7(x) € (C*),
establishing the reverse inclusion (C™)* C (C*)™, which establishes (5.21).

In view of (5.21), we have (O({x})™)* = (0({x})*)" = 9({x})™ for any x € U,;(X] U {vi}),
which combined with (5.20) and the definition of ({7 (x)}) implies

(5.22) O({r(x)}) = O} for any x € Uy (X! U {vi}).
Let CC X U...UX,U{v;: je€ J}. Then

o= U awen) =( U o) U o))

x€eC, m(x)#{0} x€C, m(x)#{0} x€C, m(x)#{0}
:23) =((Jotxn)") = ((Uatxh) ) = o
xeC xeC

where the first equality follows by definition of 9(C™), the second by (5.22) in view of C C
XiU...UX;U{v;: j e J}, the third is a trivial identity, the fourth follows since 7(x) = {0}
ensures m(y) = {0} for all y € |x, and thus for all y € 9({x}) C |x as well, the fifth follows
by (5.21) applied to (Uxec 8({x})>, and the sixth follows by definition of 9(C). The identity
(4C)™ = L(C™) now follows from repeated application of (5.23) to (5.8):

*

s—1 s—1 s—1
(5.24) dor=(Jo©) = U @@©) = o=,
n=0 n=0 n=0

Finally, it remains to establish (C*)™ = (C™)* in the case when C C XjU...UX,U{v; : j € J}.
We have (C™)* C (C*)™ by the argument used to establish this inclusion for (5.21). To see the
reverse inclusion (C*)™ C (C™)*, let m(x) € (C*)™ be arbitrary, so x € C* with 7(x) # {0}. If
m(x) ¢ (C™)*, then there must be some y € C with {0} # m(x) < 7m(y). Thus (5.24) implies
m(x) € J{y}™) = ({y})™. As a result, since 7(x) and 7(y) are both nonzero, it follows from
the injectivity of 7 established in Item 1 that x < y. However, since x € C* and y € C by
hypothesis, this is only possible if x = y. Thus 7(x) = 7(y), contradicting that 7(x) < m(y).
This shows that (C*)™ C (C™)*, whence (C*)™ = (C™)*, which completes the proof of Item 2.

3. Let CC X U...UX,U{v;: j e J}andlet x € C. If n(x) = {0}, then we have
(C\{x} Uo({x}))™ = C™. If m(x) # {0}, then Item 2 and the injectivity of 7 from Item 1
imply that (C\ {x} U9d({x}))™ =C™ \ {m(x)} UI({m(x)}). This shows C; < Cy implies CT < CT
when C; is the immediate predecessor of Cy, and iterating then yields the first part of Item 3.
Moreover, if 7(x) # {0}, then CT < CJ. Next let D C [J;c, (X7 U {m(v;)}) and x € 7 1(D).
Then 71 (D \ {r(x)} Ud({r(x)})) € = 1(D)\ {x} Ud({x}) < 7~ }(D) in view of Item 2 and
the injectivity of 7 given in Item 1, which ensures 7! (D\ {m(x)} Ud({r(x)})) < 7~ 1(D). This
shows that D; < Do implies 7~ 1(D;) < 7~ 1(Dz) when D is the immediate predecessor of Dy,
and iterating then yields the remaining part of Item 3.
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4. Let D C ;e (X7 U {n(v;)}) and note that 7~(D) C Ujes(Xj U {v;}) by definition and
Item 1. Thus, Item 2 implies that

625 (@ D)) = (T HP))T = ((HDYT) = (x(x D)) =D,

If (171(D))* = = 1(D), then (5.25) yields D* = n((7*(D))*) = n(7~ (D)) = D. On the other
hand, if D* = D, then (5.25) combined with the injectivity of m established in Item 1 implies
that (7=1(D))* = 7#=1(D). This shows that D* = D if and only if (7~1(D))* = 7= 1(D).

Let x € (7~1(D))* be arbitrary, so x € Ujes(XjU{v;}) with 7(x) € D. Ifx ¢ (71 (D)UB)*,
then there must be some y € 7~ (D) U B with x < y. Since x € (7~(D))*, we cannot have
y € 7~ YD), forcing x <y € B. However, since ker 7 = RY(B), this implies 7(x) = 7(y) = {0},
contradicting that x € ;¢ ;(X] U {v;}). This establishes that

(5.26) (x='(D))* € (= (D)UB)*".
By Item 2, (=~ Y(P)UB)")" = ((=~1(D)UB)")" = ((=~(D))" UB™)" = D*, with the latter

equality since B™ = (), which completes Item 4.

5. Since D is virtual independent, we have D* = D, whence Item 4 implies
YD) = (=" {(D))* € (= {(D)UB)".

We have |(7~1(D) U B)* = |7#~}(D) U |B. By Item 1 and Proposition 5.1.9, 7 is injective on
l7=1(D) \ |B, and thus on |7~ 1(D)\ |B. By Item 2, (J7—1(D))™ = |D. Consequently, if we
have a nontrivial linear combination of terms from |7~!(D)U|B equal to zero, then applying 7
to this linear combination and using that D is virtual independent shows that only terms from
JB occur in the linear combination, contradicting that | B is linearly independent in view of
B C XjU...UX,. This shows that (7~ (D) UB)* is virtual independent. As a result, any subset
C C |(m~ (D) U B)* with C* = C is also virtual independent. In particular, 7—!(D) is virtual
independent.

Next suppose D is a support set for 7(R). To show 7= (D) and (7~ (D) U B)* are support
sets, we need to show X;U{v;} € |BUlr YD), for all j € [1,s]. If j ¢ J, then v; & {7~ }(D) C
XiU...UX,U{v;: i€ J}, while BC X U...UX, ensures that v; ¢ |B, as desired. On the

other hand, if j € J, then, since D is a support set, we have

X7 U{n(v;)} € 4D = Ln(x~ (D)) = (br~ (D))",

with the last equality above in view of Item 2, which show that there is some y € X; U {v;}
with 7(y) # {0} and y ¢ |7 ~1(D). Note that |B C RY(|B) = RY(B) = &£, implying 7(x) = {0}
for every x € [B. Thus y ¢ |B as well, whence X; U {v;} € |BU |7 (D) follows, as desired.
This establishes that 7=!(D) and (7~(D) U B)* are support sets.

To complete Item 5, now suppose B* = B. By Item 4, we have 7~ 1(D) = 7~ 1(D)* C
(7=X(D)UB)*, implying (7~} (D)UB)* = 7~ (D)UB' for some B’ C B. If x € B\ B, then we have
x <y forsomey € 771(D) (as B* = B), implying x C RY(9(7~1(D))), and then x € {d(7~ (D))
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by Proposition 5.1.9. Hence B\ B’ C |9(7~(D)). On the other hand, if y € BN [o(7~1(D)),
then y < x for some x € 71(D), ensuring that y ¢ B’ (since (7~ (D)U B)* = 7~ (D) U B).
Thus B' N [d(x~1(D)) = 0. Combining this with B\ B’ C [d(7~1(D)), we conclude that
B = B\ lo(r~ (D)), which completes Item 5.

6. Suppose C C X3 U{vi}U...UX;U{v,} is a support set with B C |C. If v; € C for
some j ¢ J, then x C kerm = RY(B) for all x € X;, whence Proposition 5.1.9 ensures that
X; C B C |C, in which case X; U {v;} C |C, contradicting that C is a support set. Therefore
we may assume otherwise, in which case (C™)* = (C*)™ = C™ by Item 2 (as C* = C is a support
set). But now, if AT U {r(v;)} C IC™ = (JC)" for some j € J, with the equality form Item
2, then the injectivity of 7 established in Item 1 ensures that XJ( U{v;} € lC. As before,
since x C kerm = RY(B) for all x € &;\ A7 (by definition of X7), Proposition 5.1.9 ensures
that X \ X]( C B C |C, in which case X; U {v;} C |C, contradicting that C is a support set.
Therefore we instead find that X7 U {m(v;)} € C™ for j € J, which combined with (C™)* = C”
implies that C™ is a support set.

Suppose C C X; U...U X, is a support set. Then C* = C. Thus Item 2 implies that
(CT)* = (C*)" =C" and |C" = (IC)™ C J;c; AT, ensuring that C™ is a support set.

Finally, suppose C C Xj U...UX;U{v; : j € J} is virtual independent with B C |C.
Then C* = C, whence Item 2 implies (C™)* = (C*)™ = C™. Also, |C is linearly independent.
Thus, since B C |C ensures that | B C |C with kerm = R(]B) by Proposition 5.1.1, it follows
that 7(JC) \ {0} = 7(JC \ |B) is linearly independent, while item 2 ensures [(C™) = (]C)" =
7({C)\ {{0}}. Hence item 1 implies that [(C™) = 7({C) \ {0} is linearly independent, implying

C™ is virtual independent. O

IfR =X U{vi},..., X U{vs}) is an oriented Reay system, B C X; U...UX,, and 7 :
RY — RY(B)+ is the orthogonal projection, Proposition 5.2.1 implies 7(R) = (X U{m(vj)}jes
is also an oriented Reay system. In particular, either m(x) = {0} or w(x) is a relative half-
space, for any x € X1 U...UX;U{v; : j € J}; thus n(z) = 0 if and only if n(x) = {0}, for
xeXU...UX;U{v;: je J}. Most of the well-behaved properties of 7(R) that pull-back to
R require x € X1 U...UX;U{v;: j € J}. This is a technical restriction that will stay with us
throughout the remainder of this work.

Let D C ;e (AT U{m(v;)}). In view of Proposition 5.2.1, m is injective on all half-spaces
of Xy U...UX; U{v; : j € J} not mapped to {0}, so 771 (D)| = |D|. The set 7~ (D) C
Uies (X U{v;}) is then the unique subset C C X1 U...UX;U{v;: j € J} with C" = x(C) = D.
We call 7=1(D) the pull-back of D and (7~ (D) U B)* the lift of D. These sets feature in
Proposition 5.2 and will reoccur often. When D is a support/virtual independent set for 7(R),
Propositions 5.2.5 and 5.2.4 ensure that both the pull-back and lift of D are support/virtual
independent sets for R with

7 YD) = (" {(D))* C (x {(D)UB)* and ((r~1(D)UB)*)" = D* =D.
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We continue with the generalization of Proposition 4.10 to oriented Reay systems.

Proposition 5.3. Let R = (X1 U {v1},...,Xs U{vs}) be an orientated Reay system for the
subspace £ C RY. Then & = |z CY(B)° is a disjoint union, where the union runs over all
support sets B for R.

Proof. For j € [1,s], let &_1 =RY(X, U...UX;_1) and let 7j_1 : R — 5jl_1 be the orthogonal
projection. We proceed by induction on s. Let & € & be arbitrary. We need to show there is a
unique support set B with x € CY(B)°.

Since ms_1(XsU{vs}) is a minimal positive basis of size | X4|+ 1 (by definition of an oriented
Reay system), it follows from Proposition 4.10 that there is a uniquely defined proper subset
Bs C Xs U {vs} with ms_1(z) € CY(ms—1(Bs))°, which completes the proof in the base case
when s = 1. Thus we may assume s > 2. Let z1,...,2z, € Bs be the distinct elements of B;, let
E =RY(O(B)), and let 7 : RY — £L be the orthogonal projection. Since d(Bs) C X1 U...UX; 1,
we have kerm = & C £ = ker my_1, ensuring ms_1m = ms_1. By Proposition 4.7, ws_1(Bs) is

linearly independent, so there is a unique linear combination of the elements of m5_1(Bs) equal
4
to me—1(x), say > a;ms—1(2i) = ms—1(x) with a; € R, and this linear combination is strictly
i=1
positive since ms_1(z) € CY(ms—1(Bs))°, so a; > 0 for all i. Thus

l
(5.27) Zam(zi) =m(xr) —&é=m(r —§) forsome &€& 1 NEL
i=1

4
If there were some other linear combination > a/im(z;) = w(z) — ¢ for some ¢ € & 1 NEL
i=1
and o € R, then, applying ms_; to this linear combination and using that m,_;m = 7s_1, we
4
conclude from the uniqueness of the linear combination > a;ms—1(2;) = ms—1(z) that o = o
i=1
for all 4, whence & = ¢ as well. In consequence, the o; and £ € £_1 NEL in (5.27) are uniquely
defined.
Note Bs C X5 U {v,} is a support set for R since x < y is impossible for half-spaces from

the same level X5 U {v,}. Thus Proposition 5.1 ensures that CY(B;s)° = z§ + ... + zJ with

CY(Bs) =71 + ...+ 7z a blunted simplicial cone having lineality space £ = 9(z1) + ...+ 0(z¢) =
RY(9(Bs)) C Es—1. As a result, since «; > 0 for all 4, (5.27) implies

(5.28) r—E&+ECCY(By)°

z+...+z;.

Moreover, £ = 7(£) is the unique element from &_1 N E+ such that x — & € CY(B,)°.
In view of Proposition 5.2.1,

R) = (X7 U {r(v;)})
"(R) = (%7 U EY)
is an orientated Reay system for m(&s) for some J C [1,s]. Moreover, since £ C E_1, we

have s € J. Since £ € & 1 NET = 7(&_1), we can apply the induction hypothesis to the
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oriented Reay system (X]?r U {ﬂ(vj)}) Al to conclude there exists a unique support set
JjE S

DcC UjEJ\{s} (X;r U {W(VJ)}) with

(5.29) e CUD) =m(y)’ +... +7(y,) = m(y]) +... +7(¥7),

where y1,...,y, € 7 1(D) are the distinct half-spaces from 7~!(D), with the first equality in
(5.29) in view of Proposition 5.1.4 applied to the support set D, and the second holding since
each m(y;) remains a relative half-space in 7(R).

Since D is a support set, Proposition 5.2.5 ensures that 7=!(D) and (7~1(D) U 0(By))* are
both support sets with 771(D) C (7= 1(D) U d(Bs))*. Set

B:=7"Y(D)UB..

If B* # B, then there are yi, y2 € 7 '(D) U Bs with y; < y2. Since 77 1(D)* = 7= 1(D) C
X U{vi}U...UXs_1 U{vs_1} (as 7 1(D) is a support set) and Bs C X5 U {v}, this is only
possible if y; € 771(D) and y2 € B, in which case y; € [O(Bs), whence 7(y1) = {0} as
& = RY(9(By)), contradicting that y; € 7—1(D) with D a set of non-zero half-spaces. Therefore
we instead conclude that B* = B. Since 771(D) C X U{vi}U...U Xs_1 U{vs_1} and
Bs C X U{vs}, we have X; U {vs} € |B. Since B; C Xs U {v,}, any y € X; U{v;} with j < s
and y € [B must have y € |7 (D) or y € l9(Bs). Thus &; U {v;} C |B, for j < s, would
imply X; U {v;} C (= }(D) Ud(Bs))*, contradicting that (7~(D) U d(B,))* is a support set.
This shows that B = B* is itself a support set.
Since B = m~!(D) U B, is a support set, Proposition 5.1.4 implies

(5.30) CY(B)° = CY(n 1 (D))° + CY(B,)°.

Since m~1(D) is a support set, Proposition 5.1.4 implies CY(7~}(D))° = yj + ...+ yS. Thus
(5.29) implies that & = 7(¢) € CY(7~1(D))° + &, which combined with (5.28) and (5.30) yields

(5.31) z € CU(r1(D))° + CU(B,)° = CU(B)°.

It remains to establish the uniqueness of B.

Now suppose B’ were any support set for R with z € CY(B)°. We need to show it equals
the support set B constructed above. Note ms_1(z) € CY <7rs_1 (B’ N (Xs U {vs})>>o in view of
Proposition 5.1.4, in which case we must have By = B’ N (X; U {vs}) by the uniqueness property
established with the existence of Bs. Let C = B’ \ Bs. We need to show C = 7~ 1(D).

Since 9(Bs) C [Bs C B, Proposition 5.2.6 implies that (B)™ = (C U B,)™ = C™ U BT is
a support set for 7(R) with C C Xy U...UX;_1U{v; : j &€ J\ {s}}. If there were some
y € C with 7(y) = {0}, then, since m(v;) # {0} for all j € J by Proposition 5.2.1, we must
havey € Xj U...UXs_1 and y C kerm = RY(9(Bs)), whence Proposition 5.1.9 implies that
y € JO(Bs) C |Bs. However this contradicts that (C U Bs)* = (C U Bs) for the support set
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B' = C U B,. Therefore, we conclude that C™ = 7(C), ensuring C = 7~ (7(C)) in view of the
injectivity of m given in Proposition 5.2.1. It remains to show C™ = 7(C) = D.

Since B’ = C U Bg and (B')™ = C™ U BT are support sets, C and C™ are also support sets. We
have z € CY(C U Bs)° = CY(C)° + CY(B;)°, ensuring m(x) € CY(C™)° + CY(BT)°, both in view of
Proposition 5.1.4 (since C U By and C™ U BT are both support sets). Thus 7(z) — ¢ € CY(BT)
for some ¢ € CY(C™)° C m(&_1) = E_1 N EL, in which case the uniqueness of ¢ given in
(5.27) ensures that ¢ = ¢. Hence £ = ¢ € CY(C™)° with C™ a support set, in which case the
uniqueness property established with the existence of D ensures that D = C™ = 7(C), completing
the proof. O

In view of Proposition 5.3, given any = € &, there is a uniquely defined support set B for R
with z € CY(B)°, which we denote by B = Suppg(x). Given a support set B for R, we define

(5.32) wt(B) = [BN{vi,...,Vs}|
Likewise, for z € &, we let wt(x) = wt(Suppg(x)).

Definition. Let @ = (u1,...,us) be a tuple of orthonormal vectors from RY, let R = (X U
{vi},..., X U{vs}) be an oriented ray system, and let B C Xy U{vi}U...UX;U{vs}. We
say that B encases 4 provided CY(B) encases i. We say that B minimally encases i if B
encases U but no proper B’ < B encases 1.

Since CY(B*) = CY(B) and B* < B, it is clear that B minimally encasing @ is only possible if
B* = B. Thus any subset B C X7 U...U X5 which minimally encases « must be a support set.
The following lemma deals with minimal encasement for ¢ = 1.

Lemma 5.4. Let R = (X1 U{vi},...,Xs U{vs}) be an oriented ray system for a subspace
EsCRY let BC A U{vi}U...UX,U{vs}, and let u; € R? be a unit vector.

1. If B minimally encases —uy, then —ui € z7 + ...+ zj, where z1,...,2¢ € B are the
distinct half-spaces from B.
2. If B is virtual independent, then B minimally encases —uy if and only if —uy; € CY(B)°.

Proof. 1. Suppose B minimally encases —u;. Then —u; € CY(B) = z1 +. ..+ z; (by Proposition
5.1.2). If —u; € (0(z1) N2z1) + 22+ ... +2 = C(O{2z1})) + 22 + ... + 2z, then —u; € C(B'),
where B’ = (B\ {z1}) U9({z1}) < B, contradicting the minimality of B. A similar argument
can be used for zs, ..., 2z, and we conclude that —u; € z7 + ... + 2y, as desired.

2. Since B is virtual independent, Proposition 5.1.4 implies that CY(B)° = z§ + ... + zJ.
Thus, if B minimally encases —u1, then Item 1 implies —u; € CY(B)°. Next suppose that —u; €
CY(B)° = 2§ + ...+ 2. Let m : RY — RY(9(B))* be the orthogonal projection. Since —u; €
z{ + ...+ z}, it follows that —7(u1) can be written as a strictly positive linear combination of
the distinct linearly independent elements 7(21),...,m(z) € RY(d(B))* (in view of Proposition
5.1.3). Since the 7(z;) are distinct and linearly independent, this is then the unique way to write



THE CHARACTERIZATION OF FINITE ELASTICITIES 69

—7(uy) as a linear combination of the elements 7(z1),...,m(2) € RY(9(B))*. If B does not
minimally encase —uy, then w.lo.g. —u; € CY(B\{z1}U0({z1})) = CY(0({z1})) +22+. . .42 =
(0(z1)Nz1)+22+...+2¢. Thus —m(u1) can be also be written as a positive linear combination of
the elements 7(22) ..., 7(z;) € RY(9(B))*, contradicting that the unique way to express —m(u;)
has the coefficient of 7(z1) being nonzero. O

Any support set B is always virtual independent (by Proposition 5.1.5). Consequently,
since —u; € C(Suppgr(—wu1))° by definition of Suppg, we conclude via Lemma 5.4 that B =
Suppg (—u1) is always a support set which minimally encases —u; € RY(X; U ... U X;), while
Proposition 5.3 and Lemma 5.4 ensure that Suppg (—wu;) is the unique support set for R which
minimally encases —u1, though other non-support sets may also do the same. Indeed, if B is a
virtual independent set and 7 : RY — RY(9(B))* is the orthogonal projection, then Lemma 5.4
and Proposition 5.1 (Items 3-4) ensure that B minimally encasing the nonzero element —uy is
equivalent to m(B) U {m(u1)} being a minimal positive basis.

As the above discussion shows, there is always a unique support set B = Suppg (—u;) which
minimally encases the element u; € RY(X; U...U X,). However, if @ = (uy,...,u;) is a tuple
of orthonormal vectors uy,...,u; € RY(X; U... U X)), there is no guarantee that —u will be
minimally encased by some support set from R when t > 2. We will later show that this problem
does not occur if we impose additional conditions on R. However, until we can achieve this, we

will have need of the following definition.

Definition. Let R = (X3 U {v1},...,Xs U{vs}) be an oriented Reay system in RY, let B C
XiUd{vitU...UXs U {vs}, and let 4@ = (uq,...,u) be a tuple of orthonormal vectors from
Re.  Suppose B minimally encases @. If B # (), then t > 1 and there will be a mazimal

index t € [0,t — 1] such that B does not minimally encase (uy,...,uy). Note B still encases
(Ui, ...,uy), so there is some A < B such that A minimally encases (u1,...,uy). If B=10 or
BCXiU...UX;U{v,: j€ J} is virtual independent  and ACX I U...UX,,

where w(A) = (XT U {n(vi)}ics and 7 : RY — RY(A)* is the orthogonal projection, then we
say that B minimally encases U urbanely.

We remark that, when B is a support set, the condition BC X1 U...UX;U{v;: je€ J}in
the above definition holds automatically in view of Proposition 5.2.6, and so can be dropped.
We will later see in Proposition 5.5.1 that the A occurring in the definition of urbane minimal
encasement is uniquely defined. If B C X U...U X, and B minimally encases —, then it must
always do so urbanely and be a support set in view of A C |[B C X3 U...UX,. However, for
more general subsets B C X3 U{vi}U...UX;U{vs}, it is possible for B to minimally encase —
non-urbanely. The following proposition contains the basic properties regarding urbane minimal
encasement and is the analogue of Propositions 4.16 and 4.17 for oriented Reay systems.
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Proposition 5.5. Let R = (X1 U{v1},...,XsU{vs}) be an oriented ray system in R?, let @ =
(u1,...,us) be a tuple of t > 0 orthonormal vectors in RY, and let B C Xy U{v1}U...UX;U{vs}.
1. IfB,C C X3 U{vi}U...UX;U{vs} are support sets that both minimally encase U
urbanely, then B = C. In particular, if B, C C X1 U...U X, with B minimally encasing
4 and C encasing i, then B <X C.
2. B minimally encases —u urbanely if and only if there are indices 1 = r; < ... <1y <
rer1 =t + 1 and virtual independent sets C;, for i =0,1,...,¢, satisfying

D=Co<Ci<...=<C1 CTXU...UX, and Cr1=<Ci=8B

such that either £ =0 or else

(a) ;""" = Dy for some virtual independent set Dy from m,_1(R) that minimally encases
—my—1(ur,) and C; contains no v; with Xim'_l = () (the latter which necessarily holds
when Cy is a support set),

(b) C';rj*l = Dj 1= Suppy,_,(r)(—Tj-1(ur,)) for every j € [1,£—1], and

(¢) u; € RY(C;) for alli < rji1 and j € [1,4],

where mj_1 : RT — RY(Cj_1)* is the orthogonal projection for j € [1,4].

Moreover, B is a support set if and only if £ =0 or Dy = Suppy, | () (—me-1(ur,))-
Now assume the conditions of Item 2 hold along with the relevant notation.

3. F = (RY(Cy),...,RY(Cy)) is a compatible filter for @ with associated indices 1 = rq <
o <rg<rep =t+1, F(d) = (uy,...,u), and for every j € [1,4], the following hold:
(a) Cj = (7rj:11(27j) UCj—1)* is the lift of Dy,

(b) CY(Cj) + Clury, -+ -y ur,;) = C(Cy) + C(a, . . ., uj) = RY(C;), and
(c) B minimally encases —F (@) and —(up, ..., uy,) urbanely.

4. Let AC X1 U...UX;, let £ =RY(A), let : R — &L be the orthogonal projection, let

J C [1,4] be all those indices j € [1,€] with CT_y < CT, and let F* = (RY(CT))jes. For

7 )
j € (1,4, let Tj—1 : RY — (€ + RY(Cj_1))* be the orthogonal projection. Suppose

BCXxXiu...UuXs or ACIB, and either
B is a support set  or B contains no v; with X, =0 fori € [1,s].
Then F™ is a compatible filter for mw(i@) with
Fr(n(i) = (#)ies,

where uf = Ti—1(ur,)/||Ti—1(ur,)||, and the virtual independent set B™ for m(R) minimally

encases m() urbanely with the sets CT for j € J those satisfying Item 2 for m(i).

Proof. 1. We begin by proving Item 1 in the case when B,C C X} U...U X,. For this, it
suffices to consider subsets B, C C X U ... U X; which minimally encase @ and show B = C, in
which case B and C are both support sets. Let £ = RY(B), let 7 : R? — £1 be the orthogonal
projection, and let C' C C be all those half-spaces x € C with w(x) # {0}. By Proposition
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5.2.6, C™ = w(C’) is a support set for 7(R) with 7 injective on C’ (by Proposition 5.2.1), while
Proposition 5.2.2 implies that 9(C™) = 9(C)™. Thus Proposition 5.1 (Items 3 and 5) applied to
the support set C™ for w(R) implies that the elements of C’ are linearly independent modulo
€+ R(I(C)). Consequently,

(5.33) CUC)NE = (CUC)NE) +CY(C\ ) C CUa(C)) + CY )\ C).

Since C encases (uy,...,ut) with R{uy,...,u) € RY(B) = & (as B encases (uq,...,ut)), it
follows that CY(C) N & also encases (u1, ..., u:), whence (5.33) ensures that (C\C')Ud(C') <XC
encases (up,...,u;). Consequently, since C minimally encases (ui,...,u;), we conclude that
(C\C")UI(C'") = C, which is only possible if " = 0, that is, if all half-spaces in C C X1 U...U X
are contained in & = RY(B). Hence Proposition 5.1.9 implies that C C |B, further implying
C = C* = B (the equality follows since C is a support set). But now, since B minimally encases
(ug,...,us), we must have C = B, completing the proof of Item 1 in the case B, C C A1 U...UAXj.
We will complete the more general case for Item 1 later.

2-3. If t = 0, then Item 2 holds trivially with £ = 0, since only B = () can minimally encase
the empty tuple. If £ =0, then 1 = r; = ry1y =t + 1 implies t = 0. Therefore we may assume
t, £ > 1. Suppose the virtual independent sets C; exist with the prescribed properties 2(a), 2(b)
and 2(c). Since C; C X1 U...UX; for j < £, it follows that each C; with j < £ is not just a virtual

independent set, but also a support set. We must show that B minimally encases —(u1, ..., u;)
and that the conditions in Item 3 all hold.
If there were some v; € C; with Xiﬂj‘l = (), for some i € [1, s] and j € [1, /], then Proposition

5.1.9 implies X; C [Cj_1 C |C;, with the latter inclusion in view of C;_1 < Cj. Thus &; U{v;} C
1C;, ensuring that C; is not a support set, which is only possible when j = ¢, in which case 2(a)
gives us the contradiction v; ¢ C; = C; by hypothesis. Therefore we instead conclude there is
no v; € C; with X;7~' = () for any i € [1, s] and j € [1,].

Suppose m;_1(ur;) = 0 for some j € [1,£]. Then, since D; minimally encases —;_1(u,,) =0,
it follows that Dj = (), whence 2(a) or 2(b) implies C;’~* = 0, i.e., mj_1(x) = {0} for all x € C;.
Combining this with the conclusion of the previous paragraph and Proposition 5.2.1, we find
Cj € Xh1U...UX,, and now Proposition 5.1.9 implies C; C [Cj—1. Thus C; = C; = Cj
as C; is virtual independent, which contradicts that C;_; < C;. So we instead conclude that
mj—1(ur;) # 0forall j € [1,], whence 2(c) ensures that F = (RY(C1), ..., RY(Cy)) is a compatible

filter for @ with F(u) = (U, ..., %), where U; = m;_1(ur;)/||mj—1(ur;)| for j € [1,£], as required
for Item 3.
We proceed by induction on j € [0, £] to show that C; minimally encases —(u1,. .., ur;,,—1) as

well as —(uyy, ..., up;) and — (@, ..., ;), all urbanely, with C°(C;) + C(up,, ..., u,,) = C7(C;) +
C(u1,...,u;) = RY(C;). The case j = ¢ will then verify 3(b) and 3(c), and also show that B
minimally encases 4 (as required for Item 2). During the course of the proof, we will also see

that 3(a) holds. The base case is j = 0, in which case the empty set Cp = () minimally encases
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the empty tuple trivially with RY(@) = {0} = CY(0). Therefore we assume j > 1 and that this
has been shown for j7 — 1. To lighten notation, let

T ="Tj-1-

Since Cj—1 < C; implies Cj_1 C [C;, we have CY(C;_1) C CY(Cj). As a result, since
Cj—1 minimally encases —(u1,...,Ur;—1), —(Ury,..., %, ;) and —(%1,...,u;-1) by induction
hypothesis, it follows that C; encases these tuples as well. By induction hypothesis, we also
have kerm = RU<CJ‘71> = CU(ijl) + C(url, ce ,uijl) = CU(ijl) + C(Ul, c.. ,ﬂjfl). Con-
sequently, in view of 2(c), to show C; encases —(u1,...,ur;) and —(up,...,uy;), We we just
need to know —m(u,;) € CY(CT), for if this is the case, then u,; +x € —CY(C;) for some
z € RY(Cj1) = CY(Cj—1) + Cupy, .-, up,_,), whence (—z + Clup,, ..., ur;_,)) N —=C(C;) # 0,
and then the desired conclusion ((ur; +z) — 2+ C(tr,, ..., ur,_,)) N=C(C;) # 0 follows in view
of CY(C;) being a convex cone. Likewise, to show C; encases —(u1, ..., u;), we just need to know
—7(d;) € CY(CF), and since @; = m(uy,;)/||7(ur;)|], this is equivalent to the previous condition
~7(uy;) € CY(CT). However, that —m(u,;) € CY(CT) holds follows directly from 2(a) or 2(b)
and the definition of D;. Indeed, Lemma 5.4 ensures that C7 = D; is a virtual independent set
which minimally encases —m(uy,). Thus we now know C; encases —(u1, ..., Ur; ), —(Upy, .-+, Upr;)
and —(ﬂl, e ,ﬂj).

Since kerm = RY(C;_1) and C; contains no v; with X7 = (), as shown earlier, it follows in
view of CT = D; and Propositions 5.1.9 and 5.2.1 that 71 (D;) CCj C (71 (Dj)UCj_1). Since
ijl < Cj, we have iCj,1 - i,Cj, whence \LC] - \LTF_I(D]') U i,ijl - J,C] U i,ijl - J,Cj, implying
(5.34) C; =€ = (lr 1 (Dy) UG 1) = (r~ (D} UG 1),
which shows that the virtual independent set C; is the lift of the virtual independent set D; as
required for 3(a). Since C;_1 is a support set, Proposition 5.2.5 implies that
(5.35) Ci\ 71 (D)) = Cj—1 \10(n~(D;)) = Cj—1 \ Ln~ ! (Dy),
where the second equality follows since Cj_1 and 7~ !(D;) are disjoint (as 7(x) = {0} for x € C;_;
but 7(x) # {0} for x € 7~ 1(D;)).

Now 7(7~1(D;)) = D; is a virtual independent set with 7 injective on 7~1(D;) (by Proposition
5.2.1) while 9(D;) = d(n(7~1(D;))) = d(x—1(D;))™ by Proposition 5.2.2. Thus Proposition 5.1.3
implies that 7—!(D;) is linearly independent modulo kerm + RY(9(7~1(D;))) = RY(Cj_1) +
RY(9(m~1(D;))), ensuring that
(5-36) Co = (Dy) NRY(Cj) = C2(m (D)) NRY(C1) € €7 (0 (D)))-

Claim A. C;\ 7 '(D;)Ud(x1(Dj)) encases the tuples —(u1,...,tur;—1), —(tUp,, ..., up,_,) and
—(u1,...,j-1), but C;_; U O(m~1(D;)) encases none of these for any Ci1 =Cj \ 771(D;).
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Proof. We know C; encases —(u1, ..., U, —1), —(Ury, .., Ur;_,) and — (U1, ..., Wj_1) With u;, Uy €
RY(Cj_1) for all i < r; and k < j. In view of (5.34) and (5.36), we have
CY(Cj) NRY(Cj1) = CY(Um (D) UCj1) NRY(Cj1)
C CUA(n™H (D)) + CY(Cjmr \ dn (D))
Thus C; \ # 1(D;) U d(x1(D;)) encases the tuples —(u1,...,ur;—1), —(up,...,ur,_,) and
—(@, . ..,uj—1) in view of (5.35). Suppose by contradiction that C;-_lua(ﬂ_l(Dj)) encases one of
the tuples —(u1,..., U, 1), —(Upys .-, Up;_;) OF —(TUs, ..., U;_1) for some C' 1< C-\ﬂfl( i) =
Cj—1 \ dm~1(D;) (in view of (5.35)). Note that C; \ 7~ 1(D;) CC; is a V1rtual independent set as

it is a subset of the virtual independent set Cj. As a result, C;_; < Cj—1 \ {7~ L(D;) implies that
there is some

(5.37) yeC\lr (D) with y¢iC)
Since both Cj—1 and C}_, Ud(m~1(D;)) are subsets of Xy U...U X, that encase —(uy, ..., ur,—1),
~(Upys -y Up;_y) OF —(TU1, ..., Uj—1) with the encasement by C;_1 minimal by induction hypoth-

esis, it follows from the already established case in Item 1 that Cj—; < C} ; U o(r~1(Dy)),
implying y € Cj—1 € ICj_, ula(r1(Dy)) C iy Ulm1(D;). However, this contradicts (5.37),
and Claim A is established. O

We showed above that C; encases the tuples —(u1, ..., ur,), —(Ury, ..., ur;) and — (U1, ..., ;).
Let us next show that is does so minimally. To this end, its suffices to show that the imme-
diate predecessor C; = C; \ {x} U d({x}) encases neither —(u,...,ur;) nor —(u,..., urj) nor
— (@, . ..,u;) for any x € Cj. Suppose by contradiction that this fails for x € C;. If 7(x) # {0},
then Proposition 5.2.3 implies that (C})™ < CT with —n(u,,) € CY((C})™) or —(@r;) € CY((C})™).
Noting that u; = m(ur;)/||7(ur;)||, we see that the latter case implies the former, and now both
cases contradict that C7 = D; minimally encases the element —m(u,,) by definition of D;. So
instead suppose 7(x) = {0}, so x € C; \7‘(71( ;). In this case,

with C;_; < C; \ 7~ }(D,). Since C; encases —(u1, ..., Up;), —(Urys...,Up;) OF —(U1,...,5), it
also encases —(u1, ..., Up;—1), —(Upys.sUp; ) OF —(Ty, ..., Tj—1) wWith u;, Gy, € RY(C;_1) for
all i <r; and k < j. As argued in Claim A, it follows in view of (5.36) that

CY(CH) NRY(Cj1) = C¥(n~ (D) UCj_1) NRY(Cj—1) C CY(A(n~ (D)) + C7(Cfy).

Thus C;_; U d(m~1(D;)) also encases one of the tuples —(u1, ..., up,—1), —(Up,...,Up,_,) oOr
—(@1, ..., W;j—1), which is contrary to Claim A. This shows C; minimally encases —(uz, ..., u;),
~(Upys -5 upy) and — (g, . . ﬂj)

Next, we show that RU<CJ> CY(Cj) +Clupy, - .., up;) = CY(C;) +C(a, . . ., Uj). By induction

hypothesis, RY(C;_1) = C°(Cj-1) + C(u, ..., ur,_,) € CY(C;) + C(uy,, ..., u,;) (the inclusion
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follows as Cj_; < C; implies Cj_; C [Cj), and likewise RY(C;—1) C CY(C;) + C(uy,...,qj ).
Consequently, it suffices to show CY(CF)+C(7(ur;)) = RY(CT) and CY(CF)+C(7(u;)) = RY(CT).
Recalling that u; = m(uy;)/[|7(us,)|l, we find that the latter condition is equivalent to the
former. As already remarked above, the virtual independent set C;T = D; minimally encases the
element —7(u,,), which is equivalent to D; U {m(u,;)} being a minimal positive basis modulo
RY(9(D;)) (as remarked after Lemma 5.4). Thus there is a strictly positive linear combination

EZD axt+fr(uy;) = & € RU(I(D;)), so B> 0 and ax > 0 for x € D;. But then z+9(x) C x for
x€D;

each x € D; ensures that R°(9(D;)) = £+ 3 9(x) € CY(D;)+C(n(ur,)), and now D;U{m(u,,)}
x€D;
being a minimal positive basis modulo RU@(]D]-» ensures that CY(CT) + C(m(uy,)) = CY(D;) +
C(m(ur;)) = RY(D;) = RY(CT). This establishes R¥(C;) = C(Cj) + C(upy, ..., ur;) = CY(C)) +
C(u,...,uj).

By 2(c) and the conclusion of the previous paragraph, —u; € RY(Cj) = C7(C;)+Clup,, ..., uy,)
for i < 7j11, meaning (u; + C(try,...,ur;)) N —CY(Cj) # 0. In particular, this is true for
i € [rj+1,7j11—1], which implies C; encases not just —(u, ..., u,;) but also —(u1,...,ur; 1)
As a result, since we already know C; minimally encases —(u1,...,u,;), we conclude that C;
minimally encases —(u1,...,uy,,-1). Since C;_; minimally encases —(u1,...,ur;—1) by in-
duction hypothesis with C;_1 < C;, we cannot have C; minimally encasing —(u1,. .., ur;1).
Thus t; = r; — 1 € [0,7j41 — 1] is the maximal index such that C; does not minimally en-
case —(ug,... ,ut;_). Consequently, since Cj_1 € X7 U ... U &, we see that C; minimally en-
cases —(u1,...,uUr, ;1) urbanely. Likewise, the minimal encasement of —(u,...,u,;) and
— (@1, ..., u;) must also be urbane, and the induction is complete. As already noted, this com-
pletes one of the implications in Item 2 and all parts of Item 3

To prove the other implication in Item 2, now assume that B minimally encases —(ug, ..., u;)
urbanely, which ensures that B is a virtual independent set. Let t' € [0,¢ — 1] be the maximal
index such that B does not minimally encase —(uy,...,uy), and let A < B be a subset which
minimally encases —(u1,...,uy). Since B minimally encases —u urbanely, we have A C X} U
... UX;. In view of the already established portion of Item 1, it follows that A is the unique
subset of X1 U...U X which minimally encases —(uy, ..., uy).

We first construct the support sets C; and indices r; satisfying 2(b) and 2(c) for the set A
recursively. We will then show C;_; = A and ¢’ = r; — 1 with C; = B also satisfying 2(a) and
2(c) afterwards to complete the proof of Item 2. Suppose the sets C; C X1 U...UX; have already
been constructed for i =0,1...,7 — 1, where j > 1 (we set 7o = 0 and Cy = 0). If C;_; = A, we
are done with the initial construction, so assume otherwise. Let r; € [rj_; +1,¢] be the minimal
index such that u,; ¢ RY(Cj_1), or set ; = t' + 1 if no such index exists. In view of the already
completed implication in Item 2, we see that C;_1 minimally encases —(u1,...,u,,—1). If A also
minimally encases —(u1, ..., uy;—1), then both C;_; and A minimally encase —(u1,...,ur;—1),
in which case the already completed portion of Item 1 implies that C;_; = A, contrary to
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assumption. Therefore we may assume A does not minimally encases —(u1,...,u;;—1). In
particular, r; < ¢. Thus, since C;_1 C &; U...U X5 minimally encases —(u1, .., up;—1) and
AC X U...UX; encases —(uq,. .. ,Urj—1), it again follows from the already completed portion

of Item 1 that C;_1 < A. As before, let
T=Tj_1

to simplify notation. By Proposition 5.2, 7(R) is an oriented Reay system with A™ C J7_; AT a
support set. Since A encases —(u1,. .., uy) but u,; ¢ R%(C;_1) = kerm and uy, ..., u,, 1 € kerm
(by induction hypothesis), it follows that A" encases —m(u,;). Thus there is some D; < A"
that minimally encases —m(u,,), and by Proposition 5.2.3 we have 7~ (D;) < m~!1(A™) C A C
XiU...UX, Since Dj < A" C UjeJ X7 minimally encases —(uy,), it follows by Lemma
5.4 that D; is a support set with —m(u,;) € CY(D;)°, whence D; = Supp,(g)(—7(ur;)). By
Proposition 5.2.5,
Cj = (n (D) UCj1)* =n H(D;) UC)_,

is a support set for R, where C;_; = C;j—1 \1O(r~1(D;)). Since C;_1 C (m~1(D;)UCj_1) = IC;,
we have Cj—1 = C;_; =< C;. Proposition 5.2.4 implies C;-rj_l = C] = Dj, whence 2(b) holds
for C;. Also, since D; is a nonempty set of nonzero elements while CT_; = (), we must have
Cj—1 < Cj. Letting rj;1 € [rj +1,...,%] be the minimal index such that w,,, ¢ R“(C;), or
setting rj41 = t' + 1 if no such index exists, we see that 2(c) also holds. This defines the
support sets C; and indices r; for the set 4. Since we cannot have an infinite ascending chain
) =Co<Cy <Cy =< ...of subsets from the finite set X} U...U X, the process must eventually
terminate with some index rp = t/ + 1 with C;_; = A. The remainder of the proof of Item 2

is similar to what we have just seen, with some important but subtle differences. We now set

j =14, so
m=m_1 and kerm=R(Cr 1) =R"(A).
By definition of ¢/, B minimally encases —(uy,...,up41) = —(u1,...,ur,). Since A < B, this
ensures that A does not minimally encase —(uy,...,u,,), and thus 7(u,,) # 0. In consequence,

r¢ is the minimal index such that u,, ¢ RY(C;—1) = RY(A). In view of Proposition 5.2.1,
m(R) = (X U{m(v;)})jes is an oriented Reay system. Since B is a virtual independent set with
Ci—1=A=<B,and since BC X3 U...UX;U{v;: j€ J} per definition of urbane encasement,
Proposition 5.2.6 implies that B” is a virtual independent set.

Since B encases —(u1,...,us) but u,, ¢ RY(Ci—1) = kerm and uq,...,u,,—1 € kerm (since
A = Cy_; encases —(u1,...,ur,—1)), it follows that B™ encases —m(u,,). Thus there is some
Dy < B™ which minimally encases —m(u,,), and by Proposition 5.2.3, we have

7 1(Dy) = 77 1(B™) C B.

Since B™ is a virtual independent set, and since (Dy)* = D, holds by virtue of D, minimally
encasing —7(u,,), it follows that Dy < BT is also a virtual independent set, and one which
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minimally encases the element —7(u,,). By Proposition 5.2.5,
Cp:= (W_I(Dg) UCr—1)" = W_I(Dg) U Cé—l

is a virtual independent set for R, where C, ; = Co—1 \ JO(m~1(Dy)). In view of C—y C
L~ Dy) U Co1) = 1Cy, we have Co—y = C; | < Cp. Proposition 5.2.4 implies CJ = Dy,
whence 2(a) holds for C; = (771(Dy) UCp_1)*. Note 7~1(Dy) contains no v; with 7(v;) = {0}
by definition, while this is also the case for Cp_1 C X1 U ... U X;s. Since Dy is a nonempty set
of nonzero elements while CJ | = ), we must have C;—1 < C;. Letting rpy1 € [rp+1,...,1t] be
the minimal index such that u,, , ¢ RY(Cy), or setting ro4; = t + 1 if no such index exists,
we see that 2(c) also holds. It remains to show C; = B. Since 7= }(D;) < 7~ 1(B7) < B and
Ci—1 = A < B, we have C;, C |B, which combined with C; = C; ensures that C, < B. By
the already completed direction in Item 2, C; minimally encases —(uq,...,uy11). Thus, since
C¢ = B, and since B minimally encases —(uq,...,uy11), it follows that C; = B, completing the
reverse implication in Item 2.

It remains only to prove the moreover part of Item 2. If B = Cp is a support set, then
Proposition 5.2.6 implies that C;rz*l = Dy is a support set, and one which minimally encases
—m-1(ur,) (in view of 2(a)), forcing Dy = Supp,, | (r)(—me-1(ur,)) by definition of Supp,, | (r)-
Conversely, if Dy = Supp,, ,(g)(—me—1(ur,)), then Dy is a support set which minimally encases
—me—1(ur,), in which case Proposition 5.2.5 implies that (W[_ll(Dg) UCr—1)* is also a support set.
However, B = C; = (7, ,(Dy) UCs—1)* was shown to be the lift of D, during the proof (cf. ITtem
3(a)), so we conclude that B is support set, completing the proof of Item 2.

1. Next, we establish Item 1 in the unrestricted case when B, C C X U{v1}U.. . UX;U{vs}
are both support sets that minimally encase @ urbanely. If ¢t = 0, then B = C = (), as desired,
so we may assume t > 1, ensuring that B and C are both nonempty. Let ) = Cy < C; <
... < Cyy—1 = Cy, = B be the support sets given by application of Item 2 to B. Observe that
C1 = Suppg(—u1) depends only on @ and not on B, and thus by an iterative argument (using
2(a)-2(c) and 3(a)), none of the sets C;, for i € [0,¢g], depend on B at all (note the case i = {p
requires the moreover statement in Item 1, which is available as B and C are support sets by
hypothesis), meaning the only portion of Item 2 that is dependent on B, and not #, is the number
of iterations £p that occur for B. Applying Item 2 to C, we arrive at the same conclusion. Thus,
letting ) = C) < C] < ... < Cp,_; < Cy, = C be resulting support sets, and w.l.o.g. assuming
lc < g, we find that C; = C; for all i € [0, (c]. If £p = Lc, then C = C)_ = Cyy = B, as desired.
Otherwise, g > f¢c, in which case C = Céc = Cy, < Cyy = B. However, since both C and B
minimally encase —1, this is not possible, completing the proof of Item 1.

4. Since any virtual independent subset B C X1U. ..UXs must be a support set, the hypotheses
of Item 4 imply that

(5.38) BCX,U...UX,is asupport set or AC|B.
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They also imply that
(5.39) each Cj, for j € [1, 4], contains no v; with ;=" = 0.

Note (5.39) is trivially true when C; C &1 U...U&, and thus for j < ¢, while it holds directly by
hypothesis for C; = B except when A C |53 with B a support set. However, in this last remaining
case in question, Xjﬁ_l = () implies X; C AU [Cy—1 C [C; = |B in view of Proposition 5.1.9
and kerp_1 = RY(AUCy_1) (note |Cry C [Cy follows from Cy_1 < Cy), so that the definition
of support set instead ensures v; ¢ |B = |C;. Thus (5.39) is established in all cases, which
together with (5.38) allows us to apply Proposition 5.2.6 to each Cj, for j € [1,/], to conclude
C;r is a support set for j < ¢, and thus virtual independent, and that Cj = B™ is also virtual
independent (note ker 7w < ker 7,_1). Proposition 5.2.3 implies that Cf X CT < ... X C] = B".

If i, 5 € [0,4] with ¢ < j and C] < C7, then there must be some y € C; with m(y) # {0}
and y ¢ |C;, for otherwise CT C ({C;)™ = |C]" (by Proposition 5.2.2), yielding the contradiction
Cf = (CI)* = Cf (as C] is virtual independent). Suppose y C & + RY(C;) = RY(AUCy).
If AC |B, theny € y C RYAUC;) = R{AUJC;) meaning y can be written as a linear
combination of the elements from |AU |C;. However, it follows in view of A C |B, y € C; and
Ci < Cj 2 Cp= B that {y} UlAU]C; C |B is a linearly independent subset (as B is a virtual
independent set), meaning the only way y can be written as a linear combination of the elements
from JAU|C; isify € JAU]C;, ie., if y € [LAU]C;. However, in view of 7(y) # {0} and y ¢ |C;,
neither of these is possible. On the other hand, if A € |B, then (5.38) ensures B C X U...UX;
is a support set andy € C; C IBC X3 U...UX,. In this case, y C RY(AUC;) combined with
Proposition 5.1.9 implies that y € [ AU/C;, and we obtain the same contradiction as before. So
we instead conclude that any y € C; with w(y) # {0} and y ¢ |C; must satisfy y € € + RY(C;).

By hypothesis, F™ = (RY(CT));cs with J C [1, £] the subset of indices j € [1, ¢] with Ci_y <C].
If j1, j2 € {0} U J are consecutive elements with ji; < jo, then C7 = CT for all i € [j1,j2 — 1]
and Cf, < C7,. Thus £ +RY(C;,) = € +RY(C;) for i € [j1,j2 — 1]. Since CF, < CT,, there must be
some y € Cj, with 7(y) # {0} and y ¢ |Cj,, implying y € € + RY(Cj,) as shown above. Thus
E+RY(C),) C €+ RY(Cj,), and in particular, for any j € J, there must be some y € C; with
y SZ E +RU<C]‘71>.

Let j € J be arbitrary, let y € C; with y € £ + RY(Cj_1) be arbitrary (at least one such y
exists as just noted), and let

7R~ RU<A U Cj_l U 8(CJ)>J'

be the orthogonal projection. By Proposition 5.2.1, we know that 7(R) is an oriented Reay
system. Moreover, C; is a virtual independent set and either C; C A1 U ... U & or else j = £
with €y = B and A C |B. In the former case, Proposition 5.2.6 ensures that C7 is a support
set, and thus 7(Cj) \ {0} is a linearly independent set of size |C; \ ker7|. In the latter case,
C;j = Cy, and Proposition 5.1.1 implies ker 7 = RY(AUC,_1UI(B)) = R(JAULCp_1ULI(B)) with
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JAU|Cy_1UlI(B) C |B. Thus, since | B is linearly independent (as B is virtual independent),
it follows that 7({B) \ {0} is a linearly independent set of size || B \ ker 7|, and since B C | B,
we then conclude that 7(B)\ {0} = 7(Cy) \ {0} is a linearly independent set of size |Cy \ ker 7|.
In both cases, 7(Cj) \ {0} is a linearly independent set of size |C; \ ker 7|.

Now the virtual independent set C;Tj ~' = D; minimally encases —m;_1(uy;) by 2(a) or 2(b).
Thus, since we also have kerm;_; C RY(C;_1 U9(C;)) C ker7, it follows from Lemma 5.4 that
there exists a strictly positive linear combination of the elements from C;\ker 7 equal to —u,, +§
for some & € ker .

Let C; = C; \ {y} Ud({y}). Sincey € € +RY(C;j-1) = R¥(AUC;_1), we havey ¢ LAUIC;_1.
In particular, y ¢ Cj_1, ensuring that C;_; C iC;- (as Cj—1 < C; implies Cj_; C [Cj). Since
y € C; =C; (as Cj is a virtual independent set), we also have y ¢ iCJ’.. In summary,

(5.40) y ¢ LAULC; 1 UC;  and  Cjq CIC

Suppose y C £ +RY(C}) = RY(AUC)). Consequently, if C; C X1 U...U A, then Proposition
5.1.9 enures that y € J.AUJC}, contradicting (5.40). On the other hand, if C; X U...UX,,
then j = ¢, C; = Band A C |B. In this case, y € y C RU<AUC§> = R(}A U |C}) with
{y} UlAU iC’]’- C |B. However, since B = C; = C; is a virtual independent set, it follows that
1B, and thus also {y}UiAUiC]’-, is a linearly independent set, contradicting that y € R(iAUiCé}
with y ¢ JAULC} (by (5.40)). So we instead conclude that

(5.41) y & €+RY(C)).

Since ker 7 = £ + RY(C;—1 UI(C))) € € +RY(Cj—1 UC) = £ + RY(C}), with the final equality in
view of (5.40), and since 7(C}) \ {0} is a linearly independent set of size |C} \ ker 7|, we conclude
from (5.41) and y € C; that

(5.42) RY(C;) € € +RY(C;—1 UI(C;)) and T(CH)\ {0} C 7(Cj) \ {0}.

Suppose u,; € € +RY(Cj_1 UI(C;)) = ker7. As remarked above, 7(C;) \ {0} is a linearly
independent set of size |C; \ ker 7| and there exists a strictly positive linear combination of the
elements from Cj \ ker 7 equal to —u,; + £ for some £ € ker 7. However, since u,; € ker 7, this
contradicts that 7(C;) \ {0} is a linearly independent set of size |C; \ ker 7| unless C; C ker,
Le., RY(C;) C &+ RY(Cj—1 UI(C;)), which is contrary to (5.42). So we instead conclude that

(5.43) ur; ¢ E4+RY(C;_1UD(C;)) for every j € J.

Thus 7(u,,;) # 0 and, since 7(C;) \ {0} is linearly independent with a strictly positive linear
combination of the elements of 7(C;) \ {0} equal to —7(u,,), we see that 7(C;) \ {0} U {7 (ur;)}
is minimal positive basis of size |C; \ ker 7| + 1.

By definition, we have 7 (@) = (uj,u3,...,u; ) with the u; for i € [1,/;] defined as follows.

We recursively define the indices 0 = sg < 51 < ... < s8¢, < S¢.4+1 = Te41 = t + 1 by letting
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$i € [si—1 + 1,t] be the minimal index such that 7} ,(us,) # 0, where
7 R = (€ +Rlug,ug, ..., us, )"
is the orthogonal projection, and then
ui = iy (us;)/llmiq (us,) |-
Note this ensures
E+Rug,ug, ... us;, ;) =&+ Rug,ua, ..., us;—1).

Recall that j € J C [1,/] is arbitrary. By 2(c), we have u; € RY(C;—1) C & +RY(Cj_;) for

all i < rj. Hence, if s;_1 < rj < s; for some i € [1,¢; + 1], then ker7} ; C & + RY(C;_1) and

mi_1(ur;) = 0, the latter in view of the minimality in the definition of s;, which contradicts
(5.43). Therefore, we instead conclude that, for each j € J,

rj = sj+ for some j* € [1, (]

For 1 < i < j* we have 1 < s; < s;+ = rj, ensuring us, € RY(C;_1) C £ + RY(Cj_1) and

ECkerm | =&+ Rui,...,us; ) €E+RYCj_1) by 2(c) for @. Thus
(5.44) uj € RY(CT ;) forall i < j*,

where j € J. Likewise, u; € RY(C;_1) for k < sj+_1 < s;+ = r; and Us;, = Uy, € RY(C;) C
€ +RY(C;), while (5.43) implies that us,. = u,; ¢ € +RY(C;_1). Thus

(5.45) ECkerm_1 =&+ R(up,...,us; ) Ckerrjo1 =& +RY(Cj_1) CE+RY(C))

with

(5.46) ui € RY(CT) \ RY(CT_;)

and 717 _q(us;.) = Tji—1(uyy), for j € J. As a result, (5.44) and (5.46) ensure F7 is
compatible with m(%) with F™(n(@)) = (Uii;)je‘], where each uij = 7j—1(uf)/lImj-1(ui)|| =
i1 g (s )/ 117 g (s ) | = i1 (ury) /Nl i1 () -

Let j € J be arbitrary and let j; be the next consecutive element of J after j, or set j; = £+1
and j§ = ({4+1)* := £, +11if j is the final element of J. Since j, j; € JU{{+1} are consecutive,

the definition of .J implies £ + RY(C;) = £ + RY(C;j+_4) for all i € [§,77 — 1]. In particular,

(5.47) E+ RU<CJ'> =&+ RU<CJ+,1>.

Let rj = sj» and rj, = s;: with j*, j3 € [1,4r + 1] as shown above. If J = (), then 7 () is the
trivial tuple, ) = C§ = CJ = B™, and all parts of Item 4 hold trivially. Therefore we can assume
J is nonempty. We now proceed to show that 2(a), 2(b) and 2(c) hold for 7 (%) = (u7,...,uj )
using the virtual independent sets C7 for j € {0} U J, indices j* for j € JU{{+1}, and elements

* *
y 3k

e = ety ) e (g ) = ey i) ey )| for j €7
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in place of the virtual independent sets C; for j € [0,¢], indices r; for j € [1,£+ 1], and elements
ur; for j € [1,£], which will imply that B™ minimally encases 7 () urbanely since B = C] = CT
for the final element j € J (and thereby complete the proof). Note the CT for j € J are virtual
independent sets for 7(R) in view of Proposition 5.2.6 (as remarked earlier).

If j € J is the final element, then u,, € € + RY(C;) = € + RY(C;) and € C kernf ;| C
E+RY(Cj) = E+RY(Cy) for all i < £ +1 = j% follows by 2(c) for @, in turn implying that
ui € RY(CT) for all i < ji = £; + 1. Otherwise, (5.44) (applied with j = j;) and (5.47) yield
uj € RY(CT, ;) = RY(CT) for all i < ji. As a result, 2(c) holds for m (@) for all j € J.

For each j € J, uj. is a positive multiple of 7%, _; (us,.) = 7j._; (uy,;) with ker 7. _; C ker7j_4
by (5.45), and thus 71 (u}.) is a positive multiple of 7j_177. _; (ur;) = 75-1(ur;). By (5.39), C;
contains no v; with &;7~" = (). Thus Proposition 5.2.6 and (5.38) ensure that C;"" is a virtual
independent set, which will be a support set when j € J is not the final element (as this ensures
C; C X1 U...UA&X). Consequently, to establish 2(a) and 2(b) for 7(u), we just need to show
C;’~' minimally encases —7; 1 (u}.) for each j € J, and since 7;_1(u}.) is a positive multiple of
7j—1(uy;) for j € J (as just shown above), this is equivalent to showing C;j ~! minimally encases
—Tj_l(urj).

Since —;_1(ur;) € CU(C;U*) by 2(a) or 2(b) for B, and since ker7;_; < ker7;_1, we have
—7j-1(ur;) € CU(C;j_l), showing that C;j_l encases —7;j_1(uy;). To show the encasement is
minimal, we need to show (C})™~! does not encase —7;_1(u,;) for any C; = C;\{y}Ud({y}) with
y €Cjandy & E+RY(Cj_1) = ker7j_1 (cf. Proposition 5.2.3: note D < C;’~" implies Tj__ll (D) <
lell (C;jfl) C Cj). Recall that 7: R? — (£ + RY(Cj—1 U(C;)))* is the orthogonal projection.
Suppose by contradiction that —7;_1(u,,) € CY((C})7~) for some C; = C; \ {y} U9d({y}) with
y €Cjand y € € +RY(Cj_1). Consequently, since ker 7;_; C ker 7, (5.42) ensures 7(C?) \ {0} is
a proper subset of 7(C;)\ {0} that encases —7(u,,). However, as noted immediately after (5.43),
7(C;) \ {0} U{7(ur,)} is minimal positive basis of size |C; \ ker 7| 4- 1, meaning it is not possible
for a proper subset 7(C}) \ {0} of 7(C;) \ {0} to encase —7(u,,), and with this contradiction, we
establish that 5™ minimally encases m(u) as described in Item 4, completing the proof. O

Proposition 5.6. Let R = (X U {v1},...,Xs U{vs}) be an oriented Reay system in RY, let
i = (u1,...,us) be a tuple of t > 0 orthonormal vectors from R?, and let A, BC X U...U Xj.
Suppose B minimally encases —i and uy,...,u; € RY(A). Then |B C |A.

Proof. Let 7 : R? — RY(A)"L be the orthogonal projection. Since B C XjU. . .UAX, it follows that
B minimally encases — urbanely. By Proposition 5.5.4, 5™ minimally encases —7(%). However,
since ug, ..., u; € RY(A) = ker m, we have 7 () equal to the empty tuple, and now B™ minimally
encasing the empty tuple forces B™ = (). Hence x € kerm = RY(A) forallx e BC XjU...UX,.
Consequently, since A C X7 U...U Xs, Proposition 5.1.9 implies x € | A for all x € B. Thus
B C | A, implying [B C |A, as desired. O
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The next proposition shows that, if a half-space x occurs in two separate oriented Reay
systems R and R’, then the quantity J({x}) is the same for both, and is thus intrinsically
defined by the half-space x itself.

The proof of Proposition 5.7 requires the translation invariant notion for the lineality subspace
of a convex cone. Recall that, if C C R? is convex cone, then C' N —C' is the lineality subspace
of C, which is the maximal subspace contained in C. For a general set X C R%, we define

oX)={reX: z+Ri(y—z) C X forevery y € X}
to be the set of apex points of X (see [106]). If C C R? is a convex cone containing 0, then
(5.48) o(C)=Cn-C,

as the following argument shows. If x € C'N —C and y € C, then —x € C and y € C imply via
the convexity of C' that y — z € C, whence x + R4 (y — ) C C since z € C with C a convex
cone. This shows that C N —C C o(C). On the other hand, if x € o(C), then since 0 € C
by hypothesis, it follows from the definition of o(C) that = + Ry (0 — ) C C. In particular,
—x =1z —2zx € C, whence x € CN—C (as o(C) C C by definition). This establishes the reverse
inclusion for (5.48) It is also routine to verify that

o(z+C)=z+0(C)
for any z € R? and convex cone C' C R?. Combined with (5.48), it follows that
(5.49) o(z+C)—o(z+C)=CnNn-C

for any convex cone C' C R? containing 0 (recall that C' N —C is a subspace).

Proposition 5.7. Let R = (X; U {vi},..., X U{vs}) and R' = (X] U {¥v}},..., &L U{v,})
be two oriented Reay systems in RY. Suppose x € Xy U...UX;U{v;: i € [1,s]} and X' €
XU UX ULV, o i€ [1,s]} withx = x'. Then Or({x}) = Or({x'}), where Or({x}) =
0{x}) C X1 U...UXs and Or/({x}) = 0({x'}) C X[ U...U X! are the respective sets for
x = x' when considered as a half-space for the oriented Reay system R, and when considered as
a half-space for the oriented Reay system R’.

Proof. Let x1,...,%, € Or({x}) and x{,...,x], € Or/({x'}) be the distinct half-spaces from

Or({x}) and Or/({x'}). Observe that CY(0r({x})) =x1 +... + X, = X1 +...+X;, and likewise

CYor({x'})) =%+ ...+ x. =X +... +X], (recall Proposition 5.1.2). Since x = x’, we have
C(Or({x})) =xNa(x) =x'NA(x') = C7(Or ({x'})).

Let & C CY(Or({x})) = CY(Or/({x'})) be the lineality subspace. Since g ({x}) and 9r/({x'})

are both support sets, and thus virtual independent, Proposition 5.1.4 implies that

E=RYO%5({x})) = d(x1) + ... + O(x,) = O(x}) + ... + O(xL)) = RY(9% ({x'})).
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Moreover, m(z1),...,n(x,) are distinct, linearly independent elements by Proposition 5.1.3,
where 7 : R? — £ is the orthogonal projection. Likewise 7(z}), ..., 7(z.,) are distinct, linearly
independent elements. We have C(7(z1),...,m(z;)) = 7(x1)+...+7(x,) = ﬂ(CU(aR({x}))> =
W(CU(aR,({x'}))) = r(x))+...+7(x,) = C(n(a}),. .. m(x},)). Thus, since {m(z1),...,m(z,)}
and {m(z}),...,m(2],)} are both linearly independent subsets of distinct elements, we conclude

that » = r/ with (after re-indexing appropriately)
7(x;) = w(x}) forall i € [1,r].

It remains to show x; = x; for every i € [1,7]. By replacing each z with an appropriate positive
scalar multiple, we can w.l.o.g. also assume m(x;) = w(a}) for all i € [1,r].

For j € [1,7], let Z; C CU(0r({x}) = CU(Or/({x'}) consist of all = € CU(Or({x})) =
CY(Or/({x'})) with 71(2) = m(z;) = m(x}). Since {m(x1),...,7(z,)} = {7 (2}),...,7(2})} is alin-
early independent subset of distinct elements and x;+. . .+x, = CY(9r ({x})) = CY(0r ({x'})) =
x) 4+ ...+ x}., it follows that

(5.50) Zj = xj+ 0(x;) + CU (9% ({x})) = 2 + A(x)) + C7(9% ({x'})).
Now
Cy = Zj— ;= O(x;) + CUOR({x)))  and €} = Z; — o) = O(x}) + CU(8({x'}))

are both convex cones containing 0 by Proposition 5.1.2. Consequently, in view of (5.49), we

have
0(Zj) = o(Z;) = C; N =C;j = €3N =C;.

Since 0(x;) is a subspace, d(x;) C C;N—C}. If the inclusion were strict, then 7; <CU (8%({)(}))) =
7;(C;) would have nontrivial lineality subspace, where 7; : R? — 9(x;)t = RY(9({x;}))" is
the orthogonal projection. Proposition 5.2 implies that 7;(R) is an oriented Reay system with
M (C%@%({x}))) = CY(9% ({m;(x)})), and Proposition 5.1.4 ensures that CY(9% ({m;(x)})) has
trivial lineality subspace. As a result, the inclusion d(x;) € Cj N —C; cannot be strict, forcing
d(x;) = Cj N —Cj. An analogous argument shows 9(x}) = C; N —C%. Thus
(5.51) I(x}) =C;N—C=C;N—-Cj=0d(x;), forevery je[l,r].

Let us next show that
(5.52) (x1 4+ ...+ %) NI(x;) =x;NI(x;), foreach je[l,r].

The inclusion x; N 9(x;) C (x1 + ...+ x,) N O(x;) is trivial. Let y € (x1 + ...+ x,) N I(x;)
be arbitrary. Since y € x1 + ... + X, it follows that {xi,...,x,} = Or({x}) encases y, so
there is some Z =< Og({x}) with Z C [{xy1,...,x,} = JOr({x}) that minimally encases y. In
view of the minimality of Z, there is a subset Z C RY of representatives for the half-spaces
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from Z such that y = > z. Since Z C [Og({x}), we can extend the representative set Z to
z€Z
a set of representatives LOr({z}) for JOg({x}) C X, which will then be linearly independent

in view of Proposition 4.9.1. Thus, since Y z =y € d(x;) = RY(Or({x,})) = R{IOr({z;}))
z€Z
(by Proposition 5.1.1) with [Or({z;}) C i@R({x}), Z C lor({z}) and LOr({z}) linearly

independent, it follows that Z C |Og({z;}), whence Z C |Or({x;}). But this means y =

Y zeCY(2) CCY(Lor({x;})) = CY(Or({x;})) = x;NA(x;). Since y € (x1 +...+x,) NI(x;)
2€Z
was arbitrary, this shows the nontrivial inclusion (x; +...+x,)N9d(x;) C x;NI(x;), and (5.52)

is established.
By an analogous argument, we conclude that

(x1+...+x,)NI(x)) =x;NAX;), foreach je [1,7].

We have x1 + ... + x, = CY(0r({x})) = CY(Or/({x'})) = x| + ... + x/., while (5.51) gives

9(x;) = 9(x}). In consequence, x; N I(x}) = (x] +... +x;) NI(X]) = (X1 +... + %) NI(x;) =
x; N 0(x;), so

(5.53) x; NA(x;) =x;NA(x}), forevery j e [l,r].
As a result,
CY (R ({x}) = C(Or({x1})) + ... + CY(Or({x,})) = (x1 N A(x1)) + ... + (x, N I(x;))
= (1 NO(x))) + ... + (x.NA(x)) = CYOr ({x1})) + ... + CU(Or ({x)})) = C7 (O ({x'})).
Combining the above equality with (5.51) and (5.50), we conclude that
xj — @ + (%) + CY(OR ({x})) = 0(x;) + CY (9% ({x})),

which readily implies that x; —2’; is contained in the lineality subspace of 9(x;)+C" (0% ({x})) =
Cj, which is equal to 9(x;) by (5.51). This shows x; — 2, € 9(x;), which combined with (5.51)
ensures that x; and x;- linearly span the same subspace, and then x; —l’; € 0(x;) further ensures
that z; and z’; lie on the same side of the codimension one subspace d(x;) = 9(x}). ThusX; = Xj,
which combined with (5.53) yields the desired conclusion x; = x7, for all j € [1,7]. O

6. VIRTUAL REAY SYSTEMS

When trying to better understand the geometric properties of infinite subsets Gy C R?, one of
the crucial problems encountered is that small perturbations of linearly dependent sets can result
in linearly independent sets. This allows limits of linearly independent subsets to degenerate into
linearly dependent ones. We aim to better understand G by looking at the limiting behavior
of sequences of terms from Gy. However, for this to be effective, we need to avoid introducing
linear dependencies into the limiting structures that do not exist in the original sequences. This
will be accomplished by a careful development of the following generalization of a Reay system.
It may be helpful to think of a virtual Reay system, defined below, as a convergent family of
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ordinary Reay systems whose limiting structure is an Oriented Reay system. This will be made

more formal later.

Definition. Let Gy C R? be a subset. If R = (X U{v1},...,Xs U{vs}) is an oriented Reay
system in R such that
(V1) everyx € X1U{vi}U...UXU{vs} has an asymptotically filtered sequence {x(i)}3°, of
terms x(i) € Go with limit ix = (uf,...,uy) andtx > 1 such that —iy = —(uy, ..., uf )
is minimally encased by O({x}) and X = RY(d({x})) + Ryu¥,,
then we say that R is a virtual Reay system in (or over) G for the subspace RV(X U...UX;).

Definition. If R is a virtual Reay system in Gy C R% and

(V2) 1y is anchored for every x € X1 U...U X,
then we call R an anchored virtual Reay system. If R is a virtual Reay system in Gy C R? and

(V3) iy, is fully unbounded for every j € [1,s],
then we call R a purely virtual Reay system.

Let x(i) = az(-l)ul +...+ a,gt)ut + z; be the representation of {x(4)}3°, as an asymptotically
filtered sequence with limit (u1,...,u), let m: RY — RY(9({x}))* and 7t : RY — RY(9({x}))
be the orthogonal projections, and let @ = m(u)/||m(ug)|]. Then z; = w] + alw; + y; for some
w) € RUO({x})), d € R and y; € R(x)* = (RV(O({x})) + Ru)*, and oy = oVt (uy) +
agt)Hﬂ(ut)Hﬁt. Consequently, setting bl@ = al(t)Hﬂ(ut)H + a} and w; = w} + agt)ﬂL(ut), we find
that

(6.1) x(i) = (@Muy + ...+ al™Y

2

(*)

w—1 +w;) + b, U + Y

with w; € RUO(E), fusl] € ofaf™") (since Jufll = (=]l € O(lzl) € ofa”) and
al(t) ( )) and w; = 0 when t = 1, with bg) € @(al(t)) and bz(»t) > 0 for all sufficiently
large i (since a, = ||aju|| < ||z € o(agt)) with 7(us;) # 0 by (V1)), and with y; € R(x)*
and |lyi|| € o(agt)) = o(bz(»t)) (since ||yl < ||zl € o(agt))). We will now generally assume, by
discarding the first few terms in {x(i)}$°,, that any representative sequence {x(i)}°; must

(*)

satisfy b, > 0 for all 4 in any virtual Reay system.

As a matter of notation, we let

x(i) = (a»l)ul +...+ agtil)uffl +w;) + bgt)ﬂt and
)

(
K3
D) = @+ a4 w).
Note that {x(*=1)(i)}$2, is an asymptotically filtered sequence of terms %=1 (7) € RY(9({x}))
with limit (uq,...,u—1) and that X(7) is always a representative for the half-space x for any i > 1

(assuming we have discarded terms to attain bgt) > 0foralld). If B, C C XjU{v}U.. UX;U{v}
with B C C and k = (ix)xec is a tuple of indices ix > 1, then we let

%

B(k) = {x(ix): x€ B} and B(k)={X(ix): x € B} for k = (ix)xec.
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In view of Proposition 5.5.1 and (V1), the limit @y uniquely determines the half-space x €
X; U{v;} (assuming all y € X1 U{vi}U...UX;_1 U{v;_1} have already been determined by
their respective limits iy ). It is important to realize that the half-spaces x defined in (V1) depend
only on the tuples iy and not on the representative sequences x (). It is even possible for distinct
half-spaces x, y € X1 U{vi} U...UX;U{vs} to have their representative sequences {x(i)}>°,
and {y(i)};°, being the same, since the same sequence may be considered as an asymptotically
filtered sequence with limit (uy,...,u;) and also one with limit (uq,...,uy) with ¢ < ¢'. There
are then many compatible sequences {x(7)}:2; that can be used for the representative sequence
associated to x. Indeed, any asymptotically filtered sequence of terms from Gy having limit
Ux = (u1,...,us) with 45 minimally encased by 0({x}), and u; a representative for x, will do

®)

once the first few terms with b;” < 0 are removed. Of course, it is important at least one

such asymptotically filtered sequence exist. Besides the existence of an asymptotically filtered

sequence {x(7)}2

©, of terms x(i) € Gp with limit 1y, it is relevant to the properties (V2) and
(V3) whether {x(7)}°, can be chosen to have i@y as a fully unbounded or anchored limit, as a
different choice can change whether iy is considered as a fully unbounded or anchored in R.
We continue with the analogue of Proposition 5.2 for virtual Reay systems, showing we once
again have a well-behaved notion of a quotient virtual Reay system modulo RY(A), for any

ACXiU...UAX,.

Proposition 6.1. Let Go C R? be a subset. Suppose R = (X1 U{v1},...,XsU{vs}) is a virtual
Reay system in Gy. Let A C X U...UX, and let w: R* — RY(A)* be the orthogonal projection.
Then 7(R) = (Xj” U{r(v;)}) jeg Bs @ virtual Reay system in 7(Go) with

W) =m(iy), and  O({m(x)}) = 0({x}",

(

for each x € ;e ;(X; U {v;}) with n(x) # {O} having representative sequence {m(x)(i)}:2, the
sufficiently large index terms in {m(x(i))};2,. Moreover, if R is purely virtual, then so is m(R),
)-

Ur(x) = m(tix), (U

and if R is anchored, then so is m(R

Proof. 1t follows from Proposition 5.2 that 7(R) = (Xj”U{ﬂ(vj)})j ¢ 1s an oriented Reay system
with d({m(x)}) = 0({x})™ a support set for all half-spaces x € J,¢,;(X;U{v;}) with 7(x) # {0}.
Let x € U;c;(X; U {v;}) with m(x) # {0} be arbitrary, let ix = (u1,...,u) and let & =
RY(A). By Proposition 5.5.4 and (V1), the support set 9({x})™ minimally encases —m(@3). By
Proposition 3.3, the sufficiently large index terms in {7 (x(7))}°, are an asymptotically filtered
sequence with limit m(ux). If w(@y) = 7(ux), then this would mean u; € € + R{uq,...,u—1) C
E+RY(9({x})), with inclusion following since d({x}) minimally encases —iy by (V1). However,
since m(x) # {0} is a relative half-space by Proposition 5.2.1, we must have x ¢ &£ 4+ 9(x) =
E + RY(9({x})), contrary to what was just shown in view of u; € x° (since (V1) holds for
R). Therefore we instead conclude that w(uyg) # m(ux), whence 7(@g) = 7(tx)® with the last
coordinate in 7(iiy) equal to T := 7(u¢)/||7(us)|, where 7 : RS — (€ 4+ R{uq, ..., uz_1))" is
the orthogonal projection. Thus (V1) for R and (5.1) give 7(X) = RY(9({x})™) + R u; and
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A(r(x)) N7(x) = 7(d(x) Nx) = CY(J({x})™), which establishes (V1) for 7(R). Since the last
coordinate of 7(tix) equals w = 7(uz)/||7(ut)|| (ensuring ry = ¢ in Proposition 3.3 when applied
to m(tx)), Proposition 3.3.1 ensures that the limit 7(tx) is anchored if and only if @y is anchored,
ensuring that (V2) holds for m(R) when it does for R, and also that (V3) holds for 7(R) when
it does for R, which completes the proof. ]

Let R = (X1 U {v1},...,&; U {vs}) be a virtual Reay system in Gy C R?. Now suppose
R = U{wi},..., V- U{w,}) is another virtual Reay system in Gy with Yy U...UY,_1 C
Ui_ & and Y, € U7 (X; U{v;}). Then each x € Yy U...U Y, has a boundary neighborhood
Or ({x}) when considered as a half-space from R and a boundary neighborhood 0/ ({x}) when
considered as a half-space from R’. Proposition 5.7 ensures both these neighborhoods are equal:
Or({x}) = Or/({x}). Thus the partial order in R’ agrees with that in R and means there is no
need to distinguish whether x lies in R or R’ when dealing with quantities like 9({x}) or |x.

By Proposition 5.5, urbane minimal encasement of a tuple 4@ by a support set from R corre-
sponds to an ascending chain of support sets from R. Our next major goal is to show this chain
can be completed to an entire virtual Reay system, allowing us to use our machinery for virtual
Reay systems when dealing with the support sets associated to urbane minimal encasement by
a support set. We begin with the following lemma. Informally, we consider a fixed virtual Reay
system R together with a “sub-” virtual Reay system R4 and quotient virtual Reay system
Rc, both of R. Lemma 6.2 then shows that, under certain conditions, these two virtual Reay

systems can be combined to create a new sub- virtual Reay System R’ of R.

Lemma 6.2. Let R = (X1 U{vi},..., X U{vs}) and Ra = (A1 U{ar},..., A U{a:}) be
virtual Reay systems in Go C R with A = J'_| A; € Ul_, &, and let 7: R — RY(A)L be the
orthogonal projection with m(R) = (X7 U{n(vi)})ics. Suppose Rc = (w(B1)U{c1},...,n(B,)U
{cr}) is a virtual Reay system in w(Gy), for some By C \J;_, X; for j € [1,r — 1] and B, C
XU X U{v;: i € J} with ty ) = m(x) for each x € By U...UB,, and that each c; for
J € [1,r] is defined by a limit w(t;) with u; the limit of an asymptotically filtered sequence of
terms from Go, 7(u5) = w(ii;)* and —i; encased by AUC; for some C; C B1U...UBj_1 with

m(C;) = 0({c;}). Tfien

R = (A U{ar},...,AsU{as}, BiU{bi},..., B, U{b,})
is virtual Reay system in Go with each b for j € [1,7] defined by the limit u;, n(bj) = cj,

I({b;}) = AUC; and C; C 0({b;}). Moreover, if Ra and R¢ are purely virtual, then so is R/,
and if Ra and R¢ are anchored, then so is R’.

Proof. By Proposition 6.1, 7(R) is a virtual Reay system in w(Gp). Let j € [1,7] be arbitrary.
Since R is an oriented Reay system, we have m(x) # {0} for every x € Bj, and thus also for
every x € C;j. Since R4 is an oriented Reay system, we must have | A = A.
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Since —ﬁ;’

since AUC; C Xy U...U X, it must do so urbanely and be a support set. If C; ¢ C;, then
(CH)™ < CF = 9({c;}) follows in view of Proposition 5.2.3 since m(x) # {0} for all x € C;.
By Proposition 5.5.4, (C)™ minimally encases —m (i}
hypothesis, but then, in view of (C;)™ < 9({c;}), we contradict that d({c;}) minimally encases
—n(i;)® by (V1). Therefore we conclude that C; C C;. Hence, since (C;)* = C; (as C; is a
support set), let A; = C;-\Cj C |A=A. Then C;- = A;UCj CAUBIU...UBj_1 CTX 1 U...UAX;
and (C})" =CT.

By hypothesis, R4 = (41 U {ai},..., As U {as}) is a virtual Reay system. If x € B; for
j € [1,7], then we know (V1) and (OR1) hold for x with the set 9({x}) when we consider x as
part of the virtual Reay system R. Thus, to show this is also the case when we consider x as
part of R’, we just need to know d({x}) C AUB U...UB;_1. Since m(x) € 7(B;), we have
m(x) # {0} and O({x})™ = 0({m(x)}) C w(B1)U...Un(Bj_1), where the first equality follows
from proposition 5.2.2. Thus, in view of the injectivity of = (Proposition 5.2.1) and Proposition
5.1.9, we have 0({x}) C LAUB1U...UBj_1 = AUB; U...UBj_1, as desired. By Proposition
6.1 and hypothesis, we have 7(iix) = tUr(x) (both in 7(R) and R¢). Thus, if Re is anchored,

then 7(iix) = iir(x) is anchored, which is only possible if iy is anchored (cf. Proposition 3.3.1).

is encased by A UC;, there exists C;- = AUC; which minimally encases —ﬁ;’, and

) = —n(u;)°, with the equality holding by

Let wj = (uj1,...,ujt;) for j € [1,7]. The hypothesis 7 (@) = 7(i;)* simply means u;y, ¢

RY(A) + R{uj1, ..., ujr;—1). Thus, since Re is a virtual Reay system with (C})™ = d({c;})
and c; defined by the limit 7(i;), it follows that w1, ..., uj;—1 € RY(A) +RY(C) with u;;; ¢
RY(A) + RY(C}). Consequently, since C; C AU By U...U Bj_1 minimally encases —; with
@; the limit of an asymptotically filtered sequence of terms from Gy, it follows that we can
define a half-space b; by the limit @; and it will satisfy the needed requirements in (V1) and
(OR1) with 9({b;}) = C’. Since c; is defined by the limit 7 (i;) with 7 (@) = —n (i), we have
¢j = 0(cj) + Rym(ujys;) = RY(I({c;})) + Rym(ujy;) and ¢; N d(c;) = CY(9({c;})). Thus, since

O({b;})" = (C;))" =] =7(C;) = 9({c;})
with b; defined by the limit @;, we have 7(b;) N d(n(b;)) = n(b; N d(b;)) = CY(A({b;})") =

CUOes}) = ¢ N dlc;) and m(by) = T(Aby) + Ramluze,) = RU@({b; )™ + Ry m(usy,) =
RY(9({c;})) + Rym(uj¢;) = €;, whence 7(b;) = c;. Moreover, if R¢ is purely virtual, then
(1) will be fully unbounded, implying ; is fully unbounded in view of 7(u}) = —(4;)? and
Proposition 3.3.1. It remains to show (OR2) holds to complete the proof.

For j € [1,7], let mj_1 : RT — (RY(A) + RY(B; U...UB;_1))* be the orthogonal projection.
Then m;_1(B; U{b;}) = mj_17(B; U {b;}) = mj_1(m(B;)) U {mj—1(c;)}. Hence it follows from
the injectivity of = (Proposition 5.2.1) and (OR2) holding for R¢ that (OR2) holds for R'. O

The proof of Proposition 6.3 gives an algorithm by which R’ can be constructed. Also worth
noting, if 4 is fully unbounded and the strict truncation of any limit defining a half-space from
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1B in R is either trivial or fully unbounded, then R’ will be purely virtual, and if every x € | B
has @y anchored (e.g., if BC X U...,UXs with R anchored), then R’ will be anchored.

Proposition 6.3. Let Gog C RY be a subset. Suppose R = (X1 U {vi},..., X U{vy}) is a
virtual Reay system in Go and {x;}2, is an asymptotically filtered sequence of terms xz; € Gy

with limit @ = (uq,...,u;) such that —u is minimally encased urbanely by a support set B C
XpU{vitU...UX;U{vs}. Let

D=Ch<Ci1<...<C_1CTXU...UX, and Ci1=Ci=B

be the support sets and let 1 =r1 < ... <1y <191 =t + 1 be the indices given by Proposition
5.5 for B. Then there exists a virtual Reay system

1 1 2 2 ¢ ¢
R = ("ufvi"} LoDy e oty o @)oot
in Go for the subspace RY(B) such that the following hold for each j € [1,4].

(a) Cg) =C; and Uke[l,sj] C,Ej) =1Ci \1Cj—1, whence IB =Uqepn g Usep s, Céa). In partic-
ular, Cg CXU...UXs_1 for all B and a except possibly when o = £ and B = sy.
(b) Vg) is the relative half-space defined by the limit (u1,...,u,;) taking Vg)(’t) = x; (for
(

all sufficiently large i), with —(u1,...,ur;,,—1) minimally encased by ng) = C; and

8({Vg)}) = Cj—1~
(c) Each V,(f) with k < s; is defined by a strict truncation of a limit associated to some
y € |C; taking V,(f)(i) =y(i) (for all sufficiently large i).

Proof. Since B is a support set, implying B* = B, we have [ B\B = [0(B) C X1U...UXs_1. Thus,
the in particular statement in (a) follows in view of Cf[ =C¢=Band |B =UuepnqUsepsa) e\,

We define a directed graph with vertices X3 U{vi}U...UX; U {vs} as follows. Each vertex
y is defined by an associated limit dy = (uy, ... ,u%’y) such that d({y}) minimally encases —1y,
and thus via Proposition 5.5 there is a uniquely defined associated sequence of support sets
D=cy <y <...<C =0({y}) c Hy} and indices 1 =r{ <...<rj <rj ., =ty +1. We
Ly Cy
=145
and associating to z the minimal index j for which this is true gives a way to

define a directed edge between y and each half-space from Ufy: 1 C’Jy. Moreover, each z € |
lies in some C]y,
group the neighbors of y in way that places all vertices from C} before those from C3 \ €y, which
then come before those from CY \ (C3 UCY), and so forth. Since B is a support set by hypothesis,
each C; for j € [1,/] is also a support set. If we start with the vertices from B and include all
their neighbors, followed by all the neighbors of their neighbors, and continue in this fashion,
we obtain an induced subgraph on |B. We can add a vertex yg to this subgraph and connect
it to all vertices from B to obtain a graph rooted at yq. Set @y, = (u1,...,us), yo(i) = x; for
i > 1, and C;’O = C; for j € [1,/], which minimally encases —(u1,...,u; ;1) by Proposition
5.5.2. We now describe how the sets C,E.j U {v,(j )} can be constructed via a depth-first search
argument rooted at the vertex yg which respects the ordering of neighbors described above.
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Starting at yg, consider a directed path, say with vertex sequence yq,y1,-..,Ya+1, sSuch that
the vertex y; is always chosen from among the minimal available neighbors of y;_1, that is,
y; € C)~'. Moreover, when possible, choose y; € C}’~" with d({y,}) # 0. Choosing vertices
this way ensures that yo41 < Yo < Ya—1 < ... < y1. Suppose some y; were a neighbor of
some y; with ¢ < j —1. Then y; < y;41 € C7° and y; € C)* for some k € [1,4y,]. Since
CY* =€) implies C}* C [CY*, we see this would mean there is some z € C}* with y; < yi+1 < z.
Hence (C}")* # Cy'. However, this contradicts that C}* is a support set. So we instead conclude
that each y; is not in the neighborhood of any y; with ¢« < j — 1. If we consider such a
directed path with non-extendable length, then (in view of our preference for choosing y; with
I({y;}) # 0) we must have 9({z}) = () for every z € C{*. By definition, C{* minimally encases
—uY*, with uJ* a truncation of the limit (uy*,... ,u?’y“a) which defines y,. For a > 0, we have
Ya+1 € C7* < 0({ya}), thus ensuring t,, > 1 (if ty, = 1, then (V1) implies that d({ya}) = 0,
contradicting that ya+1 € CY* < 9({ya})). Hence uJ* is a strict truncation for a > 0. Define
the half-space vgl) = Rywu{® via this truncated limit u{* and set v(l)(i) = yqo(i) for all ¢ > 1.
Note this ensures that (C%l) U {vgl)}) is a virtual Reay system in Gp, where Cg) =Y. If
a = 0, then y, = yo, and we have Cg) =C; and u{® = u1 = u,,. Thus, for / =1 and a =0
(meaning 9({z}) =0 for all z € B =Cy = C; = CY*), the proof is complete. So we can proceed
by induction on ||B| with the base case when ||B| = 1 complete.

Note that the only way Cfl) =Cy* C X U...UX; can fail is when o = 0 and ¢ = 1, which
was the case covered in the base of the induction. Therefore we may assume C%l) CXjU.. . UAX,.
Let £ = RU(CW) and let 7 : RY — £ be the orthogonal projection. In view of Proposition
6.1, 7(R) = (XF U {ﬂ(Vi)})iEJ is a virtual Reay system in 7(Go). By proposition 5.2.6, [B C
XiU...UX;U{v;: je J} with B™ a support set.

Let A C |B be arbitrary. Since BC X3 U...UX;U{v;: j € J} and 9({z}) = 0 for every
z €C)* = Cfl), Propositions 5.1.9 and 5.2.1 ensure that A™ = (A \ Cgl)), while Proposition
5.2.2 implies that |(A™) = (J.A)™. Since B is a support set, it follows that A C |B is a support
set if and only if A* = A. When this is the case, Proposition 5.2.2 implies that (A™)* = A™, and
thus A™ = 7(A\ Cgl)) is also a support set since B™ is a support set with A™ C ({B)" = |B".

By proposition 3.3.1, the sufficiently large index terms in {7 (z;)}°; form an asymptotically
filtered sequence with limit 7(#), and by discarding the first few terms, we can w.l.o.g. assume

{m(x;)}52, is an asymptotically filtered sequence with limit ().

Case 1: a = 0. In this case, £ > 1 and ¢t > 1 (else we fall in the already completed base of the
induction), Cfl) =Cy and uq,...,up—1 € E =RY(C1) (as —(u1,...,Ur,—1) is minimally encased
by Ci by Proposition 5.5). If C; € X3 U... U X, with j > 2, then Proposition 5.1.9 together
with Cj_1 < C; ensures that there is some y € C; with y € RY(C;_;) (else C; C |Cj_1, yielding
the contradiction C; = C; < C;_1), and thus with 7(y) # {0} as well, so that CT_; < CT (by
Proposition 5.2.3). On the other hand, if C; € X3 U...U X, then j = ¢ with C, = B and

Co—1 C X1 U...UXs (as B minimally encases —u urbanely). In this case, C; contains some v;
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with v; ¢ Cp1 C X1 U...UX,. Since v; € [BC X U...UX,U{v;: j € J}, Proposition 5.2.1
implies 7(v;) # 0 , and thus CJ_; < CJ holds in this case as well (in view of Proposition 5.2.3).
Therefore, we find that ) = CT < C§ < ... < CJ. In such case, Proposition 5.5.4 implies that
B™ minimally encases —7 (@) with F™ (7w (%)) = (Up,, ..., Ur,), where F (&) = (Up,,...,Ur,) and
F = (RY(C1),...,RY(Cp)). Moreover, C§ < ... < CJ are the support sets given by Proposition
5.5.1 for (i), and 7y < ... < ry < rgy1 = t+ 1 are the indices given by Proposition 5.5.1,
ensuring that the encasement is urbane as it was for B = Cy. By induction hypothesis (and
Proposition 5.2), there exists a virtual Reay system (found by depth first search)

R = (€T, U{wP}, . en, u{w@, e, u{wi?), L er  u{w D))

in w(Go) for the subspace RY(B™) satisfying (a)—(c), with each C; ; disjoint from C§ ) (so C; =
7(C;,5)), with each w,(j ) with k < sj defined by a strict truncation of the limit associated to
some 7(y) with y € |C; \ C%l), and with each Wg) defined by the limit 7((u1,...,u,;)) with
Fr(r((ut, -y ur;))) = (Ury, - Ur; ), and with C; ; € X1 U...UX, for all i and j except possibly
when 1 :(jfg and j = ¢. We proceed to show we c(?)n apply Lemma 6.2.

For w7 with k < s;, we have the half-space w;’ defined by a strict truncated limit associated

to some 7(y) with y € |C; \C%l). If @y is the limit which defines y, then Proposition 3.3.1 ensures

that 4y has a strict truncation vy, with 7(¥y) the limit defining w(j ), and by choosing such a

truncation of minimal length, we can assume (% )? = 7(7y). Since d({y}) encases —1y, it also
encases the truncation —oy, so there must be some By, ; < d({y}) € |C; which mlnlmally encases
—y, and since By ; = 9({y}) € X1 U ... U X1, it does so urbanely. Thus Proposition 5.5.4
ensures that BJ ; minimally encases —m(05) = —77(17},)4. Since By ; € |Cj, it follows from (a)
holding for R” and Proposition 5.2.2 that By ; & CTaU...U C;r j» in which case B}; ; minimally
encases —7(Uy) = —7(vy)? urbanely in R”. As a result, since the support set 6({w,(€j)}) in

R also minimally encases —7(¥y)? (urbanely) by (V1), it follows from Proposition 5.5.1 that
Bf ;= 8({w(])}) and now we must have B,’;j = 8({W§€J)}) CCTyU...UCE; (with Bf ; disjoint
from Ck]) and thus By ; C C(l) UCi2U...UCy; (with By ; disjoint from Cy ;).

Next consider a half-space wg 7) with Jj € [2,4], which is defined by the limit m((u1,...,u;;))

with 7((u1, ..., ur))® = m((u, -y up—1)) = 7((u1, ..., up;)) (since 75 occurs as the index of
the last coordinate of F™(m((u1,...,ur;))) = (Ury,...,Uy,)). Since B = C; minimally encases
—1i, it also encases the truncation —(u1,...,u;;—1), so there must be some Bs,; < B C |C;

which minimally encases —(u1,...,uy;—1). Indeed, Bs, j = C;_1 € &1 U...U X by Proposition
5.5.2, ensuring the encasement is urbane. Thus Proposition 5.5.4 ensures that ng’j minimally

encases —m((uq, . . u,,«j_l)). Since By, ; € 1Cy, it follows from (a) holding for R” and Proposition
5.2.2 that BY ; € CT,U...UC] ,, in which case B ; minimally encases —m((u1,...,ur;—1))
urbanely. As a result, since the support set 8({wg§)}) also minimally encases —m(u1,. .., ur;—1)

(urbanely) by (V1), it follows from Proposition 5.5.1 that B ; = 8({Wg)}), and now we must
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have B} ; = 8({w§g)}) C ClU...UCE ; (with B ; disjoint from C7 ), and thus By, ; C
C%l) UCi2U...UCs, ; (with By, ; disjoint from Cs; ;). Additionally, Proposition 6.1 ensures that
ﬁw(x) = W(ﬁx) for x € C172 U...u Csz,Z-

The work of the above two paragraphs allows us to invoke Lemma 6.2 with R 4 = (C}l) U{vgl) 1y
and Rc = R”, where vgl) = R u;: here the B; for j € [1,r] are taken to be the Cj, ; with j € [2,/]
and k € [1,s;], the ¢; and C; for j € [1,7] are taken to be the w,(cj) and By ; with j € [2,/] and
k € [1,s;], and the u; for j € [1,7] are taken to be the ¥y for y € C,; when k < s; as well
as the (u1,...,u,;) when k = s;, for j € [2,£] (note By ; minimally encasing —§

C%l) U By,; encases —1y). As a result, we find that

ensures that

R = (P uvi) o u{(v?), L Cup U V), G U VY, G U (VO

is a virtual Reay system in Gp, where each W(V]gj )) = w,g ) with v,(cj ) for k < sj defined by the
limit ¢y (described above) and each vg) defined by the limit (u1,...,u,;). Since (a) held for
R”, it follows by construction that (a) holds for R’. Since both 0({vg§)}) and Cj_; minimally
encase —(u, ..., ur;—1) urbanely (the first from (V1) for R" and the second from Proposition
5.5.2), Proposition 5.5.1 ensures that 8({vg)}) = C;_1, and the remaining parts of (b)—(c) follow
directly by construction, completing the case.

Case 2: « > 0. In this case, y, € [B. To lighten the notation, we use the following abbre-

viations for g € [0, q]: C])-'ﬂ = Cjﬁ, ty, = g, ’LL;’B = uf, by, = lg, ty, = tg, 7’;’5 = rf and
uzfﬁ = ufj, etc., for j € [1,4g]. Since Cﬁl minimally encases the tuple —(uf, . ,ufj_l) (by

Pr]oposition 5.5.2), we have uf, ... ,ufj_l € RU<C]@71> for any 8 € [0,a]. We have C/ < CZ =
0({ys}) < {ys} C Clﬁ_1 for § € [1,a]. Thus C%l) =Cf < Cl <. < CY) =, ensuring
& =RY(CY CRY (Clﬁ ) for 5 € [0,a]. Observe that Cf minimally encases —u’f by Proposition
5.5.2, implying that Cf U {u’f } is a minimal positive basis modulo RU@(Clﬁ )) (see the com-
ments after Lemma 5.4). For 8 € [0,a — 1], we have C{ < 9({ya}) < C& ! < 0({ya_1}) <
.. % 0({yps1}) with yg1 € C?, ensuring that C& C [A(CY) and £ = RY(CY) C RU((CY)).
Thus, since Clﬁ U {uf } is a minimal positive basis modulo R%@(Cf )), we must have uf ¢ &
with (C7)™ # 0. Likewise, for j > 2 and 8 € [0,a], we have & C RY(CY) C RU<C]@71>, while
C'jﬁ U {uéj} is a minimal positive basis modulo RY (Cjﬁ_l U 8(Cf)> (cf. Proposition 5.5 and the
comments after Lemma 5.4). In particular, ufj ¢ E+RY (Cf_1> =RY <Cjﬁ_1>. If Cf contains some
v;, then v; € Cf CIBCXU...UX,U{vj: je€ J} ensures that {0} # 7(v;) € Cjﬂ with
v ¢ Cf_l C X;U...UXs. Otherwise, if every y € CJ@ hasy C £ + ]RU<C]-B_1) = ]RU(CJ@_l), then
Proposition 5.1.9 would imply Cjﬁ = (C}B)* = Cf_l, contradicting that Cjﬁ_1 =< C}-B. In either case,
Proposition 5.2.3 now ensures that (Cﬁl)7r =< (CJB )™. In summary, the above works shows that,

for every j > 1 and 8 € [0, — 1], we have uéj ¢E —HR(uf, .’ ) and (Cjﬁ_l)Tr # (Cjﬁ)”.

? 7”]'—1
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As a result, Proposition 5.5.4 implies that (Cfﬂ)Tr minimally encases —7(ug) urbanely with

F(n(ug)) = @, .. Uw ), for each € [0,a — 1]. Moreover, (Clﬁ)7r <= (CZB)Tr are the

support sets given by Proposition 5.5.1 for 7(ug), and rf <...< rfﬁ < T?BH = tg + 1 are

the indices given by Proposition 5.5.1, ensuring that the encasement is urbane as it was for Cf .
Additionally, since (as remarked at the start of the proof) no element of C{" is in the neighborhood
of any y3 with § < a (as any element of C{* may be taken as y,+1), it follows that each Cf is
disjoint from C{* = C(l) for 8 € [0, — 1], and thus W(Cﬂ) = (CB)7T

The case 3 = 0 above tells us Cj = B™ minimally encases —m (%) urbanely. By induction
hypothesis (and Proposition 5.2), there exists a virtual Reay system (found by depth first search)

R = (€5, u{wi}, . en  ugwDy, e u{w), L en uw D))

in 7(Go) for the subspace RY(B™) satisfying (a)-(c), with each C; ; disjoint from C; ) (so Cf; =
7(Ci;)), with each W,gj ) with k < s; defined by a strict truncation of the limit associated
to some 7(y) with y € [C; \Cg), with each Wg) defined by the limit 7((u1,...,u;)) with
Fr(m((u1,. .. yur;))) = (Ury,... 0r;), and with C;; € &3 U... U & for all 7 and j except
possibly when ¢ = sy and j = ¢. In view of Proposition 5.2.2 and the work above (which
holds for all 8 < «), the path yo,y1,...,¥a remains a path modulo £ with the ordering of
vertices in each neighborhood preserved. If ¢, > 1 (so Cgl) = Cf # C} ), then 0({m(ya)})
remains nonempty, and we can assume we used some continuation of the path yo,y1,...,¥a
when constructing R” via a depth-first search. If ¢, = 1, then d({n(ya)}) = 0, and we may
need to use some other y!, € C*~* with d({n(y’,)}) # 0 (assuming such y’, exists) in place of y,
when constructing R”. Nonetheless, in either case, we can assume we used some continuation of
the path yo,¥1,-.,Ya—1,¥h, where y/, € C{ !, when constructing R” via a depth-first search.

We can apply Lemma 6.2, taking R4 = (Cfl) U {vgl)}) and R¢ = R”, where vgl) =Ryuf, as
can be seen by a near identical argument to that used in Case 1, the only difference being that

()

the filtered limits begin with 7,, instead of %,,, and the c; for j € [1,7] correspond to the w;

for (j,k) € ([1,€) x [1,;]) \ {(1,1)}. Thus

R =M u v conu vy, e U vDY, e u V) e U (vO))

is a virtual Reay system in Gp, where each 7T(V,(€ )) = W](CJ ) with v,(c) for k < s; defined by the

limit 7y (described above) and each vgj) defined by the limit (u1,...,u,;). Recall that vgl)

defined by u}®, which is a strict truncation of 4y, when a > 0 (as remarked at the start of the
proof) with y, € C®1 C |C;. As a result, since (a) held for R”, it follows by construction (and
Proposition 5.2.2) that (a) holds for R', and (b)—(c) follow directly by construction as argued
in Case 1, completing the case and proof. O
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Lemma 6.4. Let i = (u1,...,us) a tuple of s > 0 orthonormal vectors in R?, let t € [0, s] be an
index, let X C R? be a subset which minimally encases —(u1,...,uz), and let 7 : R — R(X)+
be the orthogonal projection.

1. R(X) =C(X U{u,...,u}).

2. If Y C R? is subset such that ©(Y) minimally encases —m (i) with |7(Y)| = |Y|, then

X UY minimally encases —(uy, ..., us).

Proof. 1. Since X minimally encases —(uy,...,u;), Proposition 4.16 implies there is a Reay
system R = (X7 U{up },..., Xp U{u,,}) with X = UleXZ- such that F = (&1,...,&) is
a compatible filter for —(uy,...,u;) having associated indices 1 = ry < ... < 1y, where &; =
R(X;U...UX;) for j € [0,¢]. Since F is a compatible filter, we have u; € & = R(X) for all 4, and
now applying Proposition 4.9.1 to R yields C(X U{up,, ..., up,}) = R(X) = C(XU{u,...,ut}).

2. Since X minimally encases —(uq,...,u), it follows by Propositions 4.16 and 4.9.1 that
X is linearly independent. Since 7(Y') minimally encases —m (i) with |7(Y)| = |V, it likewise
follows that 7(Y) and X UY are both linearly independent.

Let us first show that it suffices to know X U Y simply encases —i to complete the proof.
Assuming this is the case, there will be a subset Z C X UY that minimally encases —i =
—(uq,...,us). We need to show Z = X UY. Since Z encases —(u1,...,us), it also encases the
truncation —(uq,...,u;). Hence, since the elements of Z C X UY are linearly independent and
u; € R(X) for i <t (as X encases —(uq,...,ut)), it follows that ZNX C X encases —(uq, ..., u).
But since X minimally encases —(u1, ..., u;) by hypothesis, this is only possible if ZN X = X,
that is, X C Z. Next, since Z encases —u, and since X U Y is linearly independent with
ker m = R(X), it follows that 7(Z) \ {0} = 7(Z \ X) C 7(Y) encases —m(u) (cf. the equivalent
version of encasement mentioned immediately after its definition and the commentary regarding
equivalent tuples found there). But since 7(Y') minimally encases —m (i) by hypothesis, this
is only possible if 7(Y) = #(Z \ X), in turn implying Z \ X = Y as = is injective on Y by
hypothesis. Combined with X C Z, it follows that Z = X UY, as desired. Thus it remains to
show X UY simply encases —u to complete the proof, as the above argument shows any such
encasement will necessarily be minimal.

If t = s, then 7(@) is the empty tuple, in which case we must have Y = ) (as 7(Y) minimally
encases —m(u)), and now Item 2 is trivial.

If t = s — 1, then X minimally encases —u*

= —(u,...,us—1), while 7(Y) encases —m(u) =
—m(us)/||m(us)||, and thus also —m(us), meaning —7(us) € C(m(Y)) (a fact trivially true if
m(us) = 0). Hence us +a € —C(Y) for some a € kerm = R(X) = C(X U{uq,...,us_1}), with
the final equality by Item 1, implying that (us+ C(uq,...,us—1))N—C(X UY) # 0. Thus, since
X € XUY encases —(uy,...,us—1), it now follows that X UY encases —(uy,...,us), completing
the proof as noted above. So we may assume ¢t < s — 2 and proceed by induction on s — t.

Let Y/ C Y be a subset such that 7(Y’) minimally encases —7m((u1,...,us—1)). Then X UY’

minimally encases —(ug,...,us_1) by induction hypothesis. Letting 7 : R? — R(X UY')* be
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the orthogonal projection, we find that 7(Y") \ {0} = 7(Y \ Y’) is a linearly independent set of
size |Y \ Y'| (since X UY is linearly independent with X UY’ C X UY"). Since m(Y) encases
—m (), it follows that 7(7w(Y)) \ {0} = 7(Y \ Y’) encases —7(n(t)) = —7(@) (cf. the equivalent
version of encasement mentioned immediately after its definition and the commentary regarding
equivalent tuples found there). Thus there must be some subset Z C Y \ Y’ such that 7(2)
minimally encases —7(@). Since 7(Y \'Y’) is a linearly independent set of size |[Y \ Y|, it follows
that 7 is injective on Y\ Y’, and thus also on Z C Y\ Y’. As a result, we can apply the base of
the induction using X UY’, Z and 7 (in place of X, Y and 7, with ¢t = s — 1) to conclude that
XUY'UZ C X UY minimally encases —, implying that X UY encases —, which completes
the proof as shown above. O

We now make precise the idea that the underlying oriented Reay system to a virtual Reay
system is a limit structure. Suppose for each tuple k = (i1,...,i;) € Z' of indices ij > 1 we
have a set X; C R%. Then we write limj_, - X3 = X if X3 € X holds once all i; are sufficiently
large and, for every x € X, there exists some bound N, > 0 such that x € X}, for all tuples k
having all coordinates i; > N, for j € [1,t]. We say that limj_,,c X; = X order uniformly
if (additionally) there is a global constant N > 0 such that, for every integer m > N, there
is a relative constant N,, > N such that, for every tuple k& = (i1,...,4) of indices with all
coordinates i; > N and i, = m for some a € [1,t] and every tuple k' = (41,...,1;) of indices
with i} = 4; for j € [L,#] \ {a} and i;, > Np, we have X; C Xj. (The terms global and
relative are introduced above to later make referencing these constants easier.) When this is the
case, we can find an increasing subsequences of indices N < ¢; < 19 < ... so that, given any
tuples k = (tay,---,ta,) and kK" = (1g,,...,13,) having all coordinates equal except one which
is larger in &/, we have X C Xj. Indeed, we could take 11 = N, 1o = max{Ny, 1 + 1},
L3 = maX{N( Ny)s L2+ 1}, and so forth. However, it is easily derived from this property that, if
k= (tays--sta,) and k' = (1g,,...,1p,) are any pair of tuples with 15, > 14, for all j € [1,¢], then
Xj € Xpr. In such case, the natural partial order on the tuples k = (a4, - - -, ta,) corresponds to
set theoretic inclusion among the sets indexed by k. (In other words, these additional properties
are obtained by passing to appropriate subsequences.) Additionally, if & = (i1,...,4) is any
tuple with i; > N for all j, then there exists a constant IV, such that X; C Xj for any tuple
k'= (i},...,4) with &% > Ny for all j. Indeed, we may simply take Ny = max{N;,...,N;},
and this will then follow from the definition of order uniform limit.

Proposition 6.5. Let Go C R? be a subset and let R = (X U {vi},..., X U {vs}) be a
virtual Reay system in Go. There is a bound N > 0 such that the following hold for all x €
XiU{vi}U...UX U{vs}.

L. Jo({z})(k) minimally encases —iiy for any tuple k = (iz)ze a({x}) With all iz > N.

2. limy_yoo C((1R)(E)) =%, limg_,oo C°((1R)()) = x° and limy_,s (c((pz)(@) ma(x)) -

P

limg_00 C(LO({x})(k)) = O(x) Nx, with all limits holding order uniformly.
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e~

3. Jo({x}) (k) U{xt=V (i)} is a minimal positive basis when t > 1, where iy = (u, . .., uz),
for any tuple k = (iz) ¢ 0(4xy) with all iz > N and any i > N.

Proof. Let x € X1 U{vi}U...UX; U{vs} be arbitrary, let iix = (uq,...,u), let Bx = 0({x})
andlet ) =Cy<C1 <...<Cr=Bxand 1 =r; <... <1y <rpr; =t be the support sets and
indices given by Proposition 5.5 applied to urbane minimal encasement of —iy by Bx = 9({x}).
For y € Bx = 0({x}), let By = 0({y}) and iy = (ui’,...,ufy). Let Bl C Bx be the subset
of all half-spaces y € By with d({y}) # 0. Let k = (iy)yelx be a tuple of sufficiently large
indices iy > Nx (the constant Ny > 0 will be determined during the course of the proof) and
let k = (iy)ye B, be the sub-tuple consisting of all indices iy, with y € |[Bx = |x\ {x}. For
y € Bx, let ky = (iz)ze|5, be the sub-tuple of & consisting of coordinates indexed by |By, and
let l%y = (iz)zely be the sub-tuple of k consisting of coordinates indexed by ly = |By U {y}.
Since each C; is a support set and replacing each half-space in an oriented Reay system with a
representative yields an ordinary Reay system, Propositions 4.9.1 implies that iéj(k’ ) is a basis
for RY(C;) = R(}C; (k")) for any tuple k" indexed by JC; and j € [0,/]. Likewise, ({X)(k) is a
linearly independent set. Since there are only a finite number of x € X} U {vi} U... Xs U {vs},
if we can show Items 1-3 hold for our arbitrary x using some bound Ny, with Ny also being
the global constant required in the definition of order uniform limits, then the proposition will
follow by taking N = maxyx Nx.

We first handle the case when 0({z}) = 0 for all z € X} U{vi} U...U X U{vs}. In
this case, t = 1, Bx = 0 and C(({x)(k)) = x for all tuples k, in which case Items 1-3 hold
trivially with N = 1. In particular, this completes the case s = 1, and thus also the case
dimRY(X; U...UX,) = dimRY(X;) = 1. We proceed by induction on dimRY(X; U... U X).
Since dimRY(X; U... U Xs_1) < dimRY(X; U... U X;), it suffices by induction hypothesis and
the base case to consider x € X; U {v,} with s > 2. If t = 1, then 9({x}) = 0, and Ttems 1-3
hold trivially as before, so we can assume ¢t > 2, and thus also ¢ > 1.

1. We first show Item 1 holds, which we do in two cases based on whether ¢/ > 1 or £ = 1.

Case 1: Suppose that £ > 1. Let & = RY(C,_;) and let 7 : R — &L be the orthogonal
projection. By proposition 6.1, 7(R) is a virtual Reay system with i (x) = 7(ix), 7(tix)" =
m(iy) and O({7(x)}) = 0({x})™ = BE. By proposition 6.3, there exists a virtual Reay system
R = V1 U{wi},..., Vs U{wg}) in Gy for the subspace RY(Bx) = RY(9({x})) such that
Vo = By, [Bx = Uf/zl Vi, 0({wy}) = Cp—1 and wy is defined by the limit (ug,...,u,,).
By the induction hypothesis applied to R/, [Cy_1(k) minimally encases —(u, ... , Up,—1) ONCE
all indices in the tuple k are sufficiently large. By Propositions 5.5.4 and 5.2.2, 0({n(x)}) =
B = CJ minimally encases —m(iuy) = —m(tx)". Thus, by the induction hypothesis applied to
7(R), 7(1Cy(k)) \ {0} minimally encases —7 (@) once all indices in the tuple k are sufficiently

large. Since Cp = Bx = 0({x}) € X; U...U Xs, Propositions 5.1.9 and 5.2.2 ensure that
1CF = (1C)™ = 7({C \ 4Co_1). As noted above, & = RY(C,1) = R(ICy_1(k)) with |Cy(k)
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a set of [{Cy| linearly independent elements, and we have |C;—; C [Cp in view of Cp_q1 < Cy.
Consequently, Lemma 6.4 (applied with X = [Cy_1(K') and Y = ({Cy \ {Cy_1)(K"), where k’
and k" are the appropriate sub-tuples of k indexed by |Cy_1 and [C; \ |Cy_1, respectively, and
with @ = @ and ¢ = ry — 1) implies that | By (k) = |Cy(k) minimally encases —a, as desired.
(Note Nx must be at least the values obtained inductively for R’ and 7(R).)

Case 2: Next suppose that £ = 1. Then By = C; minimally encases —uy with u; € RY(By) for
all ¢ < t. In consequence, since By is a support set, Lemma 5.4 and Proposition 5.1.4 imply

—uy; € CY(Bx)° = > y°. Thus we must have a representation of the form > by = —uy
yEBx yEBx
with each by € y°. Applying Item 2 of the induction hypothesis to each y € By, we have

y° = lim];yéoo Co((iy)(l;:y)), allowing us to assume b, € C°(({¥)(ky))) so long as all indices

from the tuple l%y are sufficiently large. (Note Nx must be at least the value of the constant
Ny, in the definition of by € limg CO((iy)(l%y))), for each y € By, and we do not require
order uniformity.) Consequently, since ly = By U {y} C |Bx, we see that |Byx(k) encases —u;.
If it does not do so minimally, then there must be some proper subset B C By such that B (k)
encases —ui. Let & = RY(9(Bx)) = RY(0%({x})), and let 7 : RY — £+ and 7+ : R — &£ be the

orthogonal projections. By Proposition 5.1 (Items 3 and 5), 7(Bx(k)) is a linearly independent

set of size |Bx| with —7w(u1) € > w(by) € CY(7(Bx(k)))°. Thus Proposition 4.7.4 implies that
yEBx

7(Byx(k)) U {7 (u1)} is a minimal positive basis of size | Bx (k)| + 1, meaning 7(By(k)) minimally
encases —m(u1). Consequently, we must have By C B, as otherwise m(B(k)) \ {0} would be
a proper subset of m(By(k)) which encases —m(u1), contradicting the minimality of w(By(k)).
Therefore, there must be some element from | By \ Bx missing from the proper subset B C |Bx,
which ensures that Bl # () (since By = () implies |Bx = Byx), and thus that £ is nontrivial.

For y € By, we have y(iy) = (af-'y’lu{ + ...+ afyyty_lufy_l + wf;) + bl};ﬂfy with t, > 1,
wy,.up g, wy € RYO({y}) € € and b, [|w) || € o(a) ) (as given in (6.1)). Thus

iy iy, ty—1
(6.2) m(§iy)) = B, (@) # 0,
in view of Proposition 5.1.3, and
(6.3) ™ (¥(iy)) = (azywluﬁ' +... 1+ azyy,ty—lui’y—l + wzyy) + bzyyﬂl(ﬂ?y)

= Y&y + 0l (@)

Note t, > 2 holds precisely for those y € Bl, while (&~ (iy) = 0 for all iy and y € By \ BL.

Since 7(Bx(k)) U{m(u1)} is a minimal positive basis of size | Bx(k)|+ 1, so too is the re-scaled
set {W(ﬂ%’y) 1y € Bx} U{m(u1)}. As a result, there is a unique linear combination

(6.4) Y aym(@)) = —m(u),

ye€Bx
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and this linear combination has o, > 0 for all y € By. Consequently, in view of (6.3), (6.4) and
(6.2), we have

- 1 L
(6.5) Z b;, y(iy) = —7m(u1) + Z ( Y 5(ty=1)(; (iy) + aym (@’y))
yEBx Yy yeBx Zy
Since B(k) encases —uy, there is a positive linear combination of the elements from B(k) equal to
—uq. Moreover, considering this linear combination modulo &, we see (in view of the uniqueness
of the linear combination in (6.4)) that the coefficient of each y € Bx C B must be 3 - Thus, in

Ly
view of (6.5), we find that we have a positive linear combination of the elements from (B\ By)(k)

equal to

(6.6) —zpi=— ) ?Ty&(ty‘l)(iy) =3

yeB iy

where £ = 1t (uy) + 3 aymt(u) ,) € € is a fixed element (independent of iy), i.e.,
yEBx

(6.7) —2r € C((B\ By)(k)).

Applying Item 1 of the induction hypothesis to each y € By, we find that iBy(ky) mini-
mally encases —(uj, ... ,ugy_l) for each y € Bx so long as all coordinates in the tuple ky are
sufficiently large (recall that By = 0({y})). (Note Nx must be at least the value obtained
inductively for each y € Bx C X} U...U Xs_1.) For each y € By, fix one particular tuple

Ky = (tz)seiB, such that |By(ky) minimally encases —(u},... Uy )

For convenience, we
can assume that the coordinate ¢, is the same among all tuples sy that contain a coordinate
indexed by z € |By. By Item 2 of the induction hypothesis applied to each y € By, we have
limpg, 00 C(iBy(k:y)) = J(y) Ny order uniformly. Consequently, so long as we choose the coor-
dinates in the tuples ky sufficiently large, we can be assured that C({ By (ky)) C C(]By(ky)) for
any tuple ky, with all coordinates sufficiently large. (Note each coordinate ¢, in ky, for y € Bx
and z € [By, must be at least the value of the global constant from the order uniform limit
limpg, 00 C(iBy(k:y)) given by the inductive hypothesis applied to y € By, and then Ny must
be at least maxyep, zc|B, Ni,, where N, is the relative constant given in the definition of the
order uniform limit limy, oo C(4By( y)))
Observe that
U 1By = | 1By = 10(Bx) = 1B« \ By,
yeBL yEBx
with the final equality since B = Bx = 9({x}) is a support set. Thus

(6.8) B\ByC | J 1By and £= Y RYBy)= > R(By(ky))

yeBL yEBL yeBL
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(Recall that By = 0({y}) = 0 for y € Bx \ By.) Hence, since £ € £, we may write { = 2133 &y
yeBy

with each & € RY(By) = R(] By (ky)).

Since b} € o(a}, ;), we have af /b — oo, for all y € By and j € [1,ty — 1]. Hence,
in view of (6.3), we see that { y ty_l)(zy) + &y )30 _1 is an asymptotically filtered sequence
of terms from RY(By) = RY(] By ( y)) with limit (u,...,u} _;) (once iy is sufficiently large),
for each y € B.. Consequently, since |By(ky) minimally encases —(u, ... ,uy 1) (as noted

above), it follows from Proposition 4.17 that —Ty(ty D(iy)—& € C°(IBy(ky)) C C°(LBy(ky))

vy
when iy is sufficiently large. (Note this requires Nx to be at least the value resulting from the
application of Proposition 4.17 to the fized set J,By(/ﬂy), for y € By, and thus does not depend
on the infinite possible values for ky, which is a subtle but important point.) Hence (6.6)

yields —z, € 3. C°({By(ky)). As a result, since the elements of Uyes 1By (ky) C 1Cy(k)
yEB *

are linearly independent for any tuple k, it follows that —z; € CO(UyeB; iBy(ky)), implying
that Uy ep, {By(ky) minimally encases —zj,. However, since (B \ Bx)(k) C Uyep, 1By(ky) is a
proper subset (in view of (6.8)), this contradicts (6.7). So we have now established that | By (k)
minimally encases —u; when all coordinates in the tuple k are sufficiently large. Thus, since
u; € RY(By) = R(IBy(k)) = C(IBx(k)U{u1}) for all i < t (the final equality follows by Lemma
6.4.1 while the initial inclusion was remarked at the start of Case 2), it follows that | By (k) must
also minimally encase —(uy,...,us—1), and Item 1 is established for Case 2 as well.

2. We next show that Item 2 holds, for which we will implicitly make use of the fact that
(1%)(k) is always a linearly independent subset (noted at the beginning of the proof).

Since | By (k) encases —(uy,...,u;_1), it follows that uy,...,u—1 € R(|Byx(k)) = RY(By) =
0(x). Thus C((ii)(l%)) is contained in the closed half space J(x) + Riu; = X, and likewise
CO((ii)(lAf)) C x°. Moreover,

(6.9)  C(UR(R) NAx) = CUBx(k) = C( | (U3)(ky) = D C((45)(ky))-
YEBx yEBx
By the induction hypothesis applied to each y € By, it follows that y = limky oo C((iy)(l;:y))

order uniformly. Consequently, since 9(x) Nx = CY(9({x})) = CY(Bx) = Y vy, it now follows
yeBx
in view of (6.9) that

(6.10) lim (c((@z)(/%)) na(x )) = lim C({Bx(k)) = d(x) Nx

k— o0 k—o0

also order uniformly. It remains to show lim; , CO((@N{)(I;‘)) = x° order uniformly, as this
together with (6.10) implies that lim; , C((ifc)(l;:)) = x order uniformly as well, which will
complete the proof. (Note this requires the global constant Ny in the order uniform limits to be
at least the value for the global constant obtained inductively for each y € Bx C X1 U... Xs_1.)
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Let
(1)

x(ix) = (aix uy 4+ ...+ al(»i l)ut 14+ wi,) + b uy = % 1)(zx) + b;, uy

for ix > 1 be as given by (6.1). In particular, w;, € RY(Bx) with b;_, |w;_|| € o(q; (t 1))

Since | By (k) minimally encases —(uy,...,us;_1) so long as all coordinates in k are suffi-
ciently large, we can fix one particular tuple x = (ty)ye|B, such that 1By (x) minimally encases
—(uy,...,us_1). As shown above, limy_,», C({Bx(k)) = d(x)Nx order uniformly. Consequently,
so long as we choose the coordinates in the tuple x sufficiently large, we can be assured that
C(IBx(k)) C C({Bx(k)) for any tuple k with all coordinates sufficiently large. (Note each co-
ordinate ¢, in k, for z € | By, must be at least the value of the global constant from the order
uniform limit limy_,, C(} Bx(k)) obtained above inductively, and then Ny must be at least
maxye |5, IV,,, where N,, is the relative constant given in the definition of the order uniform
limit limg_s C({Bx(k)).)

To show lim; , CO((@E)( )) = x° let z=au; +w € x° = (0(x) + Ryw;)° be an arbitrary
element with o > 0 and w € 9(x) = R({| Bx(k)). Now

(6.11) (or/bi, )% (ix) = atiy + (a/bi )XV (iy) = 2 — w + (/b )XV (i),

and {w — (a/bs, )%V (i x) }io_1 is an asymptotically filtered sequence of terms (once ix is suffi-
ciently large) from 9(x) = R(} By (k)) with limit —(uy,...,u; 1) minimally encased by (}By)(k),
in view of b, € o(a( )) for all j < t. Thus, by Proposition 4.17, w — (a/b; )X~V (iy) €
C°((1By)(k)) C C°(({Byx)(k)) for all sufficiently large iy (independent of k since C°(({Bx)(k))
is a fixed set), which combined with (6.11) ensures that z € C°((|%)(k)) for any tuple k with
all coordinates sufficiently large. This shows that lim; , CO((ifc)(l;:)) = x°. It remains to
show the limit holds order uniformly. For this, it suffices, in view of the order uniform limit in
(6.10), to show that, for each sufficiently large integer m > Ny, there is a bound N,,, such that
Co(Ix(k)) C Co(Ix(k)) whenever k = (iy)i,c)x and k' = (i v )ir ex are tuples of sufficiently large
indices iz, i, > Ny with

ix =m, iy > Np, and iy =1, forze |By.

(Note this reduction requires the global bound Ny be at least the global bound for the order
uniform limit in (6.10).) In particular, we have k = k" as only the entry indexed by x differs
between k and k.

Let z + auy € x° = (9(x) + R44;)° be an arbitrary element, where « > 0 and z € 9(x).
Since @ ¢ 9(x), any linear combination of elements from |%(k) equal to z + ; must have
the coefficient of X(ix) being a/b;,. In consequence, z + oty € C°(I%(k)) is equivalent to
2+ oy — (o) by )X (ix) = 2 — (a/bi, )X~V (ix) € C°(.Bx(k)). This means the elements z 4 at; €
C°(Ix(k)) are those with

(6.12) 2 — (/b )XY (i) € C°(I By (k)),
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and we simply need to know

2 — (a/by )%V (i) € C°(1Bx(k))

also holds for all sufficiently large i’ (independent of k = £’) to show z +au; € C°({x ( k') (since
= i, for all z € [Bx). To achieve this, in view of (6.12) and the fact that C(|Bx(k)) is a
convex cone, it suffices to know

(6.13) 2, = (/i) X (i) = (1/big )%™V () € C(LBx(r) € CLBx (k)
for all sufficiently large i’ (independent of k and z + awu; but dependent on m = ix). However,
each
t-1 ‘
sy = D (0 boc = al) by Yy + (/b )ws, — (1/bg ),
j=1
t=1 =1
= =@ b+ (D (@ /bty + (/b )wm — (1/y )
j=1 j=1

Wltha /b — o0 in view of by € o(a (j)) and j <t and with [[(1/b; )wy || € o( /b ) (recall
that zx = m is fixed). Thus the sequence {zj }7°_, is an asymptotically filtered sequence
of terms from RY(Byx) with limit —(u1,...,uz—1) x(once i% is sufficiently large). As a result,
since |Bx(x) minimally encases —(u1,...,us—1), it follows from Proposition 4.17 that z; €
C(IBx(k)) C C(I{Bx(k)) for all sufficiently large i’ > N, (independent of k and z + o7; but
dependent on ix = m), as desired. This establishes (6.13) and completes the proof. (Note this
final step for Item 2 requires the relative constant N, be at least the value resulting from the
application of Proposition 4.17 to the fized set | By (k)).

3. In view of the main part in Item 1, let & = (¢5)z¢)8, be a fized tuple with all ¢, sufficiently
large that |Bx (k) minimally encases —(uq,...,u;—1). Moreover, choose the ¢, to each be at
least the global constant from the order uniform limits given in Item 2. Then, for any tuple k =

(iz)ze.B, With all i, sufficiently large, we have C°(]Bx(k)) = Z C°(ly(r)) C Z C(ly(k)) =

yEBx y€Bx

C°(IBx(k)) by Item 2 applied to each y € Byx. By proposition 4.17, | By (k) U {1 (iy)}
is a minimal positive basis for all sufficiently large iy, implying —2(¢~1(iy) € C°(}By(k)) C

C°(IBx(k)), and thus ensuring that |Bj(k) U {#(*~(ix)} is a minimal positive basis for all
sufficiently large iy (dependent only on the fized set | Bj(x)), which completes the proof. (Note
each coordinate ¢, for k must be at least the constant Ny needed to obtain the main part of
Item 1 for x as well as the global constant from the order uniform limits limy_,o, C°(Jy(k)) = y°
for y € By, and then Ny must be at least maxyep, ey V., , Wwhere N, is the relative constant
given in the definition of the order uniform limits limy_,,, C°({y(k)) = y° for y € By, as well as

at least the value given by Proposition 4.17 applied to the fixed set | By (k)). O
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For a half-space x from a general virtual Reay system, we only have %(i) as a representative
for x, which is a truncated approximation of the actual element x(i) € Gy. The following
proposition shows that, when Gy is a subset of a lattice, there is no need to truncate when each
y € |x has iy anchored. We remark that the hypothesis in Proposition 6.6 that @, be anchored
for every y € |x holds automatically when R is anchored and x € X3 U...U X.

Proposition 6.6. Let A C R? be a full rank lattice, let Go C A be a subset, and let R =
(XU{v1i}, ..., XsU{vs}) be a virtual Reay system in Go. Suppose x € X;U{v1}U.. . UX;U{vs}
with iy anchored for everyy € |x. Then x(i) = x(i) for all sufficiently large i and Uy is either
trivial or fully unbounded. Moreover, if Wy = (uy,...,u), then x(i) — xE=D(G) = € # 0 is

constant for all sufficiently large i. In particular, if t = 1, x(i) = £ for all sufficiently large i.

Proof. Let tix = (uy,...,u), where t > 1, be the limit associated to x, let Bxy = d({x}) and let
m: R — RY(By)* and 7+ : R — RY(By) be the orthogonal projections. Let

(t—1)

x(i) = ( El)ul +...+q up—1 + w;) + by + y;

be the asymptotically filtered sequence of lattice points x(i) € Gy C A with limit (uq,...,u)
in the form given by (6.1), where w; = w(u¢)/||7(ue)||. In particular, 7(@;) = u; is a positive
multiple of 7 (u), yi € Rx)L, [luill € o(bi), w; € RUD({x})), and b, [lw;]| € o(al™"). We
proceed inductively on s. In particular, since 4y is anchored for every y € [Bx = |0({x}) C |x,
and since By € X1 U...U &1 when x € X}, it follows from the induction hypothesis that
RY(By) = R(}By(k)) = R(} By (k)) is a subspace generated by the lattice points | By (k) C Go C
A (this is trivially true when s = 1, in which case 7 is the identity map and |Bx = @) for any
tuple k£ with all coordinates sufficiently large. Thus, by Proposition 2.1, 7(Go) C 7w(A) is a
subset of the full rank lattice m(A) C RY(By)*. Hence {m(x(i))}22, is a bounded sequence of
lattice points from RY(By )+ (in view of iy being anchored by hypothesis), meaning there are
only a finite number of possibilities for the values of

m(x(i)) = m(x(2)) + 7(yi) = bim(ue) + 7(ys) = by + 7(ys).
Since b; is bounded (as iy is anchored) and ||y;|| € o(b;), it follows that 7(y;) — 0 and

(6.14) lim 7m(x(7)) = (lim b;)u; = &,

1—00 1—00
for some & € RY(By)* (recall that b; € @(agt)) is a convergent sequence by definition of an
asymptotically filtered sequence x(i)). Consequently, since any convergent sequence of lattice
points must eventually stabilize, it follows, for all sufficiently large 4, that

biti; + (yi) = w(x(i)) = € € RY(By)* nw(A).

If £ = 0, then b;|[w|| — ||7(yi)|| < [|7(x(2))| = 0 for all sufficiently large i (by the triangle
inequality), implying 1 = |[a|| < ||7(y;)||/b; for all sufficiently large i. However, ||7(y;)||/b; — 0O
in view of ||y;|| € o(b;), making this impossible. Therefore we conclude that £ # 0, in which case
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(t-1)

7

the limit of b; must be nonzero. Thus, since b; € o(a ) when ¢ > 2, we must have agt_l) being
unbounded for ¢ > 2, meaning iy = (uq,...,u;—1) is either trivial or fully unbounded. Also,
(6.14) now ensures that £ is a positive multiple of @, so £ = [|€|[u; and R(x) = RY(Byx) + RE.
Since & # 0, it follows that the space Ru; = RE is linearly spanned by the lattice point
¢ € (M), in which case Proposition 2.1 ensures 7/(A) is a lattice, where 7/ : R — (RY (B, )+R&)+
is the orthogonal projection. Now 7/(x(7)) = 7'(y;) = v;, with the latter equality in view of
yi € R(x)+ = (RY(By) +R&)L, and we also have 7/(y;) — 0 (since 7(y;) — 0). Hence, since any
convergent sequence of lattice points must stabilize, we conclude y; = 7'(y;) = 7' (x(i)) = 0 for

all sufficiently large 4, in turn implying %(i) = x(i), and all parts of the proposition follow. [

When dealing with a virtual Reay system over a subset of lattice points Gg, we will now
always assume, by removing the first few terms, that the representative sequences {x(i)}>°,
for x € X1 U{vi} U...U X, U {vs} when uy is anchored for all y € |x (in particular, for all
x € XjU...UX; when R is anchored) satisfy the conclusion of Proposition 6.6 for all ¢ > 1. Then,
combining Propositions 6.6 and 6.5, we can remove all ~’s from the statement of Proposition
6.5 for such x. Likewise, if B C A1 U...U X, and R is anchored, then Proposition 6.6 implies
that g is trivial or fully unbounded for every half-space x from |, in which case Proposition
6.3 outputs a virtual Reay system R’ which is anchored, and also purely virtual provided the
limit @ is fully unbounded. Thus we gain important simplifications when restricting to virtual
Reay systems over a subset of lattice points Gy C A.

Our next goal is to provide the analog of Proposition 4.11 for virtual Reay systems (and thus
for oriented Reay systems as well), which will be done with some effort in Proposition 6.10.
However, we first need some lemmas (Lemma 6.9 will be needed in the next section).

Lemma 6.7. Let Go C R? be a subset, where d > 1, let u € R% be a unit vector, and let
R = (X1 U{vi},..., X U{vs}) be a virtual Reay system in Go. Suppose there is some virtual
independent set A C X1 U{vi}U...UXsU{vs} which minimally encases —u. Then, for any
tuple k = (iy)yecya with all iy sufficiently large, VA(k) minimally encases —u and [ A(k) U {u}

1$ a minimal positive basis.

Proof. Since A is a virtual independent set, ifl(kz) is linearly independent for any tuple k. Let
Z1,...,Z¢ € A be the distinct half-spaces in A. Since A minimally encases —u, Lemma 5.4 and
Proposition 5.1.4 imply —u € z{ + ... + zj = CY(A)°. Hence, by Proposition 6.5.2 applied to
each z7, we find that —u € C°(LA(k)) for any tuple k with all 4, sufficiently large, and since
JA(k) is linearly independent, it follows that | A(k) minimally encases —u with JA(k) U {u} a
minimal positive basis, completing the proof. O

Lemma 6.8. Let R = (X1 U {v1},...,Xs U{vs}) be an oriented Reay system in R?, let i =
(u1,...,us) be a tuple of t > 1 orthonormal vectors in R%, let B C X U...U X, be a subset
minimally encasing —i<, let m : RT — RY(B)L be the orthogonal projection, and let ©(R) =
(X U{m(vj)})jes. Suppose D C ;e (AT U{v;}) is a virtual independent set that minimally
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encases —m(@). Then C = (7~ Y(D) U B)* is virtual independent and minimally encases —il
urbanely, C™ =D and n~" (D) CC.

Proof. By Proposition 5.2.1, w(R) is an oriented Reay system. By Proposition 5.2.5, C is a
virtual independent set with 7=1(D) C C, and C™ = D* = D follows by Proposition 5.2.4 and
the fact that D is virtual independent. Since B C |C, it follows that B = B* < C (with the first
equality in view of B minimally encasing —u). If B = C, then D = C™ = B™ = (), whence 7 (@)
must be the empty tuple. In this case, B = C minimally encases —u (cf. Proposition 5.5), with
the encasement urbane since B C A3 U...U X, as desired. Therefore, we may assume B < C.
Thus, since B C X1 U. ..U X minimally encases —u7, since C™ = D is a virtual independent set
which minimally encases —m (@) = —m(us)/||7(us)||, and since C C X3 U...UX, U{v;: j € J}
per definition of C and 7~!(D), it follows from Proposition 5.5.2 that C minimally encases —ii

urbanely, completing the proof. O

Lemma 6.9. Let Gy C R, where d > 1, let R = (X1 U {v1},..., Xs U{vs}) be a purely virtual
Reay system over Gy, let @ = (uy,...,us) be a tuple of orthonormal vectors ui,...,u; € RY,
where t > 1, and let A C X1 U{vi}U...UX;U{vs} be a support set. Suppose A minimally
encases —u and there is some x € A with iy fully unbounded. Then there exists some ty € [1,1]
and A" <X A such that A" minimally encases —(uy, ..., us,) urbanely and has some'y € A" with
Uy fully unbounded.

Proof. If t = 1, then the support set A minimally encases —u; and A does not minimally
encase the empty tuple, while the empty set @ C X} U...U Xy does. Thus A minimally encases
—uy urbanely (as the regularity condition required for urbane encasement holds automatically
for support sets, as remarked after the definition of urbane encasement), and the lemma follow
taking A’ = A, to =t =1 and y = x. Therefore we may assume ¢t > 2 and proceed by induction
ont. Let ¢’ € [0,¢t—1] be the minimal index such that .4 does not minimally encase —(u1, ..., uy)
and let A" < A be such that A" minimally encases —(uq,...,uy). If A/ C X3 U...U X, then
the support set A minimally encases —u urbanely, and the lemma follows taking A" = A, tg =1t
and y = x. Otherwise, ¢ > 1 and there must be some v; € A, and since R is purely virtual,
iy, is fully unbounded. Since A" minimally encases —(u1,...,uy), we must have (A')* = A,
while | A" C | A ensures X; C {v;} € | A" for all j € [1,s] as X; C {v;} € J.A for the support
set A. In consequence, A’ is also a support set. Thus we can apply the induction hypothesis
to A’ to find some A" < A" < A and some ty € [1,#] C [1,¢] such that A” minimally encases
—(u1, ..., ut) urbanely and contains some y € A” with @y, fully unbounded, as desired. O

Proposition 6.10.2(c) ensures that Ay is the lift modulo 9(x) of the unique support set min-
imally encasing —iix modulo 0(x), and A; is simply the pull-back of this same set union x
with it not mattering which half-space x € X; U {v;} is used to perform this construction by
Proposition 6.10.1. Furthermore, the other half-spaces y € A; behave symmetrically in this
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regard, with the exception that we do not have A, and Agy being support sets; instead, they
are simply virtual independent sets, which is only slightly weaker.

Proposition 6.10. Let Gy C R? be a subset, where d > 1, let R = (X; U{vi},..., X U{vs})
be a virtual Reay system in Go. Forx € X1 U{vi}U...UX;U{vy}, let mx : R? — RY(O({x}))*
denote the orthogonal projection and Dx = Supp,_(g)(—mx(tx)). Let j € [1,s].

1. We have
Aj =1 (Dx) U {x} =71, (D) U{z} for every x, z € X; U {v,}.

2. For every x € X; U{v;} and everyy € A;, the following hold.
(a) XjU{Vj} g.Aj - X1U{V1}U...UX]'U{VJ‘} andA;-‘ :.Aj.
(b) Ay == (A4 \ {y} Ud({y})" and Ay = 7y (A; \ {y}) are virtual independent sets
minimally encasing —iy and —my(iy ), respectively, with A; \ {y} C Ay.
(¢) Ax = (7 (Dx) U 8({){}))* and A%* = Dx are support sets.
(@) A; = 75 (AP) Uy} and 75 (AP) = A3\ ().
(e) Aj € XqU.. .UX,U{v; : i € J} and AT is a minimal positive basis of size |A;|, where
7 RT — RY(O(A;))L is the orthogonal projection and m(R) = (XF U {m(vi)})ieJ-
3. If C(Go) = RY, then there exists a finite set Y C Gq such that, for any x € A; and any
tuple k = (iz)zec) A, with all i, sufficiently large, there is a subset Y, CY such that

—~—

(A5 \{z}) (k) UL0(A;)(k) U Y}
minimally encases —tx. Moreover, if (A; \ {z})(k) C RY(A;), then Y; = 0.

Proof. If x € X;U{v;} with tx = (u1,...,u), then O({x}) encases Uy = (u1,...,u—1), ensuring
that mx(tux) = mx(ut)/||mx(us)||, both in view of (V1). Thus (V1) further ensures that mx(tux)
is a unit vector contained in the subspace RY(X[™ U ... U X[™), in which case Lemma 5.4
e i<i (X U {mx(vs)}), where
Tx(R) = (X U {mx(vi)})ies, is the virtual Reay system given by Proposition 6.1. As a result,
T H(Dx)U{x}, Ay C XU{vi}U...UX;U{v;} for every x € X;U{v;} and y € A;. It is now clear

X

(and the comments after its statement) imply that Dx C |

that all sets and half-spaces occurring in the proposition are found in X3 U{vi}U...UX;U{v;},
so we may w.l.o.g. assume j = s, freeing the variable j for other use later.

1. and 2. Let x € Xs U {vs} be arbitrary and let ux = (u1,...,us). By (V1), we know
that the support set d({x}) C &1 U...U Xs_1 minimally encases —tgy = —(u1,...,u—1). By
proposition 6.1, mx(R) = (™ U {Wx(vi)})z‘eJx
Note mx(u;) = 0 for i < t as 9({x}) encases Uy, but mx(u;) # 0 and

is a virtual Reay system with i, (x) = mx(iix).

Tx (%) = Ry (ue)

in view of (V1). By definition, Dy is the unique support set minimally encasing —mx(u¢), and

7x1(Dx) is a support set by Proposition 5.2.5. In view of mx(x) = Ry mx(u;), we cannot have
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7x(x) € Dy (by definition of Dy), whence x ¢ 7! (Dy). Let
(6.15) Ax = (TF;I(DX) U 8({x}))*
Thus Proposition 5.2.5 and Proposition 5.2.4 imply that Ay is a support set with
(6.16) AT =D, and 7 (Dyx) C Ax.

By Lemma 6.8 (applied to B = 0({x}) and @ = iix), Ax minimally encases —uix urbanely.
Let w1 : R? — RY(X; U... U Xs_l)L be the orthogonal projection. Note that kermy <
ker ms_1. Since —mx(ut) € CY(Dx) (by definition of Dx) and ker mx C ker ms_1, it follows that

(6.17) —ms—1(ug) € CY(ms—1(Dx)) = C(ms—1(Dx) N (ms—1(Xs) U {ms_1(vs)}))-

By (OR2), ms—1(Xs) U {ms—1(vs)} is a minimal positive basis of size |Xs| + 1 which contains (a
positive multiple of) 7s_1(u) with Ryms—1(ut) = ms—1(x) # {0} (recall that Ry (ur) = mx(%)).
Thus, since mx(x) ¢ Dx, we conclude from (6.16) and (6.17) that

(6.18) (X U{ve}) \ {x} € 7' (Dx) € Ax.

Now fix x € X5 U {v,} and let
As = (A \ 9({x})) U {x} = m ' (Dx) U {x},

where the second equality follows from (6.15), (6.16) and the fact that all half-spaces from

7 1 (Dx) are nonzero modulo ker mx = RY(9({x})). In view of (6.18), we see that

(6.19) X, U{v,} C A,

Since A% = Ay (as Ax is a support set) and there is no half-space z € A, with x < z (as this
would require z € X; U {v;} for some j > s+ 1) nor any half-space z € Ax \ ({x}) = m*(Dx)
(the equality follows from (6.15) and (6.16)) with z < x (as this would imply 7x(z) = 0, contrary
to the definition of m!(Dx)), we conclude that A* = A,. Thus 2(a) holds. By definition and
(6.18), A, \ {x} C Ax. Also,

(As \ {x} UI({x})" = (Ax U I({x}))" = Ax = Ax,

where the second equality follows in view of 9({x}) C (7 (Dx) UO({x})) = L Ax. Let y € As
be arbitrary, let

Ay = (As\{y}Uo({y})",

and let @y = (u},...,u}). Note the case y = x agrees with the previous definition for Ay as
*

just shown. Since y € A, = A

with the union disjoint. Let m(R) = (X7 U {n(vi)})ics, where 7 : R? — RY(9(A;))" is the
orthogonal projection.

, the definition of Ay implies
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Claim A. A, C X U...UX;U{v,: je J} with n(y) # {0} for all y € A,.

Proof. Consider an arbitrary index j € [1,s]\J, so AT = (). Then, since 9(As) C X1 U...UXs_1,
it follows from (OR2) that j < s, and it follows from Proposition 5.1.9 that X; C |0(As) C . Ax,
with the latter inclusion in view of (6.20) (using y = x) and A% = A,. Thus, since Ay is a
support set, we must have v; ¢ | Ax. Since j < s and x € X, U {v,}, we also have v; # x, in
which case v; ¢ | Ax U {x} = | A, with the equality in view of (6.20) (used in the case y = x),
which shows that 4, C X3 U...UX;U{v;: jeJ}

Next suppose that 7(y) = {0} for some y € A,. In consequence, if y € X; U...U Xj,
then Proposition 5.1.9 implies that y € [O(A;), implying that y < z with z, y € A,, which
contradicts that A% = A,. Therefore we must instead have y = v; € A, for some j € [1, 5],
which as just shown implies j € J. However Proposition 5.2.1 implies that m(v;) # {0} for all
j € J, contrary to assumption, which completes the claim. ]

From Claim A and Proposition 5.2.1, we conclude that my is injective on Ag with my(As) =
AgY for all y € A, (since ker my C kerm). Since Af = Ay and y € A, ensuring that JO({y}) is

disjoint from Ay, we have

(6.21) A \{y} € Ay = (A N\ {ytUo({y}))" € A \{y}Ud({y}).
Thus
(6.22) Ay = (AN {yD™ =y (A N\ {y})  and  m ' (AF) = A\ {y},

with the second and third equalities in view of Claim A and the injectivity of 7, on A, estab-
lishing 2(d). Consequently, (6.22), Proposition 5.2.2 and ker my, = RY(9({y})) imply

(6.23) O(Ay") = O((As \ {y ™) = 0(As \ {y )™ = 0(A)™.

In view of Claim A and Proposition 5.2.1, we see that 7 is injective on Ay with AT = 7(Ajy).
Thus, since kermx C kerm, (6.22) (applied with y = x) yields w(AZx) = 7mmx(As \ {z}) =
m(As \ {z}). Since AZ* = D is a support set that minimally encases —mx(u¢), Proposition
5.1 (Items 3 and 5) applied to AZ%*, combined with (6.23) (used with y = x) and Lemma 5.4,
ensures that

m(AY) = m(As \ {z})
is a linearly independent set that minimally encases —mx(ut) = —m(uy) and Rym(ug) = w(x) #
{0}. Consequently, AT = w(As) = (A \{z}) U{n(z)} = n(AZ*)U{m(z)} is a minimal positive
basis of size |A;|, showing 2(e) holds.

Since y ¢ |.Ay, two applications of (6.20) (once taking y = y and once taking y = x) gives
1Ay = A\ {y} = (lAx U {z}) \ {y}. Since Ay is a support set, and thus also a virtual
independent set, | Ay is linearly independent. Thus, if | A, were not linearly independent, we
could write the representative x for x as a linear combination of the elements from | A\ {z,y},
which when considered modulo RY(}9(A;)) would contradict that m(As) is a minimal positive
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basis of size |As| with x, y € As. Therefore | Ay is linearly independent, which combined with
Aj, = Ay implies that Ay is a virtual independent set. Thus, in view of Claim A, Proposition
5.2.6 and 0({y}) C (A \{y}Ud({y}))* = J Ay, it follows that Ay” is also a virtual independent
set.

Let us show that Ay” = my (A, \ {y}) (the equality follow from (6.22)) minimally encases
—7y(Uy) = —my(uy)/||my(u},)|. Note Rymy(uy,) = my(y) by (V1). As just seen, AT = m(As)
is a minimal positive basis of size |As| with 7 is injective on A;. Thus 7 is also injective on
Ty (As \ {y}) = Ay (as nmy = ) and

(6.24) —m(uy) € C(m(As \ {y})) = C(m(A7)).

In view (6.24) and (6.23), we find that —my(u},) + a € C°(Ay”) for some a € RY(9(A,)™) =
RY(O(Ay)), which implies —my(u},) € C°(Ay*) by Proposition 5.1.4. Thus the virtual inde-
pendent set Ay’ minimally encases —my(u),) = —my(dy) by Lemma 5.4, while ({y}) min-
imally encases —iiy by (V1). As a result, Lemma 6.8, Claim A and (6.22) now imply that
(my AP Uy })* = (As\{y}UO({y}))* = Ay minimally encases —iiy. Consequently, since
we have already shown that Ay and Ay are virtual independent sets, 2(b) now follows in view
of (6.21).
Let z € X; U {v,} be arbitrary. By definition of A, and A, we have

(6.25) Ay = (A\ {21 Ua(z1)" = (' (De) U 1) \ {2} U O({2)))

Since Dy is a support set, Proposition 5.2.5 implies that (m!(Dx) U d({x}))* is a support set.
We have already seen that Ay is a support set. If z # x, then z € 7 '(Dx) by (6.18), whence
(6.25) implies |A; C L(mx (Dx) U d({x}))* U {x}. Consequently, since (m3!(Dx) U d({x}))*
is a support set and x € X5 U {vs}, the only way A, = A} can fail to be a support set is if
XsU{vs} C | A;. However this contradicts that z € X;U{vs} but z ¢ | A, = [ (As\{z}Ud({z}))
(as (6.20) using is a disjoint union, using y = z). In summary, we now conclude that A, is a

*

support set for every z € X5 U {vs}, in which case Proposition 5.2.6 implies that A= is also a
support set. By the established Item 2(b), the support set AZ# minimally encases —m, (i), and
must then equal D, = Supp,, r)(—mz(z)), so

(6.26) Az =D, forze X, U{vs}.

Since (6.22) and (6.26) imply that A, = (A \ {z} U9({z}))" = (m;1(Az*) UO({z}))" =
(m;1(D,) Ud({z}))" for z € Xs U {v,}, all parts of 2(c) are now established, completing Item 2.
Additionally, Ttem 2(a), (6.22) (applied with y = z) and (6.26) imply As = 7, 1 (AZ2) U {z} =
7,1 (D,) U{z} for z € X, U {vs}, establishing Ttem 1.

z

3. Let x € A; be arbitrary and let k = (iz)ze4, be an arbitrary tuple of indices with all
i, sufficiently large (as will be determined during the course of the proof). We maintain the
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general notation used in Items 1 and 2 and let
By = O({x}).
By Proposition 5.1.1, we have
RY(A;) = R(LA,(K))  and  RY(By) = R(|Bx(k))
for any tuple k. Let
w: R4 = RY(A)
be the orthogonal projection. Since C(Gy) = R?, we also have C(w(Gp)) = RY(A,)*. Thus, by
Proposition 4.8, we can find a finite subset Y = Y; U...UY; C Gy such that (w(Y1),...,@w(Y))
is a Reay system for R¥(A,)" with @ injective on Y. We will show Item 3 holds for an arbitrary
such Y.

In view of Proposition 6.5.1, once all 7, are sufficiently large, we can assume iBX(k‘) minimally
encases —iy. In view of Item 2(b)(e), Proposition 5.2.1 and Proposition 5.1.9, it follows that
the half-spaces from |.Ax mapped to {0} by 7x are precisely those in |Bx. Consequently, in view
of Lemma 6.4.2 (applied with X = | By (k) and Y = (A4, \ {z})(k) U (LO(Ay) \in) (k) UYy), in
order to complete the proof, it suffices to show

P

Tx(As \ {2}) (k) U mx (L@(AS) \ in) (k) U mx (V)

minimally encases —mx(u¢) with 7 injective on (A, \ {z})(k) U (10(As) \in) (k) UYy, for some
Yir CY (as well as the additional moreover statement). We begin with the injectivity of 7.

P

Claim B. 7y is injective on (A \ {z})(k)U (JO(As) \iéx) (k)UY for any tuple k = (iz)5c)4,\{x}
with all ¢, sufficiently large.

Proof. Ttem 2(b) implies that
(6.27) T = (Ao {x))

minimally encases —my(u;) with AT* a virtual independent set. Hence, by Lemma 6.7 (applied
to AZx) and Proposition 5.2.2, |AZx(k) = ([ Ax)™ (k) minimally encases —my(u;) (once all 4,
are sufficiently large). In view of Item 2(e), Proposition 5.1.9 and Proposition 5.2.1, it follows
that (1Ax)™ (k) = mx($Ax \ 1 Bx) (k) with mx injective on JAx \ IBx and (JAx \ 1 Bx)(k). As a
result, 7rx(¢/~lx \ if?x)(k) minimally encases —7x(u;) and it follows that

T (L Ax \ 1Bx) (k) U {mx(u;)}  is a minimal positive basis of size || Ax \ {Bx| + 1

for the fixed (independent of k) subspace RY(ATx U {mx(u¢)}) (by Proposition 5.1.1). Recall
that ATx = mx(As \ {x}) and Rymg(x) = Rymx(ug). As a result,

RE(AR U {m(ur) }) = R (mx(As)).-
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Thus, since ker mx < ker w, Proposition 4.8 implies that, for all & with every i, sufficiently large,

Ry = (WX(@&X \in)(k) U{mx(ue) by mx (Y1), ., mx(Y2))

is an ordinary Reay system for RY(By)*. In view of ker my < ker @, 7y must be injective on Y’

as w is injective on Y. Thus, since Ry is a Reay system, mx is injective on

A\ B (R) UY = (A \ {#}) (k) U (10(A,) \ 1 Bx) (k) UY

(as it is injective on each component set in Ry, as already noted). We still must show that 7y is
injective on (As \ {z})(k)U (Lﬁ/(;l_s/) \LBX)(k) UY for k with all i, sufficiently large.

Observe by Item 2(b) that RY(9(As)) = RY(Bx U d(As \ {x})) = RY(Bx U d(Ax)). Thus
7 RY = RY(O(Ag))E = RY(Byx U J(Ax))* is the orthogonal projection with 7mx = 7 (as
ker mx < 7). Moreover, 0(Ax)™ = 0(AZ*) C AR = (JAx)™ = mx(JAx \ {Bx) in view of Item
2(b)(e), Proposition 5.2.2 and Proposition 5.1.9. As a result, since an ordinary Reay system may
be considered as an oriented Reay system (for which all half-spaces have trivial boundary) by
replacing each element with the ray it defines, Propositions 5.2.1 and 5.1.1 ensure that m(Ry) is
a Reay system for RY(9(As))*. Now ATx is a virtual independent set which minimally encases
—mx(u¢) (by Item 2(b)). Thus Lemma 5.4.1 ensures that —mx(u;) can be written as a sum of
representatives from all the half-spaces in AZx. Since w(A%*) = 7w(A; \ {x}) by (6.27), applying
7 to this sum shows that —m(u;) = —7mx(ug) is a sum of representatives of all the half-spaces
from 7w(A%*) = 7(As \ {x}), with these representatives being linearly independent in view of
Item 2(e). In particular, since each half-space from 7(As) has trivial boundary, it follows that
m(AD) = w(As\ {x}) is a virtual independent set in 7(Ry) (identifying this set of 1-dimensional
rays with the corresponding set of representatives in 7(Ry)), and now Lemma 5.4.2 applied to
the virtual independent set m(A; \ {x}) shows that 7(A%*) = 7(As \ {x}) minimally encases
—m(uy). Note 7 is injective on A \ {x} in view of Item 2(e). However, by definition of m, we
have Ry 7(§(iy)) = m(y) for all y € A\ {x}. Thus m(Ag \ {#})(k) U {m(us)} is a minimal
positive basis of size |A,|, and 7(Ry) = (7(As \ {Z})(k) U {m(u)}, 7(Y1),...,7(Ys)) is a Reay
system with 7 injective on Y in view of kerm < kerw. For each y € A, \ {x}, we have
m(y(iy))/||m(y(iy))|| = vy, where vy = w(y(iy))/||7(F(iy))| is the constant unit vector pointing
in the direction given by the 1-dimensional ray 7(y) (in view of Ry7(y(iy)) = 7(y)). Let U} be
the associated complete simplicial fan with V (07) = (A5 \ {#})(k) U {7 (w)} Un(Y). Note BT
does not depend on k apart from the choice of vertices used to represent the one-dimensional
rays from U}, (since Ry7(y(iy)) = m(y)). Then, by Proposition 4.13.4, for any tuple k with all
i, sufficiently large, there is a simplicial isomorphism between U7 and the simplicial fan (0 )"
with vertices m(As \ {z}) (k) U{m(us)} Um(Y). In particular, |7(As \{z})(k) U{m(u) } Un(Y)| =
Im(As \ {Z}) (k) U {m(us)} Un(Y)| = | As| + |Y], which shows that 7, and thus also 7, (in view
of ker mx < ker 7), is injective on

(As\ {z})(k) VY,
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mapping all such elements to distinct non-zero elements. Thus, since all half-spaces from |0(.A;)
are mapped to zero by 7, it follows that

(A \ {2}) (£) N (JO(A) \ LB (k) = 0.

Since 7y is injective on (Ag \ {Z})(k) U (L&(AS) \ 4 Bx) (k) UY, it is, in particular, injective on
(1O(As) \in) (k) UY. Combining the last three conclusions, it follows that 7x is injective on
(A5 \ {z})(k) U (10(As) \ 1 Bx) (k) UY, completing the claim. O

In view of claim B, it remains to show mx(As\{z})(k)Unx (¢8 )\ Bx ) (k) Umx(Y%) minimally
encases —mx(u¢) for some Yy, C Y (as noted earlier), as well as the additional moreover statement.
By Proposition 6.1, mx(R) is a virtual Reay system.

Claim C. 7x(A;) is the set given by Proposition 6.10.1 for X7 U {mx(vs)}. In particular,
_A;Zx = wa(x).

Proof. Lety € Xs and By = 9({y}). Let mxy : RY — RY(BxUBy )+ be the orthogonal projection.
Now Ay’ = Dy = SUppr, (r)(—my(ty)) is the unique support set minimally encasing —my (dy)
by Item 2(c), and we have

(6.28) IBY = (1B)™ CLO(A)™ = (10(A:))™ C (LAy)™ = LAY

Txy _

in view of Item 2(b)(e) and Proposition 5.2.2, in which case Proposition 5.2.6 ensures that Ay
(AyY)™ is a support set. Since —my(iy) consists of a single element, its minimal encasement
by the support set Ay” is urbane. Thus Proposition 5.5.4 and (6.28) ensure that the support
set Ay = (Ay”)™ minimally encases —mxy (iy), meaning Supp, () (—Txy (Uy)) = AP

view of Item 2(b), we have Ay = my(As \ {y}), while Item 2(e) ensures that 7, and thus also
Txy, is injective on A \ {y} mapping no half-space to 0, whence 7} (Ay™) = A, \ {y}, which
implies that (As \ {y})™ is the pull-back of Supp,, (r)(—7xy(dy)) = Ay to mx(R). Thus, in
view of Item 1, we find that (As \ {y})™ U {mx(y)} is the set given by Proposition 6.10.1 for
AT U{mx(vs)}- Since mx(As) = mu(As \{y HU{mx(y)} = (As\{y})™U{mx(y)} by Item 2(e), the
main part of the claim is complete. To establish the in particular statement, note the main part
together with Item 2(e) and Proposition 5.2.2 yields A, ) = (mx(As) \{mx (%) JUO({mx(x)})) =

(A {xh)™ Uo({x})™)" = (((As \ {x}) UO({x}))")™ = AF=. O

If we knew Item 3 held for any x € A, whenever By = (J, that is, when 7y : R — R% is the
identity map, t = 1 and Ax = A\ {x}, then applying this case to mx(x) € mx(As) in the virtual
Reay system 7x(R) would yield (in view of Claim C) that

T (A \ {2}) () U JO(ma(A)) (k) U e (Vi)

minimally encases —myx(ut) = —iir(x) (by Proposition 6.1) for some Yj, C Y, whenever all i, are
sufficiently large. Moreover, if (As \ {z})(k) C RY(A), then mx(As \ {z})(k) C RY(mx(As)),
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and Item 3 would further give Wx(Yk) = (), forcing Vi, = (Z) However, Item 2(e), Proposition
5.2.2 and Proposition 5.1.9 imply i@(ﬂx( s)) (k) = 7rx(¢8( ) \ 1Bx)(k), and thus we obtain
the needed conclusion that mx(As \ {z})(k) U 7rx(¢8( ) \ 4Bx) (k) U my(Y3) minimally encases
—mx(ut), which would complete the proof as already remarked. Thus it suffices to handle this
case, so we now assume that d({x}) = Bx = 0, so that my : R — R? is the identity map, t = 1,

(6.29) Ax = A\ {x} and 0(Ax) = 0(Ay).
This will simplify notation. In particular, we now have
(6.30) Ri = (LA (k) U{ut}, Y1, ..., Y0),

which is an ordinary Reay system for R?, for any tuple & with all i, sufficiently large (as argued
in Claim B). Note that

(6.31) Suppg, (—u1) = JAx (k).
We also have —u; € CY(Ax)° (cf. Lemma 5.4) as the virtual independent set Ax = A, \ {x} =

A% minimally encases —u; = —mx(ut).

Now let & = (t3)ze4, be a fized tuple with all ¢, sufficiently large that all statements derived
above (for the arbitrary tuple k& with all i, sufficiently large) are applicable for x and such
that all coordinates ¢, are also greater than the global constant for the order uniform limit
limg_,o C((4¥)(k)) = y given by Proposition 6.5.2 for each y € Ax. In view of Proposition 6.5.2
and the definition of order uniform limits, by increasing how large each i, must be (relative to
k), we find that

(6.32) C((Iy)(k)) € C((ly)(k))

for each y € Ax and any tuple k with all i, sufficiently large.
Let y € Ax be arbitrary and let 7, € E}J; := RY(0({y}))* be the unit vector such that
y =& + Ry 0y. By (V1) and (6.1), we know that

y(iy) = —xzy + ozlyyﬂy + ezyy and  y(iy) = —xzyy + 042-' Ty
for some :L“;yy cRY(0({y})) = &y, 042; > (0 and e?’y € R{y)t = (& + Roy)t, with
(6.33) ay € 0(||$iyy\|) if o({y}) #0  and [ || € o(a).
In particular,
y(uy) = _xy + ay, v yVy = —Xy T ayUy,

where xy = x%'y €&y and ay = a%'y > 0, is a fixed, nonzero vector.

In view of (6.32), there is a positive linear combination of the elements from |y (k) equal to
V(ty) = —xy + ay0y € C((1¥)(k)) € C(({y)(k)) (the element inclusion holds as y(iy) € ly(k)).
Since y(iy) € ly(k) is the only representative for a half-space not contained in &y, the coefficient

of y(iy) in this linear combination must be ay / agy > 0. Replacing y(iy) with y(iy) in this linear
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combination, we find that

(6.34) 2 =3(y) + (ay/a]))e], iy

= Xy tayUy + (ay/ag;)ey € Riy(iy) + C(im)(k))

Since HezyyH € o(oﬁ;) (by (6.33)) with ay > 0, we have ||(ay/a2;)eg;|| — 0, meaning ||(ay/ag;)6$;|| €

o([[¥(ey)ll) = 0(1)Z (as ¥(ty) # 0). In consequence

{Z?; z‘o;:l ={y(y) + (ay/agly)fg’y}io;}:l
is a radially convergent sequence of terms zl-); € Ryy(iy)+C <¢(§(T}7}) (k:)) with limit y (¢y) /||y (ty)]|-
Moreover, if (A4s \ {z})(k) € RY(A,), then y(iy) € RY(A,), whence 62; € RY(Ay) and zf; €
RY(As).

Let § be the complete simplicial fan associated to the Reay system R, with vertex set V(§) =
{¥(y): y € Ax}U{y(ty) : ¥ € LO(Ax)}UY U{u1}. Since each {z%yy }ov—1 is aradially convergent
sequence with limit y(¢y)/||¥(¢y)||, Proposition 4.13.4 implies that, for any tuple k& with all i,
sufficiently large, the map ¢ : § — §*), which replaces each vertex ¥(ty) for y € Ax with the
slightly perturbed vertex zi’; (and leaves all other vertices fixed), is a simplicial isomorphism of §
with §*), where %) denotes the resulting complete simplicial fan. Moreover, further assume all
coordinates 7, are sufficiently large that Proposition 4.13.6 can be applied to F*) with z = —uy
(possible as the sequences {z;yy };’;:1 are radially convergent). Then, by proposition 4.13.6 and

(6.31), we have

(6.35) {z0 : ye A U{y(iy) : y € 10(A0)} = pr (LAx(K)) C Suppgu (—ur)

for any tuple k with all ¢, sufficiently large. Consequently,

Suppg (—u1) = {2} + y € A} U{¥(iy) : y € L0(Ax)} U Y,

for some subset Yy C Y (note w; can never be in the support set Supp(—u) in view of the
definition of Supp). Since § is a complete simplicial fan associated to the Reay system R,,
any support set for § cannot contain all elements from Yj, for any j € [1,4]. Thus, since the
simplicial isomorphism ¢}, gives a correspondence between support sets in § and support sets in
F*) . we have

(6.36) Y, £V, forall je[1,4].

If (A \ {z})(k) C RY(A;), then we can perform all the above using the complete simplicial
fan § with V(F') = {y(ty) : ¥ € A} U{y(ty) : ¥ € JO(Ax)} U {u1} in place of F (since all
z;yy € RY(Ay) in this case) and thereby conclude that Yy, = 0. Now by definition of Suppg) (—u1),
we have

P

—uy € C° ({zb; y € Ax}) + C°(10(Ax) (k) + C°(Yy)

7
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with Suppg ) (—u1) linearly independent. Hence, in view of (6.34) and the definition of the zg;,
we find that
—uy € C°(Ax(k) ULO(Ax) (k) U Yy)

will follow once we know Ay (k) U JO(Ax)(k) U Yy is linearly independent, which will then, in
turn, also ensure that Ax(k) U L0(Ax)(k) UYr = (As \ {z})(k) U JO(As)(k) U Yy (cf. (6.29))
minimally encases —u; = mx(@). Thus, to complete the proof, it remains to show the following

claim.

—_—

Claim D. Ax(k) U ]O(Ax)(k) UY} is linearly independent for k£ with all i, sufficiently large.

Proof. The proof is a variation on the argument used to establish the injectivity of mx in Claim
B. Since [0(Ax)(k)UY} is a subset of the linearly independent set Suppg ) (—u1), it follows that

(6.37) iﬁ/(\/Ax)(k‘) UYj is linearly independent.

Since A, = A, \ {x} with 9({x}) = 0, we have RY(J(A,)) = RY(9(Ax)). Thus 7 : R* —
RY(9(Ax))* is the orthogonal projection. Since an ordinary Reay system may be considered
as an oriented Reay system (for which all half-spaces have trivial boundary) by replacing each
element with the ray it defines, Proposition 5.2.1 ensures that 7(Ry) is a Reay system. Since
Ax = Ag \ {x} = AZx is a virtual independent set which minimally encases —uj; = —myx(uy),
it follows from Lemma 5.4 and Proposition 5.1.3 that 7(.Ax) minimally encases —m(u;) with 7
injective on Ay. However, by definition of 7, we have Ry 7 (y(iy)) = n(y) for all y € Ax. Thus
7(Ax(k)) U{r(u)} is a minimal positive basis of size |Ax|+ 1 for the subspace R (m(Ax(k)) U
m(u1)) = RY(r(Ax) Um(x)) = RY(r(As)), and

T(Ry,) = (m(Ax(k)) U {m(ug)}, (V1) ..., w(Ye))

is a Reay system with 7 injective on Ay (k) UY U {u;} (since ker 7 < ker w).

For cach y € Ag, we have n(y(iy))/[m(y(iy)ll = vy, where vy, = 7(F(iy))/II7(F(iy))]
is a constant unit vector pointing in the same direction as m(y(iy)) for y € Ax (in view of
Ry 7(¥(iy)) = 7(y)). Let FF be the associated complete simplicial fan with V (FF) = m(Ax(k))U
{m(us)} Um(Y) associated to the Reay system 7(Ry). Note §f is fixed (and independent of k)
apart from some possible variation in which positive scalar multiples are used for the vertices.
Then, by Proposition 4.13.4, for any tuple k& with all i, sufficiently large, there is a simplicial
isomorphism ¢ between §f and a simplicial fan §)," with vertices 7(Ax(k)) U{m(uy)} Un(Y). In
particular, support sets map to support sets. Since §7 is a simplicial fan associated to the Reay
system m(Ry), (6.36) ensures that m(Ax(k)) U m(Y3) is a support set for §F, whence its image
cp(ﬁ(fix(k)) Um(Ys)) = m(Ax(k)) Un(Y)) is also a support set, and thus linearly independent
(as support sets of a simplicial fan are linearly independent by definition). Furthermore, since
the simplicial isomorphism ¢ is injective on vertices, and since 7 is injective on flx(k) uY, it
follows that |Ax| + V3| = |Ax(k) UY| = |g0(7r(f~lx(k:)) U W(Yk))| = |m(Ax(k)) Un(Yy)|, forcing m
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to be injective on Ax(k) U Yy. Thus Ax(k) U Yy is linearly independent modulo

P

ker 7 = RY(0(Ax)) = R(10(4x)(k)),

with the second equality above in view of Proposition 5.1.1. As a result, (6.37) now implies that

—_——

Ax(k) UL0(Ax) (k) U Yy is linearly independent, completing the claim and the proof. O

0

7. FINITARY SETS

7.1. Core Definitions and Properties. We have now developed the asymptotic framework
generalizing the notion of positive basis to the point where we can define our main object of
study later in the section. We begin by giving three equivalent definitions for the special subset
G$ C Go C RY, which plays a key role in our characterization result for finite elasticities.
Note the three equivalent conditions defining G are all dependent only on notions from Convex
Geometry—involving linear combinations over R, —rather than combinatorial properties dealing
with A(Gp) and linear combinations over Z,. When we impose additional conditions on Gy,
we will later be able to give two further equivalent definitions for G¢, first in terms of A®™(Go)
and linear combinations over Q4, and then in terms of A(Gy) and linear combinations over
Zy. Recall that Gi™ was defined in Section 3.1. Note the equality C(Gp N &) = & mentioned
in the definition below follows by considering C(m(Gp)), where m : R? — £1 is the orthogonal
projection, which must have trivial lineality space as £ is the maximal subspace contained in
C(Gy), thus ensuring that 0 ¢ C*(7w(Gy) \ {0}), which means any positive linear combination of
elements from Gy that lies in £ must have all it elements lying in £.

Definition. Let Gy C R? be a subset with lineality space € = C(Go)N—C(Gyp), so C(GoNE) = E.
Then we let G§ C GoNE C Go denote the subset of elements g € GoNE satisfying the equivalent
conditions of Proposition 7.1 (applied to Go N E in place of Gy).

Proposition 7.1. Let Gy C R? be a subset with C(Gp)=€C R? a subspace, where d > 0, and
let g € Go. The following are equivalent.

1. There exists a subset X C Gg and i € Ggm with g € X and X minimally encasing —u.
2. There exists a linearly independent subset X C Go with g € X and a sequence {x;}72,

of terms x; € Go N C°(—=X) such that —z; = agx)x with al(»z) >0 and agg) — 00.
zeX
3. There exists a linearly independent set X C Gy with g € X and C(X) N -Gy not bound

to C(X\ {g})-

Proof. We may w.l.o.g. assume £ = R%.
1. = 2. Suppose there exists an asymptotically filtered sequence {z;}32; of terms x; € Gy
with fully unbounded limit @ = (uq,...,u;) and a subset X C Gy with g € X such that X
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minimally encases —i. Write each

T; = agl)ul +...+ agt)ut + Y;

with @) > 0 and yi € R(up,...,u)* such that [jy;|| € o(agt)), and let =\ = z; — Y =

i i
agl)ul + ...+ al(-t)ut be the truncated terms for ¢ > 1. By hypothesis, ¢t > 1 and agt)

— o0. Let
7 : R = R(X)" be the orthogonal projection. In view of Proposition 4.17, by removing the
first few terms, we can w.l.o.g. assume X U {J/‘Et)} is a minimal positive basis for all i. Since
C(Go) = R?, we can find a subset Y C G such that |7(Y)| = |Y| and 7(Y) is a positive basis
for R(X)* corresponding to a Reay system Rry). For each i > 1, let Y; C Y be the subset
with 7(Y;) = Suppg, (v)(=7(;)), so w(¥;) U {m(x;)} is a minimal positive basis or ¥; = () with
m(z;) = 0. By passing to a subsequence, we can assume all Y; are equal, say Y; = Y; for all
i > 1. By Proposition 4.7.3, X and 7(Y7) are both linearly independent. As a result, since 7 is
injective on Y7 C Y with kerm = R(X), it follows that X UY) is a linearly independent subset.

Since (Y1) U {m(z;)} is a minimal positive basis with 7(x;) = m(y;), Lemma 4.15 implies

(7.1) Y oy = —yi+ 2
YyeY]

for some z € R(X) and o/ > 0 with o/ € O(|7(w)l) € O(Juill) C o(a?) (z = v, it

Y1 = () with w(x;) = 0). Hence ||z € o(agt)) and z; —y; + 2z = .Z‘Z(t) + z; € R(X). Thus
(t) (1)

i tE=ag

(w1,...,ut) (once all ¢ are sufficiently large). Applying Proposition 4.17 to {x; — y; + 2 }32,, we

T, —Yit+z=x UL +...+ agt)ut + z; is an asymptotically filtered sequence with limit

conclude that

(7.2) Zal@)x =—x; +Y; — %
reX

for some al(-x) > 0 (passing to sufficiently large index terms). Moreover, for each € X, we have
(9)

%

al@ € @(agj)) for some j € [1,t]. Since g € X and al(-j) — oo for all j < t, we have «
whence Item 2 follows from (7.1) and (7.2) taking X to be X U Y].
2. = 3. Let X C Gy and {z;}3°, be as given by Item 2, so z; € G for all ¢ > 1. Then

each —z; = ) oel(x)x € C°(X) N =Gy with och) > 0 and agg) — 00. Assuming by contradiction
that {—xz};éf)is bound to C(X \ {g}), then there is a bound M > 0 such that each —x; has
some z; € C(X \ {g}) with || — 2z; — 2] < M. Let T : R — R be a linear transformation that
sends g to 1 and R(X \ {g}) to 0, which exists since g € X with X linearly independent. Then
T(—x; — z) =T(—x;) = ozl(g) with ozl(-g) =||T(—x; — 2z)|| < Cpl|| — z; — zi|| < CrM < oo, where
C'r is the operator norm of T with respect to the Euclidean metric, contradicting that az(.g ) S o0,

3. = 1. Let X C Gy be as given by Item 3. Since C(X )N —Gy is not bound to C(X \ {g}), we
can find a sequence {—z;}3°; of terms —x; € C(X) N —Gy such that d(—z;, C(X \ {g})) — oo.
By passing to a subsequence, we can assume {z;}5°, is an asymptotically filtered sequence with

— 00,

complete fully unbounded limit @ = (uy,...,us), where t > 1. Thus @ € Ggm since u is fully
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unbounded and x; € Gg for all ¢ > 1. Since —z; € C(X) for all ¢ > 1, Proposition 3.7 implies
that C(X) encases —, so let Y C X be a subset for which Y minimally encases —u. If g € Y,
then Item 1 follows. Otherwise, X \ {g} encases —u, in which case Proposition 3.6.3 implies
that {—x;}$°, is bound to C(X \ {g¢}), contradicting that d(—z;, C(X \ {g})) — oc. O

We continue with the following basic inclusion for G for subsets G of lattice points.

Proposition 7.2. Let A C R? be a full rank lattice, where d > 0, and let Go C A be a subset
with C(Go) = Re. Then

G5 C{g € Gy: sup{vy(U): U A*™(Gp)} = oo}

Proof. Let g € G be arbitrary. By Proposition 7.1.2, there exists a linearly independent subset
X C Gy with g € X and a sequence {z;}°; of terms x; € Go N —C°(X) such that

(7.3) —x; = Zagm)x

zeX

(z)

with o,

> 0 and agg)

positive basis and there exists an elementary atom U; with Supp(U;) = XU{x;}. Since the vector

(Ve (Ui))wexufe,y has >0 ve(Ui)z = o(U;) = 0, it follows from Proposition 4.7.5 and (7.3)
zeXU{z;}

that v, (U;) = v, (Us) oy @ forallz € X. In particular, vy (U;) = va, (U)o Sg) > a7’ (the inequality
follows in view of z; € Supp(U;)) with a( 9 5 o0, showing that sup{vy,(U): U € Ae'm(Gg)} = 00.
This establishes the desired inclusion. O

— 00. By Proposition 4.7 (Items 4 and 7), each X U {z;} is a minimal

(g) (

Lemma 7.3 links the set 4; from Proposition 6.5 with the diamond subset G7.

Lemma 7.3. Let A C R? pe a full rank lattice, where d > 1, let Gy C A be a subset of lattice
points with C(Gg) = R?, let R = (X, U {v1},..., X U{v}) be a virtual Reay system in Gy,
let As be the subset given by Proposition 6.10.1 for j = s, suppose that the virtual Reay system
R = (X U{vi},..., X1 U{vs_1}) is anchored, and let x € As.

1. If iy is fully unbounded and y € As \ {x}, then there exists an asymptotically filtered
sequence {y;}5°, of terms y; € C(GY) N RY(As) with limit Wy. Indeed, there is a finite
subset Z C G§ such that y; € y(i) + C(Z) for all sufficiently large i, and z(i) € G§ for
every z € LA \ {x} and all sufficiently large i.

2. Suppose, for each'y € A\ {x}, that {yl’;}szl is an asymptotically filtered sequence of
terms yg; € RY(A,) with limit @y. Then, for any tuple k = (iz)zeya,\(x} with all ig
sufficiently large, the set LO(As)(k) U {yzyy :y € Ag \ {x}} minimally encases —tx and
RU(AL) = RUD(A)(R) U s+ ¥ € A\ (xH).

Proof. 1. Let ix = (uf,...,uy ) and iUy = (ui’,...,ufy). Let 7 : R? — R(u{,...,ui’y>L be

the orthogonal projection. Since {y(i)}:2, is an asymptotically filtered sequence with limit
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iy = (u, ... ,ufy), we have

y(i) = a4 ..+ a £ x(y(i)) for all i,
where
(7.4) a? € o) forje 2ty and |n(y(i)] € o(a\™).

Our general strategy is as follows. We will partition the terms in y(7) into a finite number of
infinite subsequences, say I;U...UI, = Z \ {0} with this union disjoint and each I; infinite. We
will show Item 1 holds for the sufficiently large index terms in each {y(i)}:cs, and, additionally,
it does so with each y; = y(i) + & = y(i) — n(y(4)) + &, for i € I;, such that ||&] € o(agtY)),
& € RY(Ag) and —7(y(i)) + & € C(Z;) for some fixed, finite subset Z; C G§. Then Item 1 will
hold for the sufficiently large index terms in {y(i)}°, by setting Z = U;:1 Z; and using the
sequence {y; }22, where each y; for i € I; was the term defined for the subsequence {y(i)}icy,-

Let Y C Gg be the subset given by Proposition 6.10.3 for j = s. Let k = (iz)zc4, be
a tuple of indices. In view of Proposition 6.10.3, once all i, are sufficiently large, then we
can assume that (As \ {z})(k) U ii?f(;lj)(k:) U Y, minimally encases —tx for some Y;, C Y.
Since R’ is anchored, Proposition 6.6 implies that z(i,) = z(i,) for all z € JO(Ay) once i, is
sufficiently large. Thus (As \ {z})(k) U JO(A4;)(k) UY} minimally encases —ix (once all i, are
sufficiently large). As a result, since tx is fully unbounded, it follows that z(i,) € G§ C Gy for
all z € (As \ {x}) ULd(As) = JAs \ {x}, once all i, are sufficiently large. Now fix all indices i,
with z # y (chosen sufficiently large that Proposition 6.10.3 and Proposition 6.6 are applicable)
and consider ¢ = iy — oo. Since Y is finite, there are only a finite number of possibilities for
the Y as i — oo. Thus (as described at the start of the proof), by passing to a subsequence of
{y(9)}2,, we can w.l.o.g. assume the same set Y; occurs for every ¢, in which case {y(i)} U Z
minimally encases —tyx for all ¢, where Z := (A, \ {z, y})(k) UlO(A4,)(k) UY; C Gy is a fixed
subset. Since iy is fully unbounded, we have

{y(1)}uZ c Gg

for all ¢. By Proposition 4.16, for each ¢, there are indices 1 = r; < ... < ryy1 = tx + 1 and
a disjoint partition {y (i)} UZ = Z1 U...U Z; such that (Z3 U{u) },...,Z, U {uy,}) is a Reay
system. By Proposition 4.11, for each i, there is some subset Z' C Z U {u},...,u¥ } such that
Z'U{y(i)} is a minimal positive basis. Since there are only a finite number of possibilities for
Z', by passing to a subsequence of {y(i)}°,, we can assume the same set Z’ occurs for every
i (using the same partitioning argument as before). Let J C [1,tx] be the set of indices j for
which u¥ € Z" and let U = {u¥ : j € J}. Then

Z'\UCZCGS.

In view of (VR1), we have uj,...,u} € R(y) C RY(A;). Hence, if m(y(i)) = 0 for an
infinite number of 4, then Item 1 follows (on the partition of indices in I having this property)
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taking {y;}>°; to be a subsequence of {y(i)}°, with all terms having & = 7(y(i)) = 0, in
view of y(i) € G§ for all i. Assuming this does not occur (so we restrict to a sub-partition
of I where 7(y(i)) = 0 holds only for a finite number of indices i), by discarding the first few
terms in the sequence {y(i)}°,, we can assume 7(y(i)) # 0 for all i. Thus, since Z' U {y(i)}
is a minimal positive basis, it follows by Carathéordory’s Theorem that w(Z") U {m(y(i))} is a
minimal positive basis of size | Z"| 41 for some subset Z” C Z’. As there are only a finite number
of possibilities for Z”, by once more passing to a subsequence of {y(i)}°,, we can assume the
same set Z” occurs for every i (by the same partitioning argument as before). As a result,

—7m(y(i)) € C°(n(Z")) for all 4, in which case Lemma 4.15 implies that

Yo ain(x)+ Y Bin(z) = —w(y (i)

2€2'"\U 2€2/'NU

for some af > 0 and 57 > 0 with of, 57 € O(||x(y(4))]|) for all z € Z”. Thus
Y aiz=-—w(y() +&

2€2'"\U
for some & € kerm +R(U) C R(uf, ..., uf, u,...,uf ) with [|§]| € O(|7(y(9)]) < o(aEtY)),
with the latter inclusion in view of (7.4). Setting y; = >, afz+y(i), we have
z€Z"\U

Y = al(.l)ubl’ +...+ agty)ufy + &

and, by discarding the first few terms in {y;}5°,, we find that {y;}3, is an asymptotically filtered
sequence with limit @y in view of ||&]| € o(aEtY)). Since Z"\U C Z'\U C G§ and y(i) € G§,
it follows that y; € C(Gg) for all i. By (VR1), we know w7}, ... ,ui’y,u’f, .. ,uiz e R(xUy) C
RY(Ay). Consequently, since & € R(uf,... uf,ui,.. .,u%’y), it follows that y; € R(xUy) C
RY(A) for all i, and the sequence {y;}5°, now has the desired properties (using Z” \ U for Z),
completing the proof of Item 1.

2. Define a new virtual Reay system R on the set

GOu{ylyyf y € A\ {x} and iy > 1} C R?

identical to R except that we replace each sequence {y(iy)}f;’:1 with the sequence {yf; Fa
for y € Ag\ {x}. Since both these sequences are asymptotically filtered sequences with the
same limit for every y € Ay \ {x}, this leaves all half-spaces and their boundaries unchanged.
In particular, A is also the set given by Proposition 6.10.1 for R as well as R. Consequently,

since yf’y € RY(A;) for all iy and y € A, \ {x} by hypothesis, Proposition 6.10.3 applied to
R implies that [0(A)(k) U {yf; :y € As \ {x}} minimally encases —ix once all i, in the
tuple & = (iz)zc4,\(x} are sufficiently large. However, since Go € A and R’ is anchored,

Proposition 6.6 implies that JO(As)(k) = JO(As)(k) once all i, are sufficiently large, and thus
JO(As) (k) U {yf’y :y € As \ {x}} minimally encases —1iix once all i, are sufficiently large.
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By definition, each Y, = zf; + 6‘;’; with {zf; }f;’zl a complete asymptotically filtered sequence

with limit @y = (uf,...,4] ) and €] € RY(A,) the remainder term, so 2z} = al(l)yui' +...+
a( y}),ut with ||ey | € o(a; (t y)) Proposition 5.1.1 and Proposition 6.10.2(e) imply that

RY(0(As)) = RY(JO(A,)(k))  and  RY(As) = R{19(As)(k) U{z] : y € A\ {x}}).
Thus, letting 7 : R — RY(9(A5))* be the orthogonal projection, it follows that

RY(m(A0)) = R{{m(2)) : y € A\ {x}}).

Each zlyy is a representative for the half-space y € A;\ {x}, so Proposition 6.10.2(e) implies that

{r(z7): y € A\ {x}}

ty

is linearly independent, and thus a basis of size |As \ {x}| for the subspace RY(m(A;)). In

view of Proposition 6.10.2(e), the value (2} )/||7r( )H = W(uty)/HW(uty)H is constant, where
iy = (uy,.. .,u%’y), so |7 (zi)]| = @(agy}),) In consequence, each {7r(yZ o=y fory € Ag\ {x}

is a sequence of terms from RY(m(A;)) that radially converges to ( )/H7r( )|| and thus
Proposition 4.13.5 implies that, once all iy are sufficiently large, {W(yzy) Y 6 A\ {x}} is
also a basis of size |As \ {x}| for the subspace RY(m(A;)), which, combined with RY(9(Ay)) =

RY(10(As)(k)), gives the desired conclusion RY(As) = R{I0(As)(k) U{y} : v € A\ {x}}),
completing the proof. O

We are now in position to give the key definition that will be the subject of the remainder of
this section. As we will later see, finitary sets form an ample class of subsets of lattice points
that behave well under inductive arguments and include infinite subsets that nonetheless behave
like finite sets, particularly in relation to combinatorial properties related to A(Gy).

Definition. Let A < R¢ be a full rank lattice, where d > 0, and let Go C A. If every purely
virtual Reay system over Gy is anchored, we say that Gy is finitary.

Let t € [0,d] be a integer. If every purely virtual Reay system R = (X1 U{v1},..., XsU{vs})
over Go with dimRY(X, U ... U Xs) < t is anchored, then we say that Gy is finitary up to
dimension t. (We will need this refined definition for several inductive arguments.)

As a point of clarification, if R = (X1U{v1},..., XsU{vs}) is a virtual Reay system in Gy, then
each x € X1 U...UX; has various possibilities for the asymptotically filtered sequence {x(7)}°,
having limit . It is possible for some of these sequences to have iy as fully unbounded limit,
and some to have iy as an anchored limit. In such case, it is possible to consider iy either as
fully unbounded or anchored, meaning the virtual Reay system R can be considered anchored

or not, depending on which sequences {x(4)}9°

©, are chosen. The definition of finitary requires
that all choices of sequences {x(7)}$°, result in R being anchored. A similar fact holds regarding
purely virtual Reay systems, though here we only need each v; to have some sequence {v;(7)}2;

having #y; as fully unbounded limit in order to consider R as purely virtual.
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We now make the observation that if R = (X3 U{v1},..., XsU{xs}) is a virtual Reay system
in Gy, then so too is R = (X1 U {vi},..., X1 U {vs1}, (Xs U {xs}) \ {y}) U {y}) for any
y € Xs U {vs}. This observation will allow us to apply many of the propositions that require
B C X1U...UX; as a hypothesis when we only have B C (X;U...UXs)U{v} with X;U{v;} € B,
at least in special circumstances (in theory, many of these propositions could have been stated
in this more general form, but the trick above means the added generality is implied by applying
the more limited form to a modified oriented Reay system).

We continue by giving some important properties of finitary sets Go. Recall that wt(—g) was
defined in (5.32).

Proposition 7.4. Let A C R? be a full rank lattice, where d > 0, let Go C A be a subset with
C(Go) = RY, and let R = (X1 U {v1},...,Xs U{vs}) be a purely virtual Reay system in Go,
where s > 0. Suppose Gy is finitary up to dimension dimRY(X; U ... U Xj).

1. x(i) € G§ for every x € X1 U ...UXs and all sufficiently large i.

2. If A; is the subset given by Proposition 6.10 for j € [1,s], then A;j\{v;} C X1U...UA].

3. Ifu = (up,...,u) € Ggm with uy,...,uy € RY(X U...UX;), then —i is encased by
XU UX,.

4. If @ = (u1,...,u) is an anchored limit of an asymptotically filtered sequence of terms
from Gy with uy, ..., uz € RY(X1U...UX), then — is minimally encased urbanely by a
support subset B C Xy U{vi}U...UX;U{vs} with [BN{v1,...,vs} < 1. In particular,
wt(—g) <1 for allg € Go NRY(X; U...UX;).

Proof. Let X = X1 U...UX,. If dimRY(X) = 0, then s = 0 and all items hold vacuously. So
we may assume dimRY(X) > 0 (implying s > 1) and proceed by induction on dimRY(X). Let

o= (X1 U{vi},...,Xs_1 U{vs_1}). Applying the induction hypothesis to R{, we find that
(X1U...UX,q)(k) C Gf for any tuple k = (i,) with all i, sufficiently large, A; \ {v;} C
X U...U&j; for all j € [1,s— 1], and Items 3 and 4 both hold for Ry,.

1. Since Gy is finitary up to dimension dimRY(X; U...U X;), it follows that R is anchored,
meaning ty is anchored for every x € X3 U... U X,. Since R is purely virtual, iy, is fully
unbounded. Thus Lemma 7.3.1 implies that x(i) € G§ for every x € [ A \ {vs} and all
sufficiently large 7. Since X5 C Ay, Item 1 now follows.

2. Suppose Item 2 fails. Then A, \ {v,} contains some v; with j € [1,s —1]. Since R is
purely virtual, @y, is fully unbounded. Let Ay, = (As \ {vs} Ud({vs}))*. Since v; € A\ {vs}
and every v; is a maximal element in A} U...U X, U {vy,..., v}, it follows that v; € A,,.
Proposition 6.10.2(b) implies that Ay, minimally encases —iiy,, which is fully unbounded since R
is purely virtual. Proposition 6.10.2(c) implies that Ay, is a support set. Let @y, = (u1,...,u).
Applying Lemma 6.9 to Ay, and u,, we find there is some A < Ay, and ¢y € [1,¢] such
that A minimally encases —(uq,...,u) urbanely and contains some y € A with uy fully
unbounded. Since A <X A, with A, a support set, it follows that A = A* is also a support
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set (note A*=A since A minimally encases —(uy,...,us)). Apply Proposition 6.3 to A and let
R = (V1U{wi},..., Vs U{wgy}) be the resulting virtual Reay system with Yy U...UYVy = J.A.
Since iy, = (u1,...,us) is fully unbounded and to > 1, it follows that (uq,...,us,) is also fully
unbounded. Since Gy C A, Proposition 6.6 implies that every x € |.A has @y either trivial or
fully unbounded (since each iy, is fully unbounded, this is trivially true when x = v;, while all
x € X1 U...UX; have tx anchored). Thus R’ is purely virtual as noted before Proposition 6.3.
As a result, since | A C [ Ay, C Xy U{vi}U...UXs;U{v,} implies dimRY(); U... U Vy) <
dimRY(X; U...UX;), and since Gy is finitary up to dimension dim RY(X; U. ..U X;), it follows
that R’ must be anchored. However, this contradicts that y € A C JA =Y U...U Yy with dy
fully unbounded, and Item 2 is now established.

3. To prove Item 3, suppose @ = (uq,...,us) is a fully unbounded limit of an asymptotically
filtered sequence {z;}5°; of terms x; € Gy with uy,...,u; € RYUX) = CY(X U {vy,...,Vs})
(the equality follows by Proposition 5.3) such that — is not encased by X. By choosing such
a counter-example with ¢ minimal, we can assume —@ is encased by X. Thus there is some
A C X which minimally encases —@ urbanely. Let m : R — RY(A)L be the orthogonal
projection. Since X does not encase —u, we must have u; ¢ RY(A) (by Proposition 5.5). Let
C C XuU{vi}U...UXs;U{vs} be the lift of Supp(g)(—m(ut)), which is a support set by
Proposition 5.2.5. Then Propositions 5.5.2 and 5.5.3(a) imply that C minimally encases —u
urbanely (since A C X). Apply Proposition 6.3 to C and let R' = (Y1 U{wi},..., Y U{w;})
be the resulting virtual Reay system in Gy for the subspace RY(C) C RY(X) with ), = C,
=wand Yy U...U)Y, = |C. Since Gy C A, Proposition 6.6 implies that every x € |C

has g either trivial or fully unbounded (since each wy, is fully unbounded, this is trivially true

U,
when x = v;, while all x € X} U...U X; have iy anchored). Thus, since 4 = (uy,...,u;) is
fully unbounded, it follows that R’ is purely virtual as noted before Proposition 6.3. Hence,
since Gy is finitary up to dimension dimRY(X; U ... U X;), and since Yy U...UYs = |C C
Xy U{vi}...UX;U{vs}, it follows that R’ is anchored. In particular, @y is anchored for every
x€Y, =CCXU{vi}U...UX;U{vs}. However, since R is purely virtual, this means x
cannot equal any v;, and thus C C X, contrary to our assumption that @ was a counter-example
to Item 3. Thus Item 3 is now established.

4. To prove Item 4, suppose 4 = (uq,...,us) is an anchored limit of an asymptotically filtered
sequence {z;}2; of terms z; € Gy with ug,...,us € RUX) = CH(X U {vy,...,vs}). Ift =0,
then Item 4 follows taking B = (), so we may assume t > 1. Let t” € [0, — 1] be the maximal
index such that @’ = (uq,...,up) is fully unbounded or trivial. If ¢ = 0, then {z;}2, is
a bounded sequence of lattice points. Since {z;}?2; is an asymptotically filtered sequence of
lattice points, this is only possible if {z;}3°, is eventually constant, in which case t = 1 and
@ is trivial. On the other hand, if # > 0, then Item 3 ensures that there is a subset A C X
such that A minimally encases —@” urbanely. This is also true for ¢’ = 0 with A = (). Let
7 : R — RY(A) be the orthogonal projection and let ¢ € [t” + 1,t] be the minimal index
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such that m(uy) # 0. Note t' exists else A minimally encases — as well (by Proposition 5.5),
in which case Item 4 follows taking B = A. Let C C X3 U{vi}U...UXsU{vs} be the lift of
Suppﬂ(R)(—Tr(ut/)), which is a support set by Proposition 5.2.5. Then Propositions 5.5.2 and
5.5.3(a) imply that C minimally encases —' := —(uq, ..., uy) urbanely (since A C X). Apply
Proposition 6.3 to C and let R = Q4 U {w1},..., ) U {w,}) be the resulting virtual Reay
system in Gy for the subspace RY(C) C RY(X) with YV, =C, Gy, =@ and Y1 U... U, = |C.
Moreover, in the notation of Proposition 6.3, Cﬁfjf) = 0({w,}) = A C |C. Note Uy, = u =
(u1,...,uy) is anchored in view of the maximality of ¢”. Since Yy U...UY,—1 C X1 U...UX;
(by Proposition 6.3(a)), and since R is anchored, it follows that we can apply Proposition 6.6
to conclude that w, (i) — vh(«t,_l)(z') is constant (and nonzero) for all sufficiently large i. Thus
wo(i) = 2; = Wi V@) + alDuy + g with Wi V() € RYO({w,})) = RU(A) C RY(C),
lyill € O(CLEt/)) and w,.(i) — W&t/_l)(i) = agt/)ut/ + y; = & # 0 constant, for all sufficiently large
i. Since (uq,...,uy) is anchored, we have az(»t/) € O(1), so that ||y € o(agt)) C o(1). But now
y; — 0 and & = hmi%oo(al(t/)ut/ + i) = (lim; 0o agtl))ut/ € RY(C), with the inclusion since C
minimally encases —(uq,...,uy). Thus z; = w,(i) = Wy(«t,_l)(i) + £ € R(C), ensuring that the
limit @ = (u1,...,ut) of the asymptotically filtered sequence {z;}:2, has u; € RY(C) for all
i € [1,t]. Proposition 5.5 now ensures that C not only minimally encases —(uy, ..., uy), but also
—u = (uy,...,u). Consequently, if wt(C) < 1, then Item 4 follows taking B = C. Assume by
contradiction that wt(C) > 2. Then there are distinct vg,, vk, € C = Y, and since R is purely
virtual, both ﬂ’vkl and ﬁsz are fully unbounded.

As noted after the definition of finitary, R” = (V1 U{w1},..., (U U{w;}) \ {vi, }) U{vi, })
is also a virtual Reay system in Gg. As noted several times already in the proof, the strict
truncation of any limit defining a half-space x from R is either trivial or fully unbounded. By
construction, ﬁvkl is fully unbounded. Consider an arbitrary w; with j < r. Then, in view
of Proposition 6.3(b) (recalling that cﬁfj} ) = A), it follows that either @y, = (u1,...,u;;)
for some r; < ", in which case iy, is fully unbounded by definition of #”, or else w; is the
strict truncation of some defining limit for a half-space from |C, and thus also fully unbounded.
Consequently, R” is purely virtual. Thus, since RY(C) C RY(X) ensures dimR”(C) < RY(X),
and since G is finitary up to dimension dim RY(X), it follows that R” is anchored. In particular,
Ux is anchored for every x € Y, \ {vi, } = C\ {v, }, contradicting our assumption that vy, € C
is a distinct half-space from vy, with ﬁvk2 fully unbounded. Thus Item 4 is now also established,

completing the proof. O

We will now show that G§ N —C(G§) being bounded implies that Gy is finitary, giving an
important example of finitary sets apart from Gy finite. The converse to this statement is false,
as seen by the example Go = {(—1,y) : y € Z:}U{(z,—1): x € Z;} C Z?, which has G§ = Gy
and Gim = {(1,0),(0,1)}. On the other hand, the set

Go={(-Ly:y>1lLyecZlu{(z,0): x>1, 2 € Z}U{(0,—-1)}
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gives a prototypical example of a basic finitary set in Z? with G§ N —C(Gf) = 0, Ggm =
{(1,0),(0,1)} and G§ ={(-1,y): y > 1,y € Z} U{(0,—1)}.

Theorem 7.5. Let A CR% be a full rank lattice, where d > 0, and let Go C A be a subset with
C(Go) =R If GEN —C(GY) is a bounded set, then Gy is finitary. In particular, if 0 ¢ C*(GY),
then Gq is finitary.

Proof. Assume by contradiction that the theorem is false and let R = (X1 U{v1},..., XsU{vs})
be a purely virtual Reay system over G which is not anchored having dim RY(X’) minimal, where
X =XjU...UX,. Then s > 1, and in view of the minimality of dim RY(X), we conclude that Gy
is finitary up to dimension dimRY(X) —1 > 0. Let R = (X1 U{v1},..., Xs—1 U{vs_1}). Then
we can apply Proposition 7.4 to Rj,. In particular, R{, is anchored and (X;U...UX;_1)(k) C G§
for any tuple k = (i) with all i, sufficiently large.

Since R is purely virtual, @y, is fully unbounded. Thus, since Rj, is anchored, Lemma 7.3.1
implies that x(i) € G for every x € | A \ {vs} and all sufficiently large i. Since X; C A,
we now see that x(i) € G for any x € X and sufficiently large i. Moreover, Lemma 7.3.1 also
implies that, for each y € X, there is an asymptotically filtered sequence {yzyy };?;’:1 of terms
yi); € C(G§) NRY(A;) with limit .

Suppose there were some z € A, \ {vs} such that @, is also fully unbounded. Then we could
apply Lemma 7.3.1 to conclude that there is also an asymptotically filtered sequence {x;}5°; of
terms z; € C(GY) N RY(A;) with limit @y,. Indeed, vs(i) € G§ for all sufficiently large i and
there is a finite set Z C G such that every z; € vs(i) + C(Z) once i is sufficiently large. By
Lemma 7.3.2, the set

Y = ia(As)(k;) U {yf; ty € As \ {Vs}}
with RY(As) = R(Yy) for any tuple k& = (iz)zecia,\fv,} With all i,
sufficiently large. Fix one such tuple x = (tz),¢], A\{v,} such that all the above conclusions are
true and let Y = Yj.. Since |0(As) C X1 U...U Xs_1, we have |0(A45)(k) C G§, and thus Y C
C(GY) in view of the definition of the yfy . Recall that R(Y) = RY(A;). Consequently, applying
Proposition 4.17 to the sequence {z;}3,, we find that Y U{x;} is a minimal positive basis for all
sufficiently large i. Hence, since z; € v4(i)+C(Z), we conclude that v4(i) € —C(YUZ) C —C(G§)
for all sufficiently large i. However, since iy, is fully unbounded (in view of R being purely

minimally encases —iy,

s

virtual), we see that {v,(i)}°; is an unbounded sequence of elements contained in —C(G§) with
vs(i) € G§ for all sufficiently large 4, contradicting the hypothesis that G N —C(G§) is bounded.
So we instead conclude that i, is anchored for every z € A, \ {vs}. In particular, this ensures
that every @y with y € X5 C A, \ {vs} is anchored, implying that R is anchored (as Rj is
anchored), contradicting that R was a minimal counterexample.

For the in particular statement, suppose 0 ¢ C*(G§). Then, since 0 ¢ G (by Proposition
7.1.2), it follows that G§ N —C(G§) is bounded (indeed, empty), and so Gy is finitary by the
main part of the theorem. O
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Proposition 7.4 has some important consequences beyond Theorem 7.5. Suppose Gy C A C R¢
is finitary with C(Gp) = RY. If X C GoUGS is a minimal positive basis, then each z € X defines
a one-dimensional half-space x = Ry, and letting X be the corresponding set of half-spaces, it
follows that ((X \ {x}) U {x}) is a virtual Reay system in Gy for any x € X. For a half-space
z € X, we either have z € G°, in which case 1, € G7° is unbounded, or else z € G, in which
case Uy = z/||z|| is bounded (and in case z € G and z/||z|| € G§°, then both are simultaneously
possible). Consequently, if X NG§® # ), then we can choose x € X so that the resulting virtual
Reay system ((X \ {x}) U {x}) is purely virtual. Since Gy is finitary, the virtual Reay system
is anchored, i.e., | X N G{°| < 1. Moreover, if | X N G§°| =1, then X \ G§° C G by Proposition
7.4.1. Thus there are limitations on how minimal positive bases can be formed using elements
from Go U Gg°.

In general, if {z}°, is an asymptotically filtered sequence of lattice points with limit u,
say with corresponding representation z; = a;u; + y;, then we either have a; — oo or a; —
C for some C > 0. If a; — C, then |ly;|]| € o(a;) C o(1), ensuring that |ly;|| — 0, which
means that {z;}5°, is a convergent sequence of lattice points with limit (lim; . a;)u; = Cu;.
Thus, since any convergent sequence of lattice points is eventually constant, it follows that
z; = (lim; 00 a;)ug = Cuy for all sufficiently large i, forcing C' > 0 as z; = Cup = a;u; + y; # 0
for all sufficiently large i (as a; > 0 with y; € R{uy)* for all 4). Moreover, since z; = Cuy for
all sufficiently large ¢, and since u; and y; are orthogonal (and thus linearly independent), it
follows that y; = 0 for all sufficiently large ¢, and if {b;}$°, is a sequence of positive real numbers
with a; € o(b;), then a; — C > 0 ensures {b;}°; is unbounded. Now suppose {z;}°; is an
asymptotically filtered sequence of terms z; € Gy C A having limit @ = (u1,...,u;), say with
T; = agl)ul + ...+ agt)ut + 9, and that 7 : R — £t is the orthogonal projection for some
subspace & = R(Z) generated by a subset of lattice points Z C A. Then n(Gp) C m(A) with
7(A) a full rank lattice in £+ by Proposition 2.1. If 7(@) is the empty tuple, then u; € & for all
i. Otherwise, there is a minimal index r; € [1,¢] with 7(u,,) # 0, we may consider {z;}°, as an
asymptotically filtered sequence with truncated limit (uq, ..., u,, ), and Proposition 3.3.1 implies
that the sufficiently large index terms in {m(z;)}°, form a radially convergent sequence with
limit @y, := 7(up, ) /|7 (ur, )|, say with representation m(x;) = bl(-”)ﬂ,«l + 7, where ™) ¢ @(a(rl))

i i
and g, is a vector orthogonal to w,, with [|7;]| € o(bgrl)) = o(agn)). Consequently, if {al(m)}i:l is
bounded, then we can apply the previous observations to conclude that 7(z;) is constant with
y; = 0 for all sufficiently large ¢, and that {agj )};?il is unbounded for any j < r1. In such case,
() = Ty, is a complete limit for {m(x;)}32; with m(x;) = Cu,, for all sufficiently large i, for
some C' > 0, and agj ) 5 oo for any j < r1. This does not imply r; = ¢, but does ensure
u; € € + Ru,, for all i € [1,¢]. We will need these observations in our discussion below.

Now suppose that

R=(XU{vi},..., X U{vs})
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is a purely virtual Reay system (possibly trivial) in the finitary set Gy and let
m:RE S RV UL UX)T

be the orthogonal projection. Since Gy is finitary, it follows that R is anchored, ensuring
that RY(X1 U ... U X,) = R(UX1 U...X,)(k)) for any tuple k& = (iz)ze(x,0..ux,) With all
iz sufficiently large (in view of Proposition 5.1.1 and Proposition 6.6). Consequently, since
LX1U...X5)(k) € Gy C A is a subset of lattice points, it follows from Proposition 2.1 that
7(A) is a full rank lattice in 7(RY) = RY(A; U... U X,)". Let v € n(Go) Un(Gp)> be nonzero.
In view Proposition 3.3.2, there is an asymptotically filtered sequence {z;}?°, of terms z; € Gy
with limit @ = (u1, ..., u:) such that {m(z;)}$°, is an asymptotically filtered sequence of terms
with limit (@) = 7(u¢)/||7(us)|| = v/||v]|. For instance, if v € m(Gyp), then {z;}7°, may be taken
to be a constant sequence, though there may be other non-constant sequences with m(z;) = v
for all i as well which we could choose instead. Moreover, we either have v € 7(Gp)*°, in
which case @ is fully unbounded by Proposition 3.3.1 (with 7, = r; = t in the notation of
Proposition 3.3.1), or else v € m(Gy), in which case @ is anchored (and in case v € 7(Gp) and
v/||v|| € m(Gy)>°, then both are possible). Let z; = al(-l)ul +...+ agt_l)ut,l + agt)ut + y; be the
(t)

representation of {x;}7°, as an asymptotically filtered sequence with limit @. If a,

a? = oo for all j < t holds trivially. On the other hand, if agt) is bounded, then the earlier

: )

i

— 00, then
discussion above also ensures that a;”/ — oo for all j < ¢, so @ is trivial or fully unbounded
in all cases. But now Proposition 7.4.3 ensures that there is some By C X U ... U Xy which
minimally encases —u. This allows us to define a half-space x by setting X = RY(By) + R uy,
d(x) = RY(Bx) and d(x) N x = C(Bx). Now suppose X C m(Go) U 7(Gp)™ is a minimal
positive basis and let X be the set of half-spaces obtained from the elements xz € X as just
described (using some compatible choice of asymptotically filtered sequences for each z € X).
Then R’ = (X1 U {vi},..., X U {vs}, (X \ {x}) U{x}) will be a virtual Reay system over
Go for any x € X. Since C(Gy) = R?, we have C(7(Gp)) = 7(RY) = RY(A; U... U X,)*.
Consequently, given any nonzero z € 7w(Go) U m(G)™°, there exists a minimal positive basis
X C 7w(Go) Um(Gp)*® which contains z. If X N7 (Gp)> is nonempty, then we can choose x € X
so that 1y is fully unbounded, in which case R’ will be purely virtual. Since Gy is finitary, we
conclude that R’ must be anchored, i.e., | X N7 (Gy)>°| < 1. Moreover, if | X N7(G()>°| = 1, then
X \ m(Gp)>™® C w(Gop)® by Proposition 7.1.1. Thus we have generalized our initial observation
regarding minimal positive bases over Gy U Gg°. Furthermore, we now see that purely virtual
Reay systems over a finitary set Gy can be constructed greedily by recursively applying the
construction just described with our only being prevented from extending the purely virtual
Reay system R to a larger one when 7(Gy)™ = 0, i.e., when 7(Gy) is finite (since 7(A) is a
lattice).

Likewise, if we have a purely virtual Reay system R’ = (Vey1 U{wst1}, ..., Vo U {wy})
over m(Gp), then Ys11 U {wsy1} will be a minimal positive basis, and we can define a virtual
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set Xsi1 U {vsy1} (using any compatible choice of asymptotically filtered sequence for each

z € Vs+1 U{wsy1}) as above so that R” = (X1 U{v1},..., Xsr1 U{vsy1}) is a purely virtual
Reay system over Gy with 7(R") = (X[, U {7T(V5+1)}) = (y3+1 U{wst1}). Then it follows
that 7'(R’) = (7' (Vsq2) U{n (Wsi2)}, ..., 7' (Vs) U {7 (Wy)}) is a purely virtual Reay system

over 7'(Go) (by Proposition 6.1), where 7/ : R? — RY(X; U...U Xs1)* is the orthogonal
projection. As before, 7'(A) a full rank lattice and, for each y € Yo U {wsio}, we can
choose via Proposition 3.3.2 an asymptotically filtered sequence {z;}:°, of terms z; € Gy with
limit @x = (u1,...,u) such that 7(ix) = ty and w(iy) = 7(ix)" = Uy, and then 7'(iix) =
7' (n(tx)) = 7'(ily) = U (y) follows in view of ker 7 < ker 7’ and Proposition 6.1. Since 7'(y)
lies at depth 1 in the oriented Reay system 7/(R'), it has trivial boundary, ensuring that @ (y)
is a single unit vector. Moreover, since 7’(y) is a relative half-space in 7/(R’), we must have
7/ (m(u)) = 7'(uy) being a representative for 7'(y) since m(u¢) is a representative for y (in view
of m(ix) = iy and w(uy) = 7(ix)), ensuring that () = ' (ur)/||7"(ue)||. (Alternatively,
since O({y}) C Vsy1 = m(Xs11), m(tix) = Uy and w(dy) = 7m(Ux)?, we have 7'(u;) = 0 for all
i < t, ensuring the same conclusion.) Thus, per prior discussion, @y will be fully unbounded
(or trivial), and thus —@3 is minimally encased by some By C X3 U...U X411, allowing us
to define a half-space x with d({x}) = Bx and X = R"Y(Bx) + R u;. Since the support set
0({x}) = Bx minimally encases —iiy, Proposition 5.5.4 and Proposition 5.2.6 ensure that the
support set I({x})™ C m(Xs41) = Vs41 minimally encases —7(iy) = —m(iix)? = —i, which
means J({x})"™ = 0({y}). Hence, since the representative u; for x maps to the representative
m(uy) for y (in view of m(ix) = 1ty and w(dy) = m(Ux)"), we conclude that m(x) =y. We can
iterate this procedure, resulting in a purely virtual Reay system W = (X1 U{v1},..., Xy U{vg})
over Go such that 7 (W) = R’ and &7 U {7(v;)} = V; U{w;} for all j € [s + 1,5'], and
T(lx) = Un(x) and 7w(dy) = 7(tx) for all x € Xs11 U{vsi1} U... U Xy U{vy}, with each
Ux the limit of a compatible asymptotically filtered sequence initially chosen for the half-space
y=7(x) € Vey1 U{wsp1} U...UVy U{wy}. We call W an extension of R.

We call the purely virtual Reay system R over Gy with 7(Gy)*> = () a maximal purely virtual
Reay system over Gy. Since m(Gy) is a subset of lattice points, this is equivalent to 7(Gy) being
finite as noted earlier. Now further assume that R is a maximal purely virtual Reay system over
Go, so m(Gp) is a finite set of lattice points. Suppose R’ = (Vs11 U{wsi1},..., Vg U{wy})isa
virtual Reay system over m(Gy). For instance, we could use Proposition 4.8 to find an ordinary
Reay system (Ysy1 U {wsi1},..., Yy U{wy}) (for the entire space m(R?) if we like), and then
replace each element y € Y1 U{wsi1}U... UYy U{wy} with the one-dimensional half-space
y = R,y it represents to obtain R’. We can associate to each y € Y11 U{wsi1}U. . .UYyU{wy}
an asymptotically filtered sequence {x;}:°, of terms from G with limit @ = (uy, . .., us) such that
(@) = 7(ue)/||7(ue)|| = y/||lyll, which ensures u; € kerm = RY(X; U...UX;) for all i < t. For
instance, we could take {x;}2°; to be a constant sequence, though there may be other possibilities
(we simply need 7(x;) to eventually be constant). Per prior discussion, % must be trivial or fully
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unbounded. Thus, since u1, ..., u;—1 € RY(X;U...UX;), Proposition 7.4.3 ensures that there is
some By C X1U...UXs which minimally encases —@“. As before, this means we can define a half-
space x by setting X = RY(Bx) + R ut, 9(x) = RY(By) and d(x) Nx = C(Bx), and replacing each
YV € Vsr1 U{wsp1}U...UYVy U{wy} with the corresponding half-space x just constructed again
results in virtual sets Xs11U{vss1},..., Xy U{vy} such that W = (X1 U{v1},..., Xy U{vg})is
a virtual Reay system over Go with 7(R) =R, AT U{r(v;)} =Y;U{w;} forall j € [s+1,5'],
and 7(lix) = U x) for all x € Xgp1 U{vsp1} U... U Xy U {vy}, with each iy the limit of
the compatible asymptotically filtered sequence initially chosen for the half-space y = 7(x) €
Vi1 U{wsr1}U...U Yy U{wg}. We also call W an extension of R.

We continue by showing that finitary sets remain finitary modulo the subspace generated by
a purely virtual Reay system.

Proposition 7.6. Let A C R? be a full rank lattice, where d > 0, let Go C A be a finitary subset
with C(Go) = RY, let (X, U {v1},..., X U{vs}) be a purely virtual Reay system over Go, and
let m: R — RY(X1U...UX,)" be the orthogonal projection. Then w(A) is a full rank lattice in
C(n(Go)) = RYUAX U...U X)L and 7(Gyo) is finitary.

Proof. As already remarked after Theorem 7.5, 7(A) is a full rank lattice. Since C(Go) = R?, we
have C(7(Gp)) = RU(A U...UX)L. Let R = (Vsr1 U{wsi1},..., - U{w,}) be an arbitrary
purely virtual Reay system over 7(Gp). Let W = (X1 U{v1},..., X U{v,}) be the extension of
R using R'. Then W will be purely virtual (as both R and R’ are purely virtual). Thus W is
anchored since Gy is finitary, implying that 7(WW) = R’ is also anchored (as 7(dy) = 7(ux)< for
all x € X1U. ..U, so if 7(tix) = ur(x) were fully unbounded, then iy could be fully unbounded
too). Since R’ is an arbitrary purely virtual Reay system over 7(Gp), we conclude that 7(Gy)
is finitary, as desired. 0

Proposition 7.7. Let A C R% be a full rank lattice, where d > 0, let Go C A be a finitary subset
with C(Gg) = R, let R = (X U {v1},..., X U{v,}) be a purely virtual Reay system over Gy,
and let 7 : R — RY(A; U...UX,)" be the orthogonal projection. Then, for any n(g) € m(Go)®
with g € Go, we have g € G§. In particular,

m(Go)® € (o)

Proof. Let X = X1 U...UX,. As Gy is finitary, R is anchored with 7(A) a full rank lattice
by Proposition 7.6. Let g € G be an arbitrary element with m(g) € 7(G¢)®. Then, in view of
Proposition 7.1, there exists a subset Y C G such that |Y| = |7(Y)], g € Y, and 7(Y) minimally
encases —¥, where v is a fully unbounded limit of an asymptotically filtered sequence of terms
{x}22, from 7(Gp). By Proposition 3.3.2, we can w.l.o.g. assume there is an asymptotically
filtered sequence {x;}22, of terms z; € G with limit @ = (uy, ..., us) such that 7(z;) = / for all
i and 7(@) = ¥, and as ¥ is fully unbounded, we can assume by Proposition 3.3.1 that 4 is fully

unbounded as well (by choosing such @ with ¢ minimal, i.e., with 7w (d") = 7w(@)? = ). Thus
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7(Y") minimally encases —7 (@) = —%, and thus also the equivalent tuple —(m(us, ), ..., 7(us,)),
where 1 < 51 < ... < s, = t are the associated indices for 7(@). Hence Proposition 4.16
implies there is a partition Y =Y; U...UY} such that (7(Y1) U{m(u,)}, ..., 7(Ys) U{n(ur,)})
is a Reay system for some r; < ... < 7y with {r1,...,r} C {s1,...,s} and r = s;. By
the same argument described after Theorem 7.5, we can extend the virtual Reay system R to
obtain a virtual Reay system W = (X1 U{v1},..., XsU{vs}, iU{wi},..., Y U{w,}) over Gy
with Uy, = (uq, ... ,urj) and Y a set of representatives for the one-dimensional half-spaces in
Y, for each j € [1, /], where we use the definition of the r; as given by Proposition 4.16.1, that
u; € RY(X UL UX, UM U...UY;_) for all ¢ < rj with Uy, ¢ RY(XU.. .UX;UNU...UY,_1),
to ensure each half-space w; is well-defined with 0({w;}) C X1 U...UX; UV U...UY;_1 the
support set minimally encasing —# by Proposition 7.4.3. Note W is purely virtual as R is
purely virtual and # is fully unbounded. Since g € Y = Y; U ... U Yy, it follows that g is a
representative for some y € ); and j € [1,/]. Indeed, we may take g = y(i) = y(i) for all ¢ > 1.
But now Proposition 7.4.1 implies that g € G, as desired. O

Our next goal is to give a characterization of G, for Gy finitary, in terms of A®*™(Gy) and

linear combinations over Q4. Towards that end, we continue with the following lemmas.

Lemma 7.8. Let A C R be a full rank lattice, where d > 0, and let X C A be a linearly
independent subset. There exists a positive integer N > 0 such that, for any g € ANR(X), we
have Ng € Z{X). Moreover, if we also have g € —C°(X), then X U {g} is a minimal positive
basis (or X = 0 with g = 0) and there is an elementary atom U with Supp(U) = X U {g} and
1 <vy(U)<N.

Proof. If X = (), then the lemma holds with N = 1, so we may assume X is nonempty. Since
X is linearly independent, Z(X) is a full rank lattice in R(X). Via the Smith normal form ([88,
Theorem II1.7.8] [72, Theorem 2]) applied to the sublattice Z(X) < A, we can find a lattice basis

{e1,...,eq} for A and positive integers aj | ... | as, where 1 < s < d, such that {ajeq,...,ases}
is a lattice basis for Z(X). Note that R(ey,...,es) = R{ajeq, ..., ases) = R(X). Thus, since
{e1,...,eq} is a lattice basis for A, and in particular linearly independent, it follows that any

g € ANR(X) lies in the lattice Z{ey, ..., es). Since Z(X) < Z(ey,...,es) is a sublattice of full
rank, it follows that Z(e,...,es)/Z(X) = G := Z/a1Z %X ... x Z/asZ is a finite abelian group
of exponent N = as > 0. As a result, any g € ANR(X) has Ng € Z(X).

Now suppose g € AN —C°(X) C ANR(X). Then Proposition 4.7.4 implies that X U {g} is a
minimal positive basis (since X is linearly independent) and Proposition 4.7.5 implies that there

is a strictly positive linear combination > «a,x =0, s0 o > 0 for all x € X U{g}, with the
zeXU{g}
property that ag = 1 and, if ) (2 = 0 is another linear combination with 5, € R, then
zeXU{g}

the vector (8z)zexuig) is @ real scalar multiple of the vector (az)ze xu{g}-
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Since Ng € Z(X), it follows that there is a linear combination > S,z =0 with 8, € Z
zeXU{g}
for all x € XU{g} and B, = N > 0. Thus, by the previous observation, we must have 5, = Na,

for all x € X U {g}. In particular, since N > 0 and a, > 0 for all z € X U {g}, it follows that
Bz > 0 for all x € X U {g}, implying that S = H;:GXU{g} zlP] is a zero-sum sequence. As
a result, since X U {g} is a minimal positive basis, Proposition 4.7.8 implies that there is an
elementary atom U | S with Supp(U) = X U{g} and S = U™ for some integer m > 1, ensuring
that 1 <v,(U) < By = N, which completes the proof. O

Lemma 7.9. Let d > 1 and let X C R? be finite. Then 0 ¢ C*(X) if and only if there is a
co-dimension one subspace H C R such that X C HS.

Proof. Any set X C R? contained in an open half-space clearly has 0 ¢ C*(X). For the reverse
inclusion, we proceed by induction on d, with the case d = 1 clear. By Proposition 4.3, X C H
for some co-dimension 1 subspace H C R?. Applying the induction hypothesis to X N H yields
a subspace H' C H such that X N H lies entirely on one side of the subspace H'. Since X is
finite, the space H can be slightly perturbed by a rotation about H’ (fixing the points in H') to

yield the needed subspace. O

Proposition 7.1.2 means g € G when there is a fixed linearly independent set X containing

g such that x; = — > agm)x € —C°(X) for some z; € Gy with agg) — o00. By Propositions
zeX

4.7.4 and 4.7.5, this means there are elementary atoms U; with Supp(U;) = X U {x;} and
vz (Ui) = vzi(Ui)agw) > al(x) for all x € X. In particular, vy(U;) — oo as az(fq) — oo. Thus
Theorem 7.10 implies that, if sup{v,(U) : U € A*™(Gp)} = oo, then this supremum can be
obtained by restricting to a subfamily of elementary atoms U; whose supports are each equal
apart from one varying element. Obtaining the Z, linear combination analog of Theorem
7.10 using atoms instead of elementary atoms (including the stronger statement regarding the
uniform bound N) will be one of the main steps in our characterization result, and one which

needs further machinery regarding finitary sets developed in the next subsections.

Theorem 7.10. Let A C R? be a full rank lattice, where d > 0, and let Gy C A be a finitary
subset with C(Go) = R%. Then

G5 ={g € Go: sup{v,(U): U A"™(Gy)} = o0}.
Indeed, there is a bound N > 0 such that vg(U) < N for any U € A%™(Gy) and g € Go \ G,
Proof. By Proposition 7.2, we have the basic inclusion

G5 C{g € Go: sup{v,(U): U € A*™(Gp)} = o0}

It remains to establish the reverse inclusion, which follows from the stronger conclusion about
the existence of the uniform bound N. To this end, assume by contradiction that {xz(o)}fil is a
0 ¢ Go\G§ and {U;}2, is a sequence of elementary atoms, so U; € A (Gy),

sequence of terms x;
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with v ) (U;) — oo. Then | Supp(U;)| < d+ 1 for all i, so by passing to a subsequence, we can
W.l.O.g.Z assume all U; have the same cardinality support (say) s + 1 With s € [1,d] (if s =0,
then U; = 0 for all 4, contradicting that v () (U;) — 00). Let Supp(U;) = {x AR 7$§S)} for

L
i > 1. Since |Supp(U;)| = s+ 1 > 2, we have 0 ¢ Supp(U;) for all i. If {:1: }‘?01 is unbounded,
then by passing to a subsequence, we can w.l.o. g assume {:U } °, is radially convergent with
unbounded limit gg. On the other hand, if {xl °°, is bounded, then, since x( ) € Gg C A and
since any bounded subset of lastice points is finite, we can, by passing to a subsequence, w.l.o.g.
}OO

assume that the Sequence {x 1 is constant, say with :c( ) = go for all ¢+ > 1. Repeating this

argument for each {z, () pe, for j=1,2,...,s, we can likewise assume that, for every j € [0, s],

()

either {a:(] © | is constant, say with x;”’ = g; for all i > 1, or else {x; G )} © , is radially convergent
with unbounded limit g;. Partition [0, s] = I,, U I, with I,, consisting of all indices j € [0, s]
such that {a; 20, is unbounded, and I, consisting of all indices j € [0, s] such that a:( D = = g;

for all ¢ > 1. Thus
{97: jelb} CGy and {g;: jel.} CGy.

If I, = 0, then Supp(U;) = {go, - .-, gs} is constant for all i, in which case the elementary atoms
Ui are all equal to one another (in view of Proposition 4.7.8), contradicting that v_« (U;) — oo.
Therefore we can assume I, # (. '

Suppose 0 ¢ C*(go, ..., gs). Then Lemma 7.9 gives a co-dimension one subspace H C R? such
that go,...,gs € H3. In consequence, since the sequences {xEJ ) -2, are radially convergent with
limit g;/|g;||, it follows that, for all sufficiently large 7, we also have xl(o), cee mgs) € HI, ensuring
that 0 ¢ C*(azgo), . ,:cz(s)) = C*(Supp(U;)). However, this contradicts that U; € A®™(Gy) is an
elementary atom. So we instead conclude that 0 € C*(go,...,gs). Thus, since g; # 0 for all
j €0, s], there is a minimal positive basis B C {go,...,gs}. Let

X:Bﬁ{gj: jEIb}gGo.

Since I, # 0, it follows that X C Supp(U;) is a proper subset of Supp(U;) for all 7 > 1.
Thus, since each Supp(U;) is a minimal positive basis, it follows from Proposition 4.7.3 applied
to U; that X is linearly independent. Thus, since B is a minimal positive basis, it follows
from Proposition 4.7.2 applied to B that X C B is a proper subset, which then implies that
|BN{gj: j € I,}| > 1. On the other hand, if |[BN{g; : j € I,}| > 1, then this contradicts that
Gy is finitary, which ensures (as described after Theorem 7.5) that any minimal positive basis
with elements from G U G§° can involve at most one element from Gg°. So we conclude that
|BN{g;: j€l,}| =1, and thus |X| = |B| — 1. Consequently, if go € X, then Proposition 7.1.1
implies that gy = x@(o) € G§ for all ¢ > 1, contradicting that xl(o) € Gy \ G§ by assumption. So

we may instead assume gy ¢ X.
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Suppose B = {go,...,9s}. Then X = {g1,...,9s} as go ¢ X, ensuring that 20 ¢

i
Co(azgl),...,:nl(-s)) = C°%g1,...,95) for all ¢ > 1 with ¢1,...,95s € Go C A linearly indepen-
dent elements (as the sequences {JZZ(] ) o, for j € [1,s] will all be constant). Applying Lemma
7.8 to the linearly independent set X = {g1,...,9s}, we find that there exists some constant
N > 0 such that v «)(U;) < N for all ¢ (as there is a unique elementary atom with given
support by Propositiz)n 4.7.8), contradicting that vz(o)(Ui) — 00. So we instead conclude that
B C {go,---,9s} is a proper subset. '

By re-indexing the g; with j € [1, s|, we can assume
X={gj:jel+1,s]}CGy and B=XU{g} forsometel0,s]ands €l,s—1]

(we have s’ > 0 in view of B C {go,...,gs} being proper). Note t € I, and s’ € [1,s — 1] is
only possible when d > s > 2, which means the proof is now complete for d = 1 (and trivial for
d = 0), allowing us to proceed inductively on d.

Each g; € B defines a one-dimensional half-space g; = R, g;, and letting B be the corre-
sponding set of half-spaces, it follows that R = ((B \ {g:}) U {g:}) is a purely virtual Reay
system over Go (in view of t € I, and since all other g; € B\ {¢:} = X C Gp). Let
7 RY = RYB)L = R{gyy1,...,95)" = R(X)L be the orthogonal projection. Proposition
7.6 ensures that 7(A) is a full rank lattice in C(m(Gp)) = R(X)* with 7(G)p) finitary.

Note that 7(z) = 0 for all z € X. On the other hand, if J C [0,s'] is a proper subset,
Z(j)
as otherwise {ajgj) cjeJiuX = {xgj) jeJru {azgslﬂ),...,azgs)} would be a linearly
dependent, proper subset of Supp(U;), contradicting that Supp(U;) is a minimal positive basis.
In particular, since s’ > 1, it follows that W(l’z(j)) # 0 for all j € [0,s'] and ¢ > 1. Since there is

then (for any ¢ > 1) the elements 7(z;”’) for j € J must be distinct and linearly independent,

a strictly positive linear combination of the elements from Supp(U;) equal to zero, this is also
true for the elements from 7w (Supp(U;)) \ {0} = 7(Supp(U;) \ X). Thus it now follows from
Proposition 4.7.2 that 7(Supp(U;)) \ {0} = {ﬂ(xgo)), e ,ﬁ(xgs/))} is a minimal positive basis of
size s’ + 1 for every i > 1. Consequently, Proposition 4.7.8 now further implies that there is a
unique atom A; € A(7(Gp)) with Supp(4;) C 7(Supp(U;)) \ {0}, and we have A4; € A*™(7(Gyp))
with Supp(A;) = w(Supp(U;)) \ {0} for this atom. Hence each 7(U;) = AENJ - 0IM:] for some
integers N;, M; > 0, and there is a unique subsequence V; | U; such that w(V;) = A; (as 7 is

injective on the elements of Supp(U;) \ X), meaning
Uy - wil = il

where W; | U; is the subsequence consisting of all terms from X. Since each U; is zero-sum, and
since v, (W;) > 0 for every z € X with X linearly independent, it follows that

0=o(U; - W) + o(Wi) = Nio (Vi) + o(Wi) € Nio(V;) + C°(X).
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Thus, since N; > 0 and Supp(V;) € Gy C A, it follows that
o(V;i) e AN—-C°(X) CANR(X) foralli>1.

Since X # () is linearly independent, we can apply Lemma 7.8 with ¢ = o(V;) to conclude there
is a positive integer N > 0 such that No(V;) € Z(X) and, moreover, there is an elementary
atom S; with Supp(S;) = X U {o(V;)} and v,(y;)(S;) < N, for every i > 1. Then
T, = ‘/i[vU(vi)(Si)] . H;EXx[vx(Si)] € F(Go)

is a zero-sum sequence with Supp(7;) = Supp(U;). In consequence, since U; is an elementary
atom, it follows from Proposition 4.7.8 that v, (U;) < v4(T;) for every g € Supp(U;). In particular,
v.o(U) < v o) = ve)(9i) - v (Vi) < N-v ©(Vi). Thus, since v ) (U;) — oo, we
conclude that Z\/x(o)(Vi) = 00 as well. However, sinceZTr(Vi) = A; € Ae'm(ﬁ(bo)), this implies
that v_ (xgo))(Ai) ~ 0. By the induction hypothesis applied to 7(Gp), we know there is a bound
x(g)(A) > N’ for some A € A¥™M(7(Gp)). Thus,
(4;) — oo, it follows that W(:EZ(O)) € m(Go)® for all sufficiently large i. But now
(0)

that :L'Z(O) € Go \ G§ for all 4 > 1, which completes the proof. 0

N’ > 0 such that 7(g) € 7(Gp)® whenever v

since Vﬂ(mgo))

Proposition 7.7 implies that x;’ € G§ for all sufficiently large 4, contradicting our assumption

We continue with an important property of purely virtual Reay systems.

Proposition 7.11. Let A C R? be a full rank lattice, where d > 0, let Go C A be a finitary
subset with C(Go) =RY, let R = (X U{v1},..., X U{v,}) be a purely virtual Reay system over
Go, let X = X1 U...UXs, and let 7 : R — RY(X)L be the orthogonal projection. If U € F(Go)
with m(U) € A¥™(w(Go)) and |Supp(U)| = | Supp(7(U))|, then wt(—g) < 1, where g = o(U).
Moreover, if wt(—g) =1, then Supp(U) C G§. In particular, (Go NRY(X))\ —C(X) C G§.

Proof. Since 71(U) € A¥™(7(Gy)) is an atom, we have g = o(U) € ker 7 = RY(X’). Furthermore,
since | Supp(U)| = | Supp(w(U))|, we conclude that 7 is injective on Supp(U) with Supp(w(U))
either {0} or a minimal positive basis. Note g = o(U) € Cz(Gp) € A as U € F(Gyp). Let
B = Suppg(—g), in which case —g € CY(B)°. Thus the support set B minimally encases the
limit —a := (—g/||g]|) (cf. the comments after Lemma 5.4), with the encasement trivially urbane
as the limit @ is composed of a single coordinate. We may assume g # 0 as the proposition
is trivial for ¢ = 0. By Proposition 6.3 applied to B, there is a virtual Reay system R’ =
(V1 U{wi}, ..., Ve U{wy}) over Go U {g} with J, = B and iy, = 4. Moreover, each w; with
j € [1,¢ —1] is defined by a strict truncation of a limit i@y for some y € |B, and is thus fully
unbounded by Proposition 6.6 (as R is purely virtual and anchored in view of G being finitary).
Let U be the set of one-dimensional half-spaces generated by the elements from Supp(U), in
which case Supp(U) is a set of representatives for 2. Let 7/ : R — RY(); U...UY,_1)* be the
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orthogonal projection. Then

(7.5) ' (YeU{we}) = 7'(BU{g})

is a minimal positive basis of size |B| + 1 by (OR2) with g = ¢(U). Thus 0 is a strictly positive
linear combination of the elements from 7/(Supp(U) U B). Since Y1 U...U Y1 C X (by
Proposition 6.3(a)), we have ker 7/ C RY(X) = ker, and since B C X U {vy,...,Vs}, we have
R(B) C RY(B) C RY(X) = ker .

If | Supp(U)| = 1, then U = g and 7’ is injective on Supp(U) U B by (OR2) (as it is injective
on BU{g}). If | Supp(U)| > 1, then w(y) # 0 for all y € Supp(U), while w(z) = 0 for all x € B,
ensuring that 7'(x) # 7'(y) for € B and y € Supp(U) in view of ker 7’ < ker 7. Thus, since
7' is injective on Supp(U) (as 7 is injective on Supp(U) with ker 7’ < kerw) and since 7’ is
injective on B (by (OR2)), we conclude that 7’ is injective on B U Supp(U) in both cases.

Let us show that 7'(B U Supp(U)) is a minimal positive basis of size |B| + || (as 7’ is
injective on B U Supp(U)). If |Supp(U)| = 1, then U = g with Supp(U) = {g¢}, in which case
this follows from (7.5). Next assume | Supp(U)| > 1 and consider an arbitrary linear combination

Yoagm'(z)+ Y. By’ (y) = 0 for some oy, By € R. Since 7'(BU{g}) is a minimal positive
zeB y€Supp(U)
basis of size |B| + 1, it follows that n/(B) is linearly independent, and thus 3, # 0 for some

y € Supp(U), allowing us to w.lo.g. assume 3, > 0 for some y € Supp(U). Applying =

to this linear combination, we find that ) Bym(y) = 0. Thus, since Supp(n(U)) is a
yeSupp(U)
minimal positive basis of size | Supp(U)]|, it now follows from Proposition 4.7.5 that 3, > 0 for

all y € Supp(U). Since > vy(U)y = o(U) = g with n(g) =0 (as g = o(U) € kerm), it

y€Supp(U)
follows from Proposition 4.7.5 that Y. Byy is a positive scalar multiple of g (indeed, each
y€Supp(U)
By = avy(U) for the same a > 0). But now Y a,n'(z) = — >, By7'(y) is positive scalar
zeB y€Supp(U)

multiple of —7’(g), which combined with 7/(BU{g}) being a minimal positive basis ensures that
ag > 0 for all z € B (by Proposition 4.7.3). Combined with the fact that 3, > 0 must also hold
for all y € Supp(U), shown earlier, we conclude that any proper subset of 7/(B U Supp(U)) is
linearly independent. Thus, since we showed earlier that 0 is a strictly positive linear combination
of the elements from 7/(BUSupp(U)), it now follows from Proposition 4.7.2 that 7/( BUSupp(U))
is a minimal positive basis in the case | Supp(U)| > 1 as well.

As a result, R = (V1 U{wi},..., Vi1 U{we_1}, (BUU) \ {x}) U {x}) will be a virtual
Reay system over Gg for any x € BUU with all half-spaces from U having trivial boundary
with representative sequence a constant term equal to an element from U. Consequently, if
wt(—g) > 1, then we can choose x € B with x = v; for some j € [1, s, thus ensuring that iy is
fully unbounded (as R is purely virtual), in which case R” is purely virtual. In this case, since
Gy is finitary, we must have R” anchored. In particular, all limits defining the half-spaces from
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B\ {x} are anchored. Thus wt(—g) = 1 as R” is purely virtual, and Proposition 7.4.1 applied
to R” yields Supp(U) C G, as desired. O

Lemma 7.12. Let £ C R? be a subspace, let m : R? — £+ be the orthogonal projection, let
Go C RY be a subset such that w(Gg) is finite and let

Go={o(U): U € F(Go), n(U) € A(r(Go))}.

Suppose C C R is a polyhedral cone such that C encases every i € Ggm. Then C also encases
every i € G"m.

Proof. If C'is empty, then Gi™ must also be empty, ensuring that G is bounded. Since 7(Gp)
is finite, it follows by Dickson’s Theorem [54, Theorem 1.5.3, Corollary 1.5.4] that A(7(Gp)) is
finite, and now éo is also bounded, ensuring that égm is empty. In such case, the lemma holds
trivially. Therefore we now assume C' is nonempty. Let {z;}3°, be an asymptotically filtered
sequence of terms from Gy with fully unbounded limit @ = (u,...,u), say with each z; = o(U;)
for some U; € F(Gy) with 7n(U;) € A(mw(Gp)). As previously remarked, since 7(Gy) is finite, it
follows that A(7(Gg)) is also finite. As a result, by passing to an appropriate subsequence, we
can w.l.o.g. assume 7(U;) = V is constant and equal to the same atom for alli. Let V = a;-...-ay
with a; € m(Go). Then each z; = yl( URE - yz( ) for some y( e Wlth ﬂ(yz( )) = a; for all
j € [1,/4]. By passing to a subsequence, we can w.l.0.g. assume each {yl }001 is either bounded
or an asymptotically filtered sequence of terms from Gy with complete fully unbounded limit ;.
By hypothesis, C' encases every ;, whence Proposmon 3.6.3 implies that {yZJ )} °, is bound to
C. This is trivially true for any bounded sequence {yZ] )} ©, as C is nonempty, and so {yZ 2 ol
is bound to C for each j € [1,¢]. Thus, for each j e [1 ¢], there is a constant N; > 0 such that,
for every ¢ > 1, there is some z( 7 € C such that Hy 24 )|| < Nj. Since C' is convex, it follows
that z; = zi(l) +...+ zz( ) € C with |lzi — 2| < ZN for all i > 1 (by the triangle inequality).
Hence {z;}2; is bound to C, whence Lemma 3. é implies that there is an asymptotically filtered
sequence {z}}2°, of terms z, € C' having fully unbounded limit «, in which case Proposition 3.7

ensures that C encases 1, as desired. ]

Next, we derive additional properties regarding the geometry of a finitary set Gy via its
maximal purely virtual Reay systems. Theorem 7.13.2 ensures that a finitary set Gp has a
linearly independent subset X C Gf C Gy such that Gy is bound to —C(X), meaning the set Go
must be concentrated around the simplicial cone —C(X). Theorem 7.13.3 then further implies
that the finitely generated convex cone C(X) perfectly approximates the (possibly) non-finitely
generated convex cone CY(X) in regards to containment of elements from —éo, giving our first
example of finite-like behavior for finitary sets. Combined with Proposition 7.11, we obtain
restrictions on the location of the elements from Gy in relation to the simplicial cone C(X).
Note Go NR(X) C Gy since the single term equal to 0 is always an atom. Since we may not
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have a maximal Reay system spanning the entire space R?, the set Go as well as Proposition
7.11 will be used for dealing with elements lying outside R(X).

Theorem 7.13. Let A C R¢ be a full rank lattice, where d > 0, let Go C A be a finitary subset
with C(Go) = RY, let R = (X1 U {v1},..., & U{vs}) be a mazimal purely virtual Reay system
over Go, let X = X1 U...UXy, and let m: RY — RY(X)L be the orthogonal projection.

1. —X encases every it € Gim. In particular, Go is bound to —CY(X).

2. For any tuple k = (i)zex with all i, sufficiently large, —C(X (k)) encases every @i € Gi™.
Moreover, Gg is bound to —C(X (k)) with X (k) C G a linearly independent set.

3. Let Go = {o(U) : U € F(Gy), m(U) € A(x(Go))} and let X' C X. Then

Go N —C(1X'(k)) = Gon —CY(X")

for any tuple k = (iz),c 8 with all i, sufficiently large.

Proof. 1. Let {x;}:°, be an arbitrary asymptotically filtered sequence of terms z; € G with fully
unbounded limit @ = (uq,...,u;). Since R is a mazimal purely virtual Reay system over the
finitary set Gy, it follows that uq, ..., u; € RY(X) (otherwise {m(z;)}:2; would be an unbounded
sequence of terms 7(z;) € 7(Gyp), contradicting that w(Gy) is finite in view of the maximality of
R). Thus Proposition 7.4.3 implies that CY(X) encases —@. Since @ € Gi™ was arbitrary, and
since W is a polyhedral cone by Proposition 5.1.2, Theorem 3.9.4 implies that G is bound
to —CY(X), and thus also to —CY(X).

2. Since G| is finitary and R is purely virtual, it follows that R is anchored. For any tuple
k = (iz)zex with all 4, sufficiently large, we have | X (k) = | X (k) = X (k) by Proposition 6.6, in
which case X (k) = | X (k) is a set of representatives for X = X U...U X, ensuring that X (k) is
linearly independent by Proposition 4.9.1. Moreover, by Proposition 7.4.1, we have X (k) C G§
once all i, are sufficiently large. It remains to show there is some N > 0 so that, so long as all
iz > N, then Gy is bound to —C(X(k)). In view of Theorem 3.9, this is equivalent to showing
any fully unbounded limit @ of an asymptotically filtered sequence of terms from Gy has —u
encased by X (k). By Item 1, each such — is encased by X', and thus must be minimally encased
by some support set B C X, with the encasement urbane in view of B C X.

Let X consist of all subsets B C X for which there is some u € Ggm with —4 minimally
encased by B. Note X is finite as X is finite. Let B € X be arbitrary. Then there is some
fully unbounded limit @ = (u1,...,u) of an asymptotically filtered sequence {z;}32; of terms
from Gy with —# minimally encased by B. We fix the tuple @ for B and will show —C(|B(k))
encases every U = (vy,...,vy) € Gi™ with vy,...,vy € RY(B) for any tuple k = (iz)zcr with all
iz > Npg, for some Np that depends only on B and the fixed tuple 4 (thus not dependent on the
potentially infinite number of varying tuples @ € Gi™). Taking N = maxpecx N, which exists
as X is finite, Item 2 will follow as every fully unbounded limit of an asymptotically filtered
sequence of terms from Gy is encased by some B € X, as noted above the definition of X.
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Proposition 4.16 ensures that if a subset X C R? minimally encases — = —(wy, ..., w,) and
W = (Wi, .., Wpy Wpgl, ..., Wpyp) has w; € R(X) for all ¢ > r, then X also minimally encases
—w'. Indeed, if F = (&1,...,&) is the filter given by the application of Lemma 4.16 to the
minimal encasement of —& by X, then the assumption w; € R(X) for all ¢ > r ensures that it
remains a compatible filter for —u’ having the same associated set of indices (note X encasing
— ensures w; € R(X) for all ¢« < r), and then the oriented Reay system from Lemma 4.16
applied to the minimal encasement of —u also shows that X minimally encases —u’. We use
this observation several times below.

For any tuple k = (iz),ep with all i, sufficiently large, we have | B(k) = | B(k) by Proposition
6.6, in which case [ B(k) is a set of representatives for |[B C X;U...UXs. Thus Proposition 5.1.1
implies that RY(B) = R(| B(k)). Since — is minimally encased by B urbanely, let 1 =ry < ... <
rg < repq =t + 1 be the indices and ) = Cy < C; < ... < Cp_1 < Cp = B C X the support sets

given by Proposition 5.5.2. Then C; minimally encases —u,, = —u1, so Lemma 6.7 implies that
1C1 (k) U {u,,} is a minimal positive basis for RY(C;) with |Cy (k) = {Cy (k) minimally encasing
—u1 = —Up,, and thus also minimally encasing —(u1,...,u,_1) as u; € RY(C1) = R{LC1(k))

for i < r9, so long as all i, are sufficiently large. Let m; : R? — RY(C;)* be the orthogonal
projection. Proposition 5.5 implies that B™ minimally encases —m (@) urbanely with associated
support sets § < C3' < ... < C/'; < C;' = B™ C X™ (as in the proof of Proposition 6.3).
Note |C3' = m({C2 \ IC1) in view of Proposition 5.1.9. Proposition 5.5.2 implies that Co
minimally encases —(u1, ..., ur,) urbanely, and then Proposition 5.5.4 ensures C5' minimally
encases —71((U1,...,Upr,)) = —71(Ury) /|71 (ur,)|| urbanely, allowing us to apply Lemma 6.7 to
conclude (Lég ')(k) minimally encases —m(u,,), once all i, are sufficiently large.

Since R is anchored, Proposition 6.1 ensures that 71(R) is also anchored, while 71 (A) is a
lattice by Proposition 2.1 since ker m; = R({}Cy(k)) with |C1(k) € Go € A. Thus Proposition
6.6 implies that (JC7')(k) = (1C7*)(k). Combined with the conclusions from the previous
paragraph, we find that (|C7')(k) = (1CF) (k) = 71 (1C2 \ 1C1) (k) minimally encases —m1 (uy.,),
once all i, are sufficiently large, so (JC1(k) U {us, },(JC2 \ 1C1)(k) U {ur,}) is a Reay system.
Moreover, since uy, . .., up,—1 € RY(C2) = RY(}Ca(k)) by Proposition 5.5.2, it follows that {Co (k)
minimally encases —(uy,...,ur—1), once all i, are sufficiently large. Iterating this argument,
we find that (LC1 (k) U{uy, }, (1C2\1C1) (k) U{up,},..., (Ce\1Cr—1)(k) U{uy,}) is an ordinary
Reay system for any tuple k = (i,)zex with all i, > Npg sufficiently large. Moreover, for each
j € [1,4], we have —(u1,...,ur;)® = —(u1,...,ur;—1) minimally encased by |C;_1(k). Thus
replacing each element from |Cy(k) = |B(k) with the one-dimensional half-space it defines
and using the asymptotically filtered sequence {x;}:°, as the representative sequence of each
w; gives rise to a purely virtual Reay system Rp = (V1 U{w1},..., Ve U {w¢}) over Gy with
RV U...UYy) = R(B(k)) = RYB) and tyw; = (u1,...,u,;) for all j € [1,£] (it is purely
virtual as — is fully unbounded). Applying Proposition 7.4.3 to Rp, we conclude that, if
7= (v1,...,vp) € GI™ with all v; € RY(B), then —7 is encased by Y1 U...U Y, and thus also
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by |Cy(k) = {B(k) C X (k) (as all half-spaces in the sets ); are one-dimensional), completing
the proof as remarked earlier.

3. Note |X = X since R = (X; U{v1},..., X5 U{vs}) is an oriented Reay system. Each
element g € Go has g = o(U) for some U € F(Gy), implying g € Cz(Gp) € A. Thus

Go C A.

Since Gy is finitary, R is purely virtual and also anchored. Thus, by Proposition 6.6, we have
X (k) = X (k) for any tuple k = (i,)zex with all i, sufficiently large. Since R is a maximal
purely virtual Reay system over Gy, it follows that w(Gp) is finite. Thus Item 2 and Lemma
7.12 imply —C(X (k)) encases every @ € égm for any tuple k = (iz)zex with all i, sufficiently
large. Thus G is bound to —C(X (k)) by Theorem 3.9. Fix one tuple & = (1;)zcx such that
Gy is bound to —C(X(k)) and X (k) = X (x). By Proposition 6.5.2 (applied to each x € B), we
can assume C(}B(k)) C C({B(k)) for any tuple k = (i)zex with all i, sufficiently large and
any B C X' C X. Now X (k) € Gy C A is a linearly independent set of lattice points. Since
GoNRY(B) is bound to both RY(B) and —C(X (k)), the former trivially, it follows from Corollary
3.10 that Gy N RY(B) is bound to RY(B) N —C(X (k) = R(IB(k)) N —C(X(x)) = —C({B(r)),
with former equality by Proposition 5.1.1 and the latter in view of the linear independence of
X (k). We can tile —C(]B(k)) with translates of the fundamental parallelepiped defined using
the linearly independent set | B(k) as the lattice basis for Ag := Z({B(k)) < A, and then any
point x € —C({B(k)) will be within distance M of some lattice point from Ag N —C(}B(k)),
where M is the maximal distance between a point of the fundamental parallelepiped and the
set of vertices for that parallelepiped. Thus, since Go NRY(B) is bound to —C({B(k)), it follows
that there is a bound N such that any g € Go NRY(B) is within distance N of some lattice point
—x4 € AN —C(lB(k)). Moreover, as there are only a finite number of possibilities for B, we
can assume the same N suffices for each possible B C |X' C X.

Any g € éoﬂ—CU(X’) has —g encased by X’, and thus there is some B < X' C XjU...U... X
which minimally encases —g, ensuring that B C |X” is a support set with —g € CY(B)° C
RY(B) = R(/B(k)), with the final equality in view of Proposition 5.1.1. Since |B(k) C X (k)
is linearly independent, it follows that |B(k) is a linear basis for RY(B). For x € [B, let
r =X(1x) = x(tx) € | B(k), and let

(7.6) Z axT = —g

be the representation of —g € RY(B) as a linear combination of the basis elements | B(x), where
ax € R. Since B is a support set, and thus virtual independent, Proposition 5.1.4 ensures
that any element contained in CY(B)° is a strictly positive linear combination of some choice
of representatives from all the half-spaces x € B. Moreover, any representative set B for B
is linearly independent modulo RY(9(B)) by Proposition 5.1.3. Thus, since —g € A N CY(B)°,
it follows by considering (7.6) modulo RY(9(B)) that ax > 0 for every x € B (though not
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necessarily for all x € |B). By the work above, there is some z, € A N C({B(k)) with
d(—g,z4) < N. Let
> B =1

xelLB
be the representation of z, € C(/B(k)) as a positive linear combination of the basis elements
IB(k), so fx > 0 for all x € |[B. Since z, € Ag N C({B(k)) = Cz({B(k)), where the latter
equality follows in view of the linear independence of |B(k) and Ap = Z({|{B(k)), we have
Bx € Z4 for all x € |B.

Observe that v < > 72 = || 3 wL(@)[]* < [|T)* - || 32 vxx|* for any 7« € R and y €
x€1B x€lB x€1B
1B, where T : RY(B) — RY(B) is a linear transformation mapping |B(x) to an orthonormal

basis and ||T'|| is the operator norm of T' with respect to the Euclidean Lg-norm. Thus, since
d(—g,z4) < N, it follows that there is some N’ > 0 such that |ax — Bx| < N’ for all x € |B
and —g € Go N CY(B)° (namely, N’ = ||T| - N). For any By > ax with x € B, let 4. be the
greatest integer strictly less than ax. Note 5 > 0 in view of ax > 0. For all other x € |B, let

B = Px > 0. Let

> o=,

x€ElB
Since |Bx — fx| < |ax — Bx|+1 < N’ +1 for all x € B, there is some N such that ||z, — x| <
N" for all g € Gy N —CY(B)° (for instance, in view of the triangle inequality, we could take

N" = (N"+1) > ||lz||). Thus, by replacing N with a larger value and using xj, in place of x,
x€ElB
we obtain the additional conclusion that

(7.7) Bx €Z, forallxe B and ax>fx >0 forall xehB,

ensuring that
xg =, € Cz(IB(r)) C A.
Thus, since g € A and d(—g,z4) < N, we have z, +y = —g with y € A and ||y|| < N. Note

y=—g-1y= Y (ax— )z

xelB
with ax — Bx > 0 for all x € B in view of (7.7). Thus y € . (x°+39(x)) C Y. x C CY(B). In
xeB xeB
summary, we now have
(7.8) yeANCY(B) and |y| <N.

Since any bounded set of lattice points is finite, there are only a finite number of y satisfying
(7.8). In consequence, Proposition 6.5.2 implies that, for any tuple k = (i,)cx with all i,
sufficiently large, we have C({B(k)) C C({B(k)) € C({X'(k)) and y € C({B(k)) € C({X'(k)),
for every support set B C |X’ and every possible y satisfying (7.8). But then y € C({X'(k))
and z, € C({B(k)) € C(LB(k)) C C(LX'(k)), for every g € Go N —CY(X"), ensuring that —g =
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y+a, € C(LX'(k)) in view of the convexity of C({X’(k)). Thus Gon—CY(&X") C Gon—C(} X' (k)).
Since CY(}X'(k)) = CY(LX'(k)) € CY(X’) for any tuple k, the reverse inclusion is trivial, and
Item 3 follows, completing the proof. O

7.2. Series Decompositions and Virtualizations. Let A < R? be a full rank lattice, let
Go C A be a finitary subset with C(Gp) = R%, and let R = (X; U {v1},...,&Xs U {vs}) be a
purely virtual Reay system over Gy. Since G is finitary, any purely virtual Reay system must
be anchored. However, if R is anchored, then Gg C A together with Proposition 6.6 ensures that
x(i) = x(t) for any x € (J;_; &; once 1 is sufficiently large. Suppose x € X; with j € [1,s]. Any
x(7) with 7 sufficiently large is equal to x(7) and is then an actual lattice point from G which is a
representative for x. Let 2/ € G be any element which is a positive scalar multiple of u; modulo
RWU{;% X;), where tx = (ug,...,ut),s02’ € (RU(Ug;ll X;)+x)°. For instance, 2’ € Gy could be
any representative for the half-space x, including any 2’ = x(i) with ¢ sufficiently large. Define a
new half-space x’ = Rz’ with 9(x") = {0}. Then x and x’ are both equal modulo RU<U3;11 X;),
so replacing x by x” would preserve (OR2) in the definition of an oriented Reay system. Of course,
if j =1, then x = x’ since 9(x) = {0} in this case, and we have more or less done nothing apart
from changing the representative for x. Suppose, for j = 1,2, ..., s, we replace each x € |J;_; X;
with some half-space x’ with 9(x") = {0} as just described to result in (X{U{v1},..., XU{vs}).
Now (X] U {v1}) is still a virtual Reay system over G with ix = Uy for all x € X, the value
of @y, unchanged and R”(X]) = RY(X]). Since R is purely virtual, —uy, is fully unbounded or
trivial and minimally encased by 9({va}) C RY(X;) = RY(X]). Thus, since Gy is finitary and R
is purely virtual, it follows from Proposition 7.4.3 applied to (X]U{v1}) that —y, is minimally
encased by some subset By C A7, allowing us to define a new half-space v}, with ﬁvé = Uy, and
d({vh}) = By. This makes (X] U{v]}, X U{v,}) into a virtual Reay system, where v/ := vy,
with 9(x") = {0} and x/(i) = 2’ constant for x’ € Xj. Moreover, since the value of each x’ € X3
has not changed modulo RY(X;) = RY(X7), it follows that RY(X]UXS) = RY(X;UX,). Tterating
this argument, we find that R’ := (X] U{v]},..., X, U{v.}) is a purely Virtual Reay system
over Gy with RU(_, /) = RY(J_, &) and iy = iy, for all j € [1,5], and with a(x') = {0}
and x/(i) = 2/ € Gy constant for all x’ € X{ U...UX.. In particular, Proposition 7.4.1 applied
to R ensures that any 2/ € G which lies in the open half-space (RY(UJ/Z{ &;) +x)°, for x € A;,
must satisfy ' € G§ (assuming Gy € A C R? is finitary with C(Go) = R? and R purely virtual).

The above construction of R’ was done using arbitrary elements ' € G lying in the open half-
space (R%Ug;ll A;) +x)°, for x € A, and resulting only in the existence of subsets d({v’;}) C
X{U...UX] ;. Suppose instead we choose each 2’ = x(ix) for some fixed but sufficiently large
ix. Let k = (ix)xex be a fixed tuple with all ix sufficiently large (as determined below). For a
half-space x € Xy U{vi}U...UX;U{vs} from R, let X' € X{ U{vj}U...UX.U{v.} denote
the corresponding half-space from R’, so each x’ = R, x(ix) whenever x € X U...UX;s, and for
asubset X C A U{vi}U...UX;U{vs}, let X' ={x": xe X} Cx/U{Vvi}U...uX]U{v.}.
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Assuming the indices ix are chosen sufficiently large, Proposition 6.5.1 implies that

(7.9) o({vi}) = Jo({v;})) = L0({v;})(k)  for each j € [1,5].

Note, for the equality (7.9) to make sense, we informally identify |0({v;})(k) with the collection
of one-dimensional half-spaces generated by the elements from [0({v;})(k), with this convention
continued at later points of the discussion. If 4; is the set defined in Proposition 6.10.1 for R,
then Proposition 7.4.2 ensures that A; \ {v;} € X; U... U X}, in which case Proposition 6.6
implies (JA; \ {v;})(k) = (iAJ/\\E)]})(k:) so long as all indices are sufficiently large. In view
of Proposition 6.10.2(e), we have RY(A;) = RY(A; \ {v;} Ud({v;})), while (4, \ {v;})(k) C
RY(A; \ {v;}) as the elements of (A; \ {v;})(k) are representatives for the half-spaces from
A; \ {v;}. This ensures that the set Y}, in Proposition 6.10.3 (for the element v;) is empty, in
which case Proposition 6.10.3 implies that (J.A;\ {v;})(k) minimally encases —iiy, so long as all
indices are sufficiently large.
In view of (7.9) and Proposition 5.1.1, we have

RYO({vi}H) = R{LO({v;}) (k) = R7(({v;}))-
Let my, = R? — RY(9({v;}))* be the orthogonal projection. By Proposition 5.2.1 and Propo-
sition 5.1.9, 7y, is injective on (A7 U ... U &Xs) \ JO({v;}) and maps all such elements to non-
zero half-spaces. In consequence, since (LA4; \ {v;})(k) € X] U ... U X} minimally encases
— iy, = —ﬁv;, it follows from Proposition 5.5.4 that ((iAj \ {fuj})(k)> 7= v, (L45\ Lv;) (k)
minimally encases —my (ﬁ"ﬁ) Thus, since A;\{v;} C X, we conclude that my, ((}4;\lv;)(k)) =
Suppwv_(R,)(—ij(ﬁv;)), meaning (14; \ Jv;)(k) is the pull-back of Supp, (r/)(—7v; (ﬁv;_)). As
J - J
a result, it now follows from Propositions 6.10.1 and 6.10.2(b) that, letting .A;- and A/, denote
J
the sets given by Proposition 6.10 for R', we have A = (1A;\Jv;)(k)U{v}} = (LA, \i@({vj}))/
and A:,; = (AN ViUV )* = (LA \ {v;}) (k)" = (1 A5\ {v;})(k), with the final equality
holding since all half-spaces from X’ have trivial boundary, and the second in view (7.9). In

sumiary,
o({vih) = (L({v;}), Ay = (A and A5 = (LA;\O({v;}))"  for every j € [L,s].

This ensures the virtual Reay system structure associated to each v; is preserved in vg- when
passing to the virtual Reay system R’ (as much as possible given that 9(x’) = {0} for every
x' e X[U...UX)).

In view of the observations just made, when considering a purely virtual Reay system R =
(X U{vi},..., X U{v,}) over a finitary subset Gy C A with C(Gy) = R?, we can often restrict
attention to when d(x) = {0} for all x € A7 U...U X, as if this fails for R, then another
virtual Reay system R’ over Gy can be constructed with this property as described above with
the values of d({v;}), A; and Ay, minimally affected.
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Let A < R? be a full rank lattice and let Gy C A be a finitary subset with C(Gy) = R%. We
now define the followings sets:

S
X(Go) = {U AX; : there is a purely virtual Reay sytem (X; U{v1},...,XsU{vs}) over Go},
i=1
X(Go) ={X : X C Gy is a set of representatives for the half-spaces from some X € X(Gy)}.

Since the empty tuple is by default a purely virtual Reay system, we always have () € X (Gy).
If X € X(Gp), then there is a purely virtual Reay System (X; U{vi},..., X5 U{vs}) over Go
with X C Gp being a set of representative for the half-spaces from J;_; A;. Per the discussion
above, replacing each x € X with the half-space Rz results in a purely virtual Reay system
R = (X[U{v]},..., XLU{V.}) over G such that X is a set of representatives for the half-spaces
from (J;_, X/ and 9(x") = {0} with x'(ix) = = € Gy for all X' € |J;_; X/ and ix > 1. Thus it can
always be assumed that X € X(Gp) came from a virtual Reay system having these properties.
Prior discussion ensures that X C G for any X € X(Gp), while any X € X(Gy) is a linearly
independent subset of Gy C A by Proposition 4.9.1, thus generating a sublattice of A. Let

PBz(Go) = {Z(X) : X € X(Gp)} and
Pr(Go) = {RV(X) : X € X(Go)} = {R(X) : X € X(Go)} = {R(A) : A" € Pz(Go)},

with the second equality for Br(Go) by Proposition 5.1.1. Note Pz (Gy) consists of sublattices
of A as just discussed. The linearly independent set X € X(Gy) can be recovered from Cz(X)
by considering each ray defined by a vertex in the polyhedron C(X) N B;(0) lying on the unit
sphere, and then taking the minimal nonzero element of this ray contained in Cz(X). Thus
Cz(X) = Cz(Y) implies X =Y, allowing us to define a partial order <z on X (Gy) by declaring
X <z Y when Cz(X) C Cz(Y). Since each X € X(Gy) is linearly independent, we have

(7.10) Cz(X) = C(X) NZ(X) for X € X(Go).

Thus

X =<zY ifandonlyif C(X)CCY) and Z(X)<Z(Y).
Indeed, if Cz(X) C Cz(Y), then z € Cz(Y) C Z(Y) N C(Y) for each = € X, ensuring that
C(X) € C(Y) and Z(X) < Z(Y), while if C(X) C C(Y) and Z(X) < Z(Y), then Cz(X) =
CX)NZ(X) CCY)NZY) = Cz(Y).

Definition. For X € X(G)), there is a purely virtual Reay system R = (X1U{v1},..., XsU{vs})
over G and ordered partition X = X7 U...U Xy such that each X; is a set of representatives
for the half-spaces from X;, for j € [1,s]. We call any such R a realization of X and the
ordered partition X = X1 U...U X, a series decomposition of X. The set X = |J;_; X;
is called a virtualization of X. For X € X(Gy), there is a purely virtual Reay system R =
(XL U{vi}, ..., X U{vs}) over Go. We also call X =J;_, X; a series decomposition of X
and R a realization of X.
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To explain the name, it may be helpful to view a series decomposition as an ascending chain
PCX;C(XiUXs)C...C(XjU...UXy)=XorlC X C (XUXe) C...C (XU...UX,) =X
If X =X;U...UX, is a series decomposition of X € X(Gop), thenY; :=X;U...UX; C X isa
subset of X with Y; € X(Gy) for any j € [1,s]. Likewise, if X = [J;_, A; is a series decomposition
of X € X(Gy), then every V; := X1 U...UX; C X is a subset of X with ); € X(Gy) for any
J € [1,s]. The converse to both these statements regarding X (Go) and X(G)) is also true in the
following strong sense.

Lemma 7.14. Let A < R be a full rank lattice and let Gy C A be a finitary subset with
C(Gy) = R, Suppose X,y € X(Go) with Y C X and that Y = Y1 U... U is a series
decomposition of Y. Let m: R — RY(V)* be the orthogonal projection.

1. There is a series decomposition X = X1 U...U X, with s >t and X; =) for i € [1,t].
2. X" =n(X\Y) € X(7(Gyp)).
B IfX\NY =XU...UX withm(X\Y) =7n(X])U...Un(X)) a series decomposition,

then X =Y1 U...UYUX[U...UX. is a series decomposition.

Proof. 1. Let R = (X1 U{v1},..., XsU{vs}) be a realization of X € X(Gp), so X = A1 U...UAj,
and let Ry = (V1 U{w1i},...,p U{w;}) be a realization of ) C X associated to the series
decomposition Y = Y1 U...U Y. Thus |Y = ) when considered as a subset of half-spaces from
Ry, and thus also (by Proposition 5.7) when considered as a subset of half-spaces from R. In
view of Proposition 6.6, we have RY(Y) = R({Y (k)) = R(Y (k)) for any tuple k = (iy)yecy with
all 4y sufficiently large. By Proposition 6.1, m(R) = (X U{m(v;)})jes is a Virtual Reay system
over 7(Gp). Since R is purely virtual, it follows from Proposition 6.1 that 7(R) is also purely
virtual, and Proposition 6.1 ensures that

(7.11) Un(x) = T(Ux), m(ix)" =m(iy), and  I({m(x)}) = 0({x})"

for all x € J;¢;(X; U{v;}) with m(x) # 0.

Let j1 < j2 < ... < jr be the indices from J and let 7(R) = (C;U{c1},...,C-U{c,}), so each
Ci = &] and each ¢; = m(vy,) for i € [1,r]. For each i € [1,7], let B; = 7 YC;) C Xj,. Thus
Proposition 5.1.9 and |Y = ) give

(7.12) yul B = x.
i=1

with the union disjoint. Each ¢; = n(vj,), for i € [1,7], is defined by the limit @y, ) = 7(dv,)
and satisfies 7(dy, )¥ = ﬂ(ﬁf,ji) by (7.11). Moreover, each —ﬁf,ji, for ¢ € [1,r], is minimally
encased by 9({v;,}) C U?J:_f Xy, and is thus encased by Y U B, where Be, := d({v;,}) \ Y with
Be, CB1U...UB;_1. Also, n(Be,) = B, = 0({v;;})" = 0({m(v;;)}) = 0({ci}), where the first
equality follows since Be, C By U...UB;_; with w(x) # {0} for all x € By U...UB,, the third by
(7.11), and the other two in view of the definitions of B¢, and c¢;. But now we have the needed
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hypotheses to apply Lemma 6.2 (using Ry for R 4, and 7(R) for R¢) to thereby conclude that
R = (y1 U {Wl}, oW U {Wt},Bl U {bl}, ..., B, U {bT})

is a virtual Reay system in Gy with each by, for i € [1, 7], defined by the limit iy, . By (7.12),
we have Y1 U...Y,UB1U...UB, = X. Now Ry and 7(R) are both purely virtual, the former as
it is a realization of a set from X(Gp), and the latter as observed above (7.11), whence Lemma
6.2 implies that R’ is purely virtual as well, completing Item 1.

2. By Item 1, there exists a realization R = (X1U{v1},..., XsU{vs}) of X = X1 U...UX, with
Vi = A& for i € [1,t]. Proposition 6.1 implies that 7(R) = (7(Xey1) U {m(viz1)}, ..., 7(Xs) U
{m(vs)}) is a realization of X™ = n(X) \ {{0}} = 7#(X \ V). Thus n(X \ V) € X(n(Go)),
establishing Item 2. Note X(7(Gy)) is well-defined by Proposition 7.6.

3. Suppose X\ Y = X{U...UX/ with 7(X\Y) = n(X])U...Un (X)) a series decomposition.
Let R = (X1 U{vi},..., X5 U{vs}) be a realization of X. We proceed inductively to show
ViU...UYUX{U...UX]/ is a series decomposition, for 7 = 1,2,...,r. We begin with
the case ¥ = 1. Let Rg = (w(X]) U {c1}) be a realization of 7(X]) € X(Go). Note each
m(x) with x € &] has trivial boundary, so () is a tuple consisting of one element, which
is a representative for the half-space 7(x), and 9(x) C kerm = RY(Y), in turn ensuring that
m(Ux) is a tuple consisting of one element which is also a representative for the half-space
m(x) (by (VRI) for x when considered part of the realization R). Thus 7(iix) = ) for
x € X;. We aim to use Lemma 6.2 with the realizations R and R¢ as given above, A = ) and
Ra= 1 U{wi}, ..., Vs U{w;}) a realization of Y € X(Gp). By Proposition 3.3.2, we have
Ue, = m(u) for some limit @ of an asymptotically filtered sequence of terms from Gy. Moreover,
m(u?) = w(w)". Let @ = (uq,...,up). Since d({c1}) = 0, we have uy,...,up_1 € kerm = RY(}).
Since e, = 7(#) is fully unbounded (as R¢ is purely virtual) with 7(u?) = m (), it follows by
Proposition 3.3.1 that « is also fully unbounded. Thus %< is either trivial or fully unbounded,
and so —4 is encased by ) in view of Proposition 7.4.3 applied to the realization R . But
now we can apply Lemma 6.2 to conclude Yy U ... U Y, U Xl’ is a series decomposition (the
virtual Reay system given by Lemma 6.2 will be purely virtual since both R¢c and R4 are
purely virtual by assumption). This completes the base case ' = 1. However, for ' > 1, the
induction hypothesis gives that J' := Y1 U...UY, UX] U...UAX/,_, is a series decomposition
of V' C X, showing )’ € X(Gyp). Let ' : R — RY()’)* be the orthogonal projection. Since
(X \Y) =7(X])U...Un(X)) is a series decomposition, Proposition 6.1 and Proposition 5.2.1
imply that X™ = 7/(X \ V') = 7/(X,) is a series decomposition, and applying the base case
with ) in place of Y completes the induction and proof. O

If X € X(Gy), then X has a series decomposition X = X;U...UX and associated realization
R =1 U{vi},..., Vs U{vs}). If we replace each z € X with the one-dimensional half-space
x = Riz and let X and X for j € [1,s] be the resulting set of half-spaces represented by X
and X, respectively, then per the discussion regarding the construction of R’ at the beginning
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of Section 7.2, it follows that X € X(Gy) with X = X} U ... U X a series decomposition and X
a virtualization of X. This allows us to translate statements involving X(Gp) to ones regarding
X (Gp) by replacing any series decomposition X = X; U...U X with the series decomposition
X = X1 U...UAX,, applying the appropriate result regarding X(Gp) to X, and then returning
to X(Gp) by using that each X; is a set of representatives for the one-dimensional half-spaces
from AX;. We do this out concretely as an example in the next lemma.

Lemma 7.15. Let A < R be a full rank lattice and let Gy C A be a finitary subset with
C(Go) = R Suppose X, Y € X(Go) withY C X and that Y = Y1 U...UY; is a series
decomposition of Y. Let m: RY — R(Y)* be the orthogonal projection.
1. There is a series decomposition X = X1 U...U X with s >t and X; =Y; fori € [1,1].
2. 7(X\Y) = 7(X)\ {0} € X(n(Go).
B IFX\Y=X{U..UX withw(X\Y)=n(X])U...Un(X]) a series decomposition,
then X =Y, U...UY,UX{U...UX]/ is a series decomposition.

Proof. Replace each element x € X with the half-space x = Rz to define a new set X. The
subset Y C X then defines a new set ) C X' . Per the discussion regarding the construction of R’
from the beginning of Section 7.2, we have X, ) € X(Gp) with X being a set of representatives
for X. Indeed, each subset Y; C Y defines a new set ); such that Y = Y; U... U ), is a series
decomposition of Y with each Y; a set of representatives for ;. Applying Lemma 7.14.1to Y C X
using the series decomposition ) = Y1 U...U)Y;, we find a series decomposition X = A1 U...UX;
with s >t and &X; = )); for i € [1,t]. Since X is a set of representatives for the half-spaces from
X =X U...UA,, we have a partition X = X7 U...U X, with each X; a set of representatives
for the half-spaces from &}, for j € [1,s]. Thus X = X; U...U X, is a series decomposition of
X. Moreover, since V; = &; for j € [1,t] with ¥Y; C Y C X the set of representatives for )},
we have Y; = X; for j € [1,¢]. This establishes Item 1. Let R = (X1 U{vi},..., X U{vs})
be a realization associated to the series decomposition X = A; U...U Xs. Then the realization
T(R) = (m(Xpg1) U{m(viz1)}, - .., m(Xs) U {m(vs)}) shows m(X \ V) € X(Gp) with (X \Y) as
a set of representatives, which shows 7(X \ Y) € X (Gp), giving Item 2. For item 3, each set
X C X defines a set of half-spaces X by replacing the elements of X with the one-dimensional
rays they define. As argued in Item 1, 7(X'\Y) = n(X])U...Un (X)) is a series decomposition.
Applying Lemma 7.14.3 using this decomposition, we find that X =)y U...UQUX[U...UX]
is a series decomposition, and since each Y; is a set of representatives for ); and each X is a set

of representatives for &, Item 3 follows. g

Let Go € A C R? be a finitary set with C(Gp) = R? and suppose X € X(Gp). Let X =
X1 U...UXs be a series decomposition of X'. This corresponds to a chain () C X} C (X3 UXs) C
. C(XMMU...UX,) = X. A refinement of the series decomposition X = X3 U...U X is
a series decomposition X = A7 U ... U &] such that each Xj = &/, U... U] for some
0=ty <t <...<ts=r. Equivalently, this means that the subsets (X, U...UX}) for j € [0, s]
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each occur in the chain ) C X C (X]UX)) C ... C (X/U...UX!) = X' = X. Such a refinement
is proper if r > s, and the series decomposition X = X} U ... U Xs is called a maximal series
decomposition if it has no proper refinements. We say that X € X(Gy) is irreducible if no
proper, nonempty subset of X lies in X(Gp). Note this ensures that the only series decomposition
of X is X = X, since if X = X} U X, is a series decomposition, then X; € X(Gy). Moreover,
Lemma 7.14.1 ensures the converse also holds, meaning X € X(Gy) is irreducible if and only if
X = X is the only series decomposition of X'. The above terms are used with the analogous
definitions for X € X(Go) as well. Using Lemma 7.14, we now characterize maximal series
decompositions.

Proposition 7.16. Let A < R? be a full rank lattice, where d > 0, let Go C A be a finitary set
with C(Go) = RY, and let X = Xy U...U X, be a series decomposition of X € X(Gg). Then
X =X U...UX, is mazimal if and only if each mj_1(X;) is irreducible for j € [1,s], where
Tj_1: R —» RY(A U...U Xj,1>J— is the orthogonal projection.

Proof. Suppose the series decomposition X = X U...UXs is maximal but by contradiction there
is some j € [1, s] such that m;_;(&Xj;) is not irreducible. Then there is some series decomposition
Ti—1(Xj) = mj—1 (W) U ... Umj—1(Y), where X; = Yy U ... U )Y, with t > 2. By Proposition
6.1 (applied to a realization R of X = & U ... U Xj), it follows that m;_1(X;) U... U mj_1(AXy)
and 7j(Xj41) U...Umj(X,) are series decompositions. Using these decomposition and applying
Lemma 7.14.3 in 7j_1(Go) C mj—1(A) taking mj_1(X) = m—1(X;) U ... Umj_1(Xs) to be X,
taking 7;_1(X;) to be Y, and taking 7 to be 7;, we conclude that 7;_1 (X \ (X1 U...UX;_1)) =
i1 (V) U U1 (V) Umj_i(Xjp1) U ... U1 (A) is a series decomposition, and now a
second application of Lemma 7.14.3 yields that X = X1 U.. .U&X; UV U... UV, UX; 1 U...UX,
is a series decomposition, contradicting that X = X} U...U X; was maximal in view of ¢t > 2.
Conversely, now suppose each m;_1(X}) is irreducible but by contradiction X = X; U...U &
is not maximal. Then there exists a proper refinement X = Yy U...UY,. Let j € [1,s] be the
minimal index such that X; # V;, so X; = ); fori € [1,j — 1] and &; = Y; U ... U Y, with
t > 1. Applying Proposition 6.1 to a realization of the series decomposition Y1 U...U Y;i¢, we
conclude that mj_1(&;) = mj—1(Y;) U ... Umj—1(Yj4¢) is a series decomposition, contradicting
that m;_1(&;) is irreducible and ¢ > 1. O

Definition. Let A < R? be a full rank lattice, where d > 0, let Gy C A, let R = (X1 U
{vi}, ..., XU{vs}) be an anchored virtual Reay system over Gy, and let my : RY — RY(9({x}))*+
be the orthogonal projection, forx € X = X1U...UXs. We say that R is A-pure if x(ix) = X(ix)
with mx(x(ix)) constant and Z{(X (k)) = A, for all tuples k = (ix)xex and x € X.

Let A < R? be a full rank lattice, where d > 0, let Go C A, let R = (X1 U{v1},..., XsU{vs})
be an anchored virtual Reay system over Gg. Set X = A1 U ... U Xs;. Then Proposition 6.6
ensures that x(ix) = X(ix) with mx(x(ix)) constant, for any x € X, once ix is sufficiently large,
so the first two conditions in the definition of A-pure can always be achieved by discarding the
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first few terms in each representative sequence {x(ix)}:°;. Assume this is the case. For j € [0, s],
let
Sj =R{XU... UXj> =R{(X1 U...UXj)(k)>

and let m; : R? — (‘,’jL be the orthogonal projection. Suppose x € Xj. Then, since my(ix)
is constant with 0({x}) C &} U... U &;_1, it follows that m;_;(x(ix)) is also constant, say
mji—1(x(ix)) = mj—1(y) for all iy, for some y € Gy C A. This ensures that we have subsets
Y1,...,Ys € Gy C A such that each 7;_1(X(k)) = mj_1(Y}) is constant and independent of the
tuple k = (ix)icex with |Y;| = |m;—1(Y;)| = |&j|, for j € [1,s]. By definition of an ordinary
Reay system, each m;_1(Y;) = mj—1(X;(k)), for j € [1,s], is a linearly independent set of size
Y|, ensuring that Y =Y; U... UYj is linearly independent.

Now consider arbitrary subsets Xi,..., X, C A with m;,_1(X;) = mj—1(Y;) and |X;| =
|mi—1(X;)| = |Yj| for all j € [1,5], and set X = X; U...UX,. Since 7 is the identity map, this
forces X1 = Y1, and a short inductive argument then gives

R(XjU...UX;) =R} u...uY;)=¢&; forall je]0,s].

Thus, since each m;_1(X;) = 7j_1(Y;) is a linearly independent set of size | Xj|, it follows that
X =X  U...UXj is linearly independent. For j € [0, 5], let

Aj=Z<X1U...UXj>,

which is a full rank lattice in £ = R(X; U... U X;) = R(A;) (as X is linearly independent).
Since ANE; is also a full rank lattice in & with A; = Z(X;U...UX;) < ANE;, it follows that
(ANEj)/A; is a finite abelian group, for j € [1, s].

Let j € [1, s] be arbitrary, and let z1,...,z, € Xj and y1,...,y, € Y; be the distinct elements
of X; and Y indexed so that mj_1(x;) = mj—1(y;) for all ¢ € [1,r]. For each ¢ € [1,7], we
have x; = y; + &, for some & = &, € kerm;_1 = &;_1, and since z;, y; € A, it follows that
& € AN &j—1. We now have

(713) Aj = A]’_l + Z(X]> = Aj—l + Z(yl + fl, cey Yr +§7‘>

From (7.13), we see that lattice A; is completely determined by the value of the sublattice A;_;
as well as the values §; mod A;_; fori =1,...,r. (Recall that the set Y =Y;...UY, and thus
also the elements y1,...,y, € Y}, are fixed). Moreover, assuming A;_; is fixed, then distinct
possibilities for the values of &i,...,& modulo Aj;_; yield distinct lattices A;, which can be
seen by noting that y; + (§ + Aj_1) € A, is precisely the subset of all elements z € A; with
mj—1(z) = mj—1(y;) (in view of m;_1(X;) = mj—1(Y;) being a linearly independent set of size
| X;| = |Yj]). Note, if we apply the above setup with X taken to be Y, then £, =0 for all y € Y,
meaning & = 0 mod A;_; for all z € X; whenever A; =Z(X;U...UX;) =Z(Y1 U...UY))
for all j € [1, s].
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Since (AN E;j_1)/Aj_1 is a finite group, there are only a finite number of possibilities for the
value of each & € ANE;_; modulo A;_;. Thus an inductive argument on j = 1,..., s shows that
there are only a finite number of possibilities for each A;. Indeed, since X; = Y7, there is only
one possibility for Ay, completing the base of the induction, while there are only a finite number
of possibilities for each A; with A;_; fixed, one for each choice of the values of {1, ..., & modulo
Aj_1, with only a finite number of possibilities for Aj_; by induction hypothesis, leading to
only a finite number of possibilities for A;.

All of the above basic observations will be crucial to several of our later arguments, including
the following lemma showing how a pure virtual Reay system can be obtained from a given
virtual Reay system by passing to appropriate subsequences of the representative sequences.

Lemma 7.17. Let A < R? be a full rank lattice, where d > 0, let Gy C A, let R = (A&} U
{vi},... XU {vs}) be an anchored virtual Reay system over Go, let X = |J;_; X;. Assume
(by Proposition 6.6) that the first few terms in each representative sequence {x(i)}5°, have been
discarded so that x(i) = x(i) € Go is constant modulo R(O({x})) for allx € X = X1 U...U X
and i > 1.

1. There are only a finite number of possibilities for Z(X (k)) as we range over all tuples
k= (ix)xex-
2. If A =Z(X(k)) for some tuple k = (tx)xex, then either
(a) there is a finite set of indices In such that every tuple k = (ix)xex with A = Z(X (k))
has ix € In for some x € X, or
(b) replacing each representative sequence {x(ix)}xex by an appropriate subsequence,
for x € X, we can obtain Z{X (k)) = A for all tuples k = (ix)xex;
with (b) holding for at least one lattice A.

In particular, by discarding the first few terms in each representative sequence {x(i)}°,, forx €
X, it follows that R can be made A-pure, for any A = Z(X (k)), by replacing each representative
sequence {x(i)}2, by an appropriate subsequence.

Proof. Let Y =Y U...UY; with each Y; = X;(k), where K = (1x)xex is an arbitrary tuple.
Per the discussion above Lemma 7.17 (applied taking X to be X (k) for an arbitrary tuple k),
for each j € [1, s], there are only a finite number of possibilities for Z((X; U...U X;)(k)) as we
range over all tuples k, yielding Item 1. If s = 1, then d(x) = {0} for x € X, so each x(ix) with
x € X is constant (cf. Proposition 6.6), in which case the lemma holds trivially. Therefore we
can assume s > 2 and proceed by induction on s. Let x1,...,x, € X5 be the distinct half-spaces
from X5, adapt the abbreviations i; := ix, and ¢; := ix;, and set y; = x;(¢5) for j € [1,7], so
Ys = {y1,...,yr}. Since x;(i;) is constant modulo RZ(d({x;}) C R(X; U...U Xs_1), we have
x;(ij) —y; € R U...UXeq) = R((X3 U...UX,_1)(k)) = R(A/(K)) for all j € [1,7] and

ZjZl.
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Let A = Z(X(k)). For a more general tuple k = (ix)i cx, let A(k) = Z(X(k)) and A'(k) =

Z{(X1U...UXs_1)(k)). For j € [1,7], let
& (k) = &(i5) = x;(i;) —y; € ANR(A'(K)).

If there is a finite set of indices Ia such that all tuples k = (ix)xexr with Z(X(k)) = A have
ix € Ia for some x € X, then (a) holds and the induction is complete (note this cannot happen
for every one of the finite number of possibilities for A, by Item 1, as that would mean we could
destroy all tuples k = (ix)xex by only removing a finite number of terms from the {x(ix)};°_,
with x € X, which is absurd). So we can assume otherwise. As we range over all tuples
k = (ix)xex with A(k) = A, there are only a finite number of possibilities for the lattices A’(k)
(by Ttem 1). If k = (ix)xex and k' = (i’ )xecx are two tuples with A(k) = A(K') = A and
A'(k) = A'(K') = A’, then the comments after (7.13) ensure that

x;(i5) —y; = &i(k) = §(K') = x;(ij) —y; mod A" for all j € [1,r].

Indeed, the lattice A(k) is completely determined by A’(k) and the values of & (k),...,& (k)
modulo A’(k), with different values of £;(k) mod A’(k) giving rise to different lattices A(k), so
there are fixed &1, . ..,& € ANR(A’) such that a tuple k = (ix)xex has A(k) = A and A'(k) = A’
precisely when A'(k') = A" and &;(k) = §; mod A’ for all j € [1,r], where k' = (ix)xex\ x, is the
restriction of the tuple k to X'\ As. Consequently, if we let Zas consist of all tuples &' = (ix)xex\ x,
with Z((X \ X;)(k")) = A’ and, for each j € [1,7], let I, consist of all indices i; with £;(i;) = &;
mod A/, then

(7.14)  {k = (ix)xex : (ix)x\x, €Zar and ij € [ forall j € [L,r]} =Tar x I X ... X I,

is the set of all tuples k with A(k) = A and A/(k) = A'.

As we range over all tuples k with A(k) = A, there are only a finite number of possibilities
for A’(k). If, for some possibility A’, it is possible to remove a finite number of terms from each
{x(ix)}5c_; with x € X and destroy all occurrences where A’'(k) = A’ from among tuples the
remaining tuples &, then do so (replacing each representative sequence {x(ix)};o_; for x € &
with an appropriate subsequence of sufficiently large indexed terms). Thus we may w.l.o.g.
assume this is not possible for every A’(k) that occurs among tuples k with A(k) = A. Note, we
cannot have destroyed all such lattices A’(k) by such a procedure, as this would contradict our
assumption about there not existing a finite set of indices Ia such that every k = (ix)xex with
A(k) = A has ix € Ia for some x € X. Let A’ be one possible lattice A’(k) that has survived.
Then we can apply the induction hypothesis to (X1 U...U Xs_1)(k) allowing us to replace each
{x(ix)}5c_; for x € &'\ Xy with appropriate subsequences resulting in A’(k) = A’ for all tuples
k. Each I; is infinite, else removing all indices from the finite set I; would destroy all tuples k
with A’(k) = A’ and A(k) = A, contrary to assumption. But now, in view of (7.14), we can
replace each {x;(i;) i;—1 With the infinite subsequence {x;(i5)}i;e1;, for j € [1,7], and thereby
attain (b), which completes the induction and proof. O
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Let A < R? be a full rank lattice and let Gy C A be a finitary set with C(Gy) = R Let
X € X(Gop) with R = (X1 U{v1},..., X5 U{vs}) a purely virtual Reay system over Gy realizing
X. Then Lemma 7.17 ensures that, assuming X is fixed, there are only a finite number of
lattices A = Z(X (k)) € Pz(Gop) as we range over all tuples k = (ix)xer with each ix sufficiently
large, and by refining the representative sequences {x(ix)}xex, it can be assumed via Lemma
7.17 that R is A-pure, for any A = Z(X (k)) with k = (ix)xex so long as all ix are sufficiently
large. We will see below that PB7(Gp) is finite without need to restrict to a fixed X € X(Gp). If
{x(ix)}°_, is a representative sequence for x € & in R, then Proposition 5.7 ensures it can also
be substituted for a representative sequence for x in any other realization R’ of X'. Thus the
possibilities for A = Z(X (k)) depend only on X and not on the particular series decomposition
X = |J;i_; & nor realization R, and if X = A} U...U X; is a series decomposition having
a realization that is A-pure, then any series decomposition of X has a realization that is A-
pure. Furthermore, if A = Z(X) € Pz(Gyp), where X € X(Gp), then per earlier discussions,
there is a realization R = (X1 U{vi},...,Xs U {vs}) with each x(i) € X C Gy constant, for
x € X =X U...UX, ensuring there is a virtualization X of X having a A-pure realization.

Definition. For X € X(Gy), let Pz (X) denote all A € Py (Gy) for which X has a A-pure
realization. This is independent of series decomposition, and every A € Pz (Gop) has A € Py (X)
for some X € X(Gy), as explained above. We let X(Go, A) C X(Go) consist of all X € X(Gp)
with A € Py (X), and we let X(Go,A) consist of all X € X(Gp) with Z(X) = A, where
A € Pz(Go).

7.3. Finiteness Properties of Finitary Sets. The sets X(Gy), X(Go) and X(Gg, A) may be
infinite. Our next goal is to show that, nonetheless, they still exhibit some finite-like behavior.
Theorems 7.18, 7.22 and 7.25 contain some of the important finite-like properties possessed by
a finitary set, explaining the choice of name. We begin with Theorem 7.18, which contains the
essential finitary property of X(Gy) and X (Gy) as well as the finiteness of Pz (Go) and Pr(Go).

Theorem 7.18. Let A C R? be a full rank lattice, where d > 0, and let Gy C A be a finitary
subset with C(Gy) = R,

1. There are only a finite number of irreducible sets X € X(Gy) and X € X(Gy).
2. B7(Go) and Pr(Go) are both finite.

Proof. 1. If X € X(Gp) is irreducible, then any realization R = (X; U{v1},..., X U{vs}) of
X must have s = 1 with X = A7, in which case every x € X is a one-dimensional half-space
spanned by any representative. Thus to show there are only a finite number of irreducible sets
X € X(Gy), it suffices to show there are only a finite number of irreducible sets X € X(G).
Assume by contradiction that this fails and let {X;}:°; be a sequence of distinct irreducible sets
X; € X(Gp). Now X € X(Gop) being irreducible implies there exists an unbounded limit u € G§°
of a radially convergent sequence of terms from Gg such that X minimally encases —u, which
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is equivalent to X U {u} being a minimal positive basis. Since each X; is linearly independent,
we have |X;| < d, and so, by passing to a subsequence of {X;}°;, we can assume all X; have
the same size, say | X;| = s with X; = {:cgl), . .,x,gs)} for all i. For each i, let xESH) € GY° be
such that X; U {xESH)} is a minimal positive basis. By successively passing to an appropriate
subsequence of each {xz(j) X, forj=s+1,s,...,1, we can w.l.o.g. assume each {xz(j) 2., for
J € [1,s + 1], is a radially convergent sequence with limit (say) u;. Since $§S+1) € Gy for all
i, it follows from Lemma 3.1 that us1; € G§°. For j € [1,s], we have xgj) € Go € A with A
a lattice, so each sequence {azgj ) o2, either eventually stabilizes to a nonzero constant value or
else u; € G°. Since the X; are all distinct, the latter cannot occur for all j € [1, s].

If 0 ¢ C*(u1, ..., us, ust1), then Lemma 7.9 implies there is an open half-space £ containing
all u; for j € [1, s+ 1]. Consequently, since xgj)/|x§j)|| — u;j for each j € [1,s+1], it follows that
each X; U {xESH)}, with 7 sufficiently large, will also be contained in the open half-space £9,
ensuring 0 ¢ C*(X; U {:BESH)}). However, this contradicts that each X; U {:L‘Z(SJrl

positive basis. Therefore we instead conclude that 0 € C*(uy, ..., us,usy+1). Thus there is some

)} is a minimal

nonempty subset J C [1,s + 1] such that U = {u; : j € J} is a minimal positive basis. If
uj ¢ G for all j € J, then J C [1, ] and 217 /|21 || = u; for all sufficiently large i and j € J.
In such case, {acgj ) j € J} C X; will be a minimal positive basis for all sufficiently large i,
contradicting that each X; U {azgsﬂ)} is a minimal positive basis with J C [1,s]. Therefore
we instead conclude that there is some ¢ € J such that w; € Gf°, and in view of G being
finitary, it then follows that JNG§® = {t} (cf. the comments after Theorem 7.5). In particular,
J\{t} € [1,s] as us41 € G°. But now {ar:gj) :j e JJ\{t}} U{us} is a minimal positive basis
for all sufficiently large ¢ with u; € G§°, implying {xgj) :j € JJ\{t}} € X(Go). However, since
{CL‘Z(j) :j € J\{t}} C X; with X; irreducible, this is only possible if J\ {t} =[1,s] and ¢t = s+ 1.
Hence every {375] )}?il for j € [1, s] eventually stabilizes, contrary to what we concluded in the
previous paragraph. This establishes Item 1.

2. Since every subspace from Pgr(Gp) is linearly spanned by a lattice from Pz (Gy), it suffices
to show PBz(Go) is finite. For s € [1,d], let X5(Gp) C X (Go) consist of all X € X(Gp) having a
maximal series decomposition of length s, say X = X; U...U Xs. We proceed by induction on
s =1,2,...,dtoshow that the number of lattices generated by subsets from X3 (Gp)U. ..UX(Gp)
is finite. Note X (G) is precisely the subset of all irreducible subsets X € X (Gp), so X1(Go) is
finite by Item 1, ensuring the number of lattices generated by subsets X € X;(Gp) is also finite.
Thus the base s = 1 of the induction is complete, and we assume s > 2.

Let X € X4(Gyp) be arbitrary and let X = X; U...U X, be a maximal series decomposition
of X. Then X \ Xy = Xj U...U X1 is a maximal series decomposition by Proposition 7.16.
Let A’ =7Z(X \ X;). By induction hypothesis, there are only a finite number of possibilities for
the lattice A’, so it suffices to show that there are only a finite number of lattices generated by
X' € X;(Gyp) having a maximal series decomposition X’ = XjU...UX] with Z(X"\ X!) = A/, for
each possible A’. To this end, fix an arbitrary possible lattice A’, let £ = R(A'), let 7 : R — £+
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be the orthogonal projection. Proposition 7.6 implies 7(Gp) is a finitary subset of the lattice
m(A). Proposition 7.16 implies 7(X )\ {0} = 7(X;) € X(7(Gp)) is irreducible. As a result, Item
1 implies that there are only a finite number of possibilities for 7(X;). Consequently, it suffices
to show, for each possible irreducible set 7(Y;) = 7(Xjs), that there are only a finite number of
lattices generated by a set X € X (Gy) having a maximal series decomposition X = X;U...UXj;
with Z(X; U ... U X,_1) = A’ and 7n(X;5) = 7(Y). However, this follows from the discussion
given after (7.13), completing the proof. O

Lemma 7.19. Let R = (X1 U {v1i},...,Xs U {vs}) be an oriented Reay system in RY, where
d>0,let BC X U...UXs, and let 7 : R* — ]RU<IS’)L be the orthogonal projection. For x € B,
let Bx = B\ {x}U0({x}) and let mx : R — RY(By )L be the orthogonal projection. Let {x;}32, be
an asymptotically filtered sequence of terms x; € R with fully unbounded limit @ = (uq, ..., uy).

1. If —u is minimally encased by B, then ||mx(x;)|| — oo for all x € B.

2. If @ is a complete fully unbounded limit and —1i is encased by B with {mx(x;)}52, un-
bounded for all x € B, then B minimally encases —1i.

3. If —u is minimally encased by B and {y;}2, is a sequence of terms y; € R? such that
llyill € o(||mx(xi)||) for all x € B, then the sequence {x; + y;}32, is an asymptotically
filtered sequence with fully unbounded limit (uy, ug, ..., uy,) (after discarding the first few
terms), where 1 =ry < ... <1y <rp1 =t+1 are the indices given by Proposition 5.5

regarding the minimal encasement of —u by B.

Proof. Let z; = agl)ul +... 4+ al(-t)ut + ¢€; be the representation of {z;}°, as an asymptotically
filtered sequence with fully unbounded limit , so agj ) 5 oo for all J € 1,1, agj ) e o(agj 71)) for
all j € [2,4], and ||| € o(al?).

1. Since B C A} U...U X, minimally encases —i, it must do so urbanely and be a support
set. Let x € B be arbitrary. Then Bx < B C X; U ... U Xs and 7x(z;) = a( )wx(ul) + ..+
al(t)ﬂx(ut) + mx(€;). Proposition 5.5.4 implies that B minimally encases —mx(@0). If mx(u;) =0
for all ¢ € [1,¢], then mx (@) is the empty tuple, in which case B™ minimally encasing —mx ()
is only possible if B™ = (). Hence y € RY(Bx) for all y € B, whence Proposition 5.1.9 implies
that B C |Bx. However, since B is a support set, we have B* = B, in which case x € B\ |Bkx,
contradicting that B C |By. Therefore we must instead have my(u;) # 0 for some j € [1,],
and we may assume 7 € [1,¢] is the minimal index Wlth Wx(ur) # 0. Since a(] ) e o(a; G- )) for
all j € [2,t] and ||&;|| € o(a Z(t)), we have [|mx(z;)|| ~ a H7rx(u7«)H and thus ||7x(x;)| — oo as
af) — o0, completing Item 1.

2. Since « is a complete fully unbounded limit, we have ||¢;|| bounded. Since B encases —,
it follows that there is some A < B that minimally encases —u. Assume be contradiction that
A # B. Then A < By for some x € B. Let 7 : R? — RY(A)* be the orthogonal projection. Since

A encases —, we have 7(u;) = 0 for all j, and thus 7x(u;) = 0 for all j (since A < By implies
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A C |By). But then {mx(z;)}5°; = {mx(€:)}2; is a bounded sequence (as ||¢;]|| is bounded),
contrary to hypothesis.

3. Since B C &} U...U X minimally encases —, it is a support set (so B* = B) and must do
so urbanely, and since 4 is fully unbounded, this ensures that B # ). Let

D=By<Bi<...<B, =B

be the support sets and let 1 =7 < ... <1y <rpp1 =1t+ 1 be the indices given by Proposition
5.5. For j € [0,¢], let m; : R? — RY(B;)* be the orthogonal projection. For j € [1,/], let
u; = mj1(ur;)/|mj—1(ur,)|. Let F = (RY(B1),...,RY(By)). In view of Proposition 5.5.3 and
Proposition 4.14, let

(1

zi = (0w + )+ 0w+ 0l + €

i

be a representation of {z;}°, as an F-filtered sequence, so bgj ) e @(agrj )) for j € [1,7]. Now
To—1(ur,) /|| me—1(ur,)|| = W and Supp, | (r)(—ur) = B™-* (by Proposition 5.5.2). Thus B” U
{r(u)} is a minimal positive basis of size |B™-1| + 1 (by Propositions 5.1.3 and 5.1.4), where
7 : R4 — RY(B,_1 UA(B))* is the orthogonal projection, whence @, ¢ R{|B \ {z}) for any
x € B\ [By_1. (Indeed, if we write —1, as a linear combination of elements from | B and apply
7 to this linear combination, then we obtain a linear combination of —7(uy) using the elements
from 7(B), which, as B" U{7(u,)} is a minimal positive basis of size |B™-1| + 1, is only possible
if the coefficient of each element x € B is strictly positive.) Since B;_; < By = B # ), we have
Bi_1 = By for some x € B, and thus there exists some x € B\ [By_; (as B* = B). For this x,
we have mx(uy) # 0, for otherwise uy € RY(Bx) = R(|Bx) C R(| B\ {z}), contrary to what was
just noted. Since By_1 = Bx and 7x (@) # 0, we have

(1) = b e () + me(w(?) + me(€)),
whence [|my(zi)|| € OY) = 0@l (as ||, [[w]| € o(®”) in view of the F-filtration
()

). It follows that {x; + y;}72, is an asymptotically filtered sequence with fully

representation for {z;}7°,). Thus the hypothesis ||y;|| € o(||7x(z;)||) implies that ||y;|| € o(b

and ||y;|| € o(a(”)

(3
unbounded limit (uq,...,u,,) (after discarding the first few terms), completing the proof. [

Suppose X, X' € X(Gy). We define a partial order on X(Gg) (and thus also on each X(Gg, A)),

by declaring
X =<y &

when the half-spaces from X are in bijective correspondence with the half-spaces from X’, say
with x € X corresponding to x’ € X’, such that, for every x € X, we have x C x’ and
x° C (x)°, the latter meaning any representative for x is also one for x’. For A C X, let
A = {x': x € A} C X' denote the image of A under the bijection x — x’. The relation
=u is clearly transitive and reflexive. We first make some observations regarding the defining
condition before giving the argument that < is anti-symmetric.
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Suppose x,y € X with y C x. Then y C x C X/, so that x’ contains a representative y for
y, and thus also one for y’ as a representative for y is also one for y’. If y’ ¢ |x’, then the
representative y for y’ would be linearly independent from the representatives |a’ for |x’ (as
any set of representatives for X” is linearly independent), contradicting that y € x’ C RY(|x/) =
R({}2’). Therefore we must have y’ € [x, i.e., y’ C x’. Moreover, if y C x, then the injectivity
of the map z +— 2’ ensures y’ # x’. In summary, this shows that

(7.15) y Cx implies y Ccx forx,ye€X.
In particular, we have
(7.16) (JA) CL(A)=1A" and (A)*C(A*) for ACAX.

To see the second inclusion in (7.16), note that (A")* and (A*)" are both subsets of A’. Thus,
if the inclusion were to fail, then there would be some y € A\ A* with y’ € (A")*. But then,
y € A\ A* ensures there is some x € A with y C x, in turn implying y’ C x’ by (7.15), which
contradicts that y’ € (A")*. Next, we observe that

(7.17) o({x})) C Lo({x'}) forallx € X.

Indeed, if y € JO({x}), then y C x, which implies y’ C x’ by (7.15), yielding (7.17).

The fact that we only have inclusions in (7.16) prompts us to define | A, A°* C X to be the
subsets such that

(JA) =1lA and (A% = (A"
In view of (7.16), we have
JACJA and A C A"

Note |(J.A) = J A, for if x Cy € | A, then y’ € | A’, implying y’ C z’ for some z’ € A’, whence
(7.15) implies x’ C y’ C z’ € A, which implies x’ € | A/, and thus x € |.A. We also have
(A°*)* = A°*. Indeed, (A°*)* C A°* holds by definition, while if x € A%*\ (A°*)*, then x C y
for some y € A°*, whence x’ C y’ by (7.15) with x/, y’ € (A")* (by definition of .4°*), which
contradicts the definition of *. Since (J.A°*) = [(A°*)" = [((A)*) = J.A" = (L.A), the injectivity
of the map z + z’ implies JA°* = | A. Since ((J.4)%*) = ((JA))* = (JA)* = (A)* = (A,
the injectivity of the map z ~ z’ implies (}.4)°* = A°*. In summary,

(7.18) LA = 1A, (A% =A% |A% =]A  and (JA)° = A

Thus the arrow closure and star interior defined above behave similar to the closure and interior
operations on convex sets.

The condition that any representative for x also be a representative for x’ may be replaced
by the alternate condition that d(x) C 9(x’) and x € 9(x’), as the following argument shows.
Suppose x C x’ and every representative for x is also a representative for x’. Since z € x is
a representative for x’, we have z ¢ 9(x'), ensuring x ¢ 9(x'). If d(x) C 9(x') fails, then
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d(x) C X C %/ ensures that there is some representative z’ for x’ with 2/ € 9(x). Note that
{2’} U LO({z'}) is a basis for RY(|x’), with the representatives for x’ those elements of RY(|x’)
/

lying strictly on the positive side of the hyperplane RY(L9({z'})). If x = az’ + >  ayy
y'€lo({x'})
is a representative for x, where a, oy, € R (possible as x C x’), then so too is z — (o + 1)z

in view of 2’ € 9(x). However, the coefficient of 2’ when expressing z — (o + 1)2’ as a linear
combination of the elements from the basis {2’} U]9({2'}) is negative, meaning = — (av+ 1)z’ lies
on the negative side of the hyperplane RY(|9({z'})), which contradicts that the representative
xz — (a+ 1)z’ for x should also be a representative for x’. Therefore we instead conclude that
d(x) C 9(x'), as desired. Next suppose x C x/, 9(x) C I(x') and x € 9(x'). Let x be an
arbitrary representative for x. Then z € x C X/, so if z is not a representative for x’, then
x € 9(x’). Thus x C J(x) + Rz C 9(x) + 9(x') = 9(x’), contrary to assumption. Therefore
we instead conclude that every representative x for x is also a representative for x’, and the
equivalence of the two stated conditions follows.

Finally, to see that < is anti-symmetric, suppose X =<y X’ and X’ <y X and let X =
X1 U...UX;s be a series decomposition of X. Since X <y X/, we have d(x) C 9(x') for

x € X, implying dimJ(x) < dimd(x’). Thus > dimd(x) < Y dimd(x’) when X =<, X'
Since we also have X’ <, X, the reverse ineqﬁezﬁity likewise h)geléivs, yielding > dimd(x) =
> dimd(x’). As dimd(x) < dimd(x’), this is only possible if dimd(x) = (i(ienfﬁ(x’) for all
;@é X. Consequently, since d(x) C 9(x') are subspaces, and since x and x’ share a common

representative by definition of X < X”, it then follows that d(x) = 9(x’) and X = X' for x € X.
Now 0(x) is a subspace of dimension |[d({x})| by Proposition 5.1.1. Likewise, 9(x’) is a subspace
of dimension [LO({x'})|. As a result, 9(x) = 9(x') implies [LO({x})| = [JO({x'})|. By (7.17),
we know (LO({x}))’ C LO({x'}) is subset with cardinality |(LO({x}))| = LO({x})| = Lo({x'})|,
whence equality must hold in (7.17), i.e.,

(Lo({x}))" = Lo({x"}).

We can now show x = x’ by induction on j, where z € X;. For x € &, we have 9(x') =
d(x) = {0}, ensuring that d(x) Nx = {0} = 9(x’) N x/, which forces x = x’ as x = X'. Thus
we can assume j > 2, completing the base of the induction. Applying the induction hypothesis
to all half-spaces from |J({x}) combined with equality holding in (7.17) yields 9(x) N x =
CY(lo({x})) = C((Lo({x}))) = CY(10({x})) = 8(x') N x'. Combined with X = X, it follows
that x = x/, completing the induction, which shows <, is anti-symmetric. Note, it is not initially
as evident that the bijection from X’ to X’ given by X’ < X should be the inverse of that from
X to X', which is why we have argued above without using the assumption (x’)" = x. Of course,
the above argument establishes this, since it gives (x’)’ = x’ = x. Note this argument shows

that Y dimd(x) = Y dimd(x’) implies x = x’ for all x € X.
xeX xeX
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Next we show that if B C X minimally encases —, then (B’)* minimally encases —.

Proposition 7.20. Let A C R be a full rank lattice, where d > 0, and let Gy C A be a finitary
subset with C(Go) = R%. Suppose X, X' € X(Go) with X <y X' and each x € X in bijective
correspondence with the half-space x' € X'. Let @ = (uq,...,us) be a tuple of orthonormal
vectors from R If BC Xy U...U X, minimally encases i, then (B')* minimally encases .

Proof. Since x C x’ for all x € X' (by definition of X <, X”), and since B minimally encases

@, we conclude that B’ encases @ = (uq,...,u;). Thus there is some A’ < B’ which minimally
encases U, where A C X. It remains to show A" = (B')*.
Since A’ minimally encases 4@ = (ug,...,us), we have uy,...,u; € RY(A") = R(]A) =

R(JA) = RY(J.A), with the first equality in view of Proposition 5.1.1, the second in view of
the definition of |.4 and the fact that any representative for a half-space x € |4 is a also a
representative for the half-space x’ € (J.A)’ = |.A’, and the third in view of the first equality in
(7.18) and Proposition 5.1.1. Thus, since B minimally encases u, Proposition 5.6 and the first
equality in (7.18) imply that B C |A, in turn implying B’ C (}.A4)' = |A’. Thus (B)* < A’ by
(5.9). On the other hand, A" < B’ implies A’ C [B' = | (B')*, whence (A")* < (B)* follows again
by (5.9). Since A" = (A’)* as A’ minimally encases @, we see that (B')* < A" = (A)* < (B')*,
yielding the desired conclusion A" = (B')*. O

Definition. Let X*(Gy) be the set consisting of all maximal series decompositions of the sets
X € X(Go). We informally write the elements of X*(Go) in the form |J;_, X;, where X =
Ui_, i is a mazimal series decomposition of some X € X(Gy). For A € Py(Go), let X*(Go, A)

be the set consisting of all maximal series decompositions of the sets X € X(Gyp, A).

If Ui, X € X(Go,A) and we set X = [J;_; Xi € X(Go,A), then there is a realization
R = (X1 U{vi},..., X U{vs}) of X as well as a A-pure realization R’ of X, in which case the
comments above the definition of Bz (X) allow us to assume (by exchanging the representative
sequences in R for those from R’), that X has a A-pure realization (X; U {vi},..., Xs U{vs}).
We defined a partial order < on X(Gy) earlier. We now define a related partial order < on
X*(Go) as follows. Let U;_; X, Uiy &/ € X*(Go) and set X = |J;_,; X and X" = |J]_; &.
Then we declare | J;_; &; <{, J;_; &/ if there is bijection between X and X’ showing X < &”
which restricts to a bijection between X; and X]( for all j € [1, s]. Thus, if we let x — x’ denote
the bijection showing X < X’, then each X/ = {x': x € A;}, so that the notation agrees with
our previous definition of A’ for A C X. By definition, |J;_, &; <{ U;_; &/ implies X <y A7, in
which case anti-symmetry for < follows from that for <, (recall that we showed x’ = x when
X <y X' and X' < X), while reflexivity and transitivity are immediate. Thus < is a partial
order on X*(Gy), and so restricts to one on X*(Gp, A) as well. The relation between the partial

orders <y and =< is given by the following proposition.
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Proposition 7.21. Let A C R? be a full rank lattice, where d > 0, let Gy C A be a finitary
subset with C(Go) = RY, and let X, X' € X(Go). Then X <y X' if and only if there are mazimal
series decompositions X = J;_; X and X' =J;_; X! such that J;_, X; <, Ui_; X7.

Proof. If \J;_, X <& Uj_; &/, then X < X’ follows by definition of <f, so one direction is
trivial. Assume X <y &’ and let X" = [J;_; A/ be any maximal series decomposition of X”. It
suffices to show X = [J;_; &; is also a maximal series decomposition. Since any representative

of x is also a representative for x’, Proposition 5.1.1 implies
RY A U...UX) =R(X;U...UX;) =R(X]U...UX}) =R*(X/U...UX))

for all j € [0, s]. For j € [1,s], let mj_1 : RY — RY(X;U...UX;_1)" be the orthogonal projection.

Let R = (X{ U{Vvi},....,X U {v.}) be a realization of X’ = [J;_; X/. Since each x € &]
has trivial boundary, it follows that x = x’ for all x € X} (as x C x’ forces this in view of
x" being one-dimensional). Thus (X] U {v]|}) = (X1 U {v]}) is a purely virtual Reay system
with X] = A} irreducible (by Proposition 7.16 applied to the maximal series decomposition
Ui_, &/), showing that X = X| € X*(Gy). We proceed by induction on j to show ngl X; €
X*(Go) with mj_1(X;) = mj—1(X]), having just completed the base case j = 1. By induction
hypothesis, Uf;ll X; € X*(Go), so there is realization Rj_1 = (X1 U{v1},..., X1 U{v;_1}).
Let 1]’\,9 = (u1,...,ut). Then —ﬁf]; is a fully unbounded (or trivial) limit of an asymptotically
filtered sequence of terms from G which is minimally encased by d({v};}) C AjU...UA&]_;, thus
ensuring that u; € RY(X{U...U Xj_q) = RY(X U...UX;_) for all i < t. Applying Proposition
7.4.3 to Rj_1, we conclude that there is a support set B C &7 U ... U X;_1 which minimally
encases —Uf,;, allowing us to define a half-space v; with d({v;}) = B using the limit iy, = Uv;_
with v;(i) = V(i) for all i. By (7.17), we have 9({x})" C Jo({x'}) C AU ... U X]_, for all
x € X}, ensuring via the bijection z — 2z’ that 9({x}) C X1U...UX;_; for all x € X;. Thus, since
RYATU...UX]_ ) =R (A U...UXj1), it follows that m;—1(X; U {v;}) = mj—1(X] U {V]})
with (X U {v1},...,&; U {v,}) a purely virtual Reay system, showing (JI_; X; € X*(Gy).
This completes the induction. The case j = s shows X = [J;_; &; is a series decomposition.
Since RY(X] U ... U X[ ;) = RY(X U... U Xj1), applying Proposition 7.16 to the maximal
decomposition [ Ji_; &] gives that m;_1(X]) = m;_1(X}) is irreducible for all j € [1,s], and then
a second application of Proposition 7.16 to |J;_; &; implies that X = [J;_; A; is maximal. [

Theorem 7.22 and Corollary 7.23 contain the finiteness from above property for the partial
orders <y and =<{| associated to a finitary set Gj.

Theorem 7.22. Let A C R? be a full rank lattice, where d > 0, and let Gy C A be a finitary
subset with C(Go) = RY. Then Max(X*(Go, A), =) is finite for every A € Pz (Go).

Proof. For s € [1,d], let X%(Go, A) C X*(Go, A) consist of all maximal series decompositions X' =
Ui, &; of some X € X(Go, A) having length s. Note Max(X*(Go, A)) = ngl Max (X%(Go, A))
since comparable series decompositions under =< must have the same length. We proceed
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by induction on s = 1,2,...,d to show that Max(%:(GO,A)) is finite for every A € Pz (Go).
Note X7(Gp) is in one-to-one correspondence with the subset of all irreducible X € X(Gy), so
Max(X7(Go, A)) is finite by Theorem 7.18.1. Thus the base s = 1 of the induction is complete,
and we assume s > 2. Fix A € Py (Go).
Let A

| A € Max(X5(Go, A))

i=1
be arbitrary, set X = J;_; A;, and let

R=(XU{v1},..., X U{vs})

be a A-pure realization. By Lemma 7.17, we can assume (by passing to subsequences of the
representative sequences as need be) that Z{(X \ X;)(k)) = A’ is constant for all tuples k =
(ix)xex, while X'\ X5 = Uf;ll A, is a maximal series decomposition by Proposition 7.16. Hence

(7.19) XiU...UX;_1 € %:_1(G0, A/).
Claim A. X1 U...UX,_| € Max(}lj;_l(Go, A/))

Proof. Suppose by contradiction X3 U...UXs_1 ¢ Max(X*_,(Go,A")). Then, in view of (7.19),
there exists some [JS~| X/ € X*(Go, A) with X3 U...UXs <5 X U...UX/_,. Let x' ¢
(X \ X5) be the image of x € X \ X5 under the bijection showing X' \ X5 <y (X \ Xs)". Let
R = (X[ U{w)},..., &', U{w’_,}) be a A-pure realization of (X \ X,) = ;=] &/. Since
X\ X5 <y (X\ Xs) ensures that a set of representatives for X'\ Xj is also a set of representatives
for (X \ Xs)', we must have RY(X \ X;) = R((X \ X,)(k)) = R((X \ X,)'(k)) = RY((X\ Xs))
by Proposition 5.1.1. For each y € &5 U {vs}, we have —iy minimally encased by d({y}) C
X1 U...UXs—1 = X\ A,. Thus Proposition 7.20 (applied to X' \ X5 <y (X \ Xs)') implies that
(0({y})°*) = (0({y})")* minimally encases —uy. This allows us to define a new half-space y’
such that 0({y'}) = (0({y})")* C o({y}) C (X \ X,) = X[ U...U X! | with 4y = 4y and
y(i) = y'(i) for all i, making

R// = (Xl/ U {W/I}a cee 7‘)(3/—1 U {W,s—l}a Xs/ U {W,s})a

where X = {y’ : y € &}, wi = v{ and iy, = iy,, a virtual Reay system over Gy in view of
RY(X \ X5) = RY((X \ X)’), which ensures that

(7.20) m(XU{wi}) = m(X U {vs})
with 7 : R? — RY(X \ X,)* the orthogonal projection. For y € X, U {v,}, we have
a(y) =R7{Jo({y})) CR"(Lo({y})) = RZ(Lo({y})') = R ((0({y})")") = o(y'")

and d(y)Ny = CY(9({y})) € C”(0({y})") € CY(0({y’'})) = 8(y')Ny’ (with the second inclusion
by (7.17), and the first as x C x’ for all x). Hence, since y and y’ share a common representative,

it follows that y C y’ for all y € X;, and that any representative for y is also a representative
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for y’. Since R’ is purely virtual, and since iy, = iy, is fully unbounded (as R is purely
virtual), it follows that R” is purely virtual, showing that (J;_; X/ is a series decomposition.
Since X = |J;_; A; is a maximal series decomposition, Proposition 7.16 ensures that m(X;s) =
m(X!) is irreducible (the equality follows from (7.20)), and now two further applications of
Proposition 7.16, one to the maximal series decomposition (X \ Xs)' = Uf;ll X! and one to the
series decomposition X’ = (J;_; &/, implies that X’ = (J;_, &/ is maximal. By construction,
each representative of x € X’ is a representative of x’ € A{U...UX/, while x C x’ for x € X'\ X,

(since X\ Xs <y (X \ X)) as well as for x € X (as just argued). Thus
(7.21) XU UX g UX <5 XU UX_ UXL,

with the strict inequality following as x # x’ for some x € X'\ X; in view of X'\ Xy <y (X'\ &5)'.
Since the representative sequences for X are the same as those from X, with Z{(X \ X;)(k)) =
Z((X \ Xs)'(k)) = A/, it follows that A = Z(X(k)) = Z{(X \ Xs)(k)) + Z(Xs(k)) = A" +

Z(Xs(k))y = A + Z(X/(k)) = Z(X'(k)), for any tuple k, ensuring that A € Pz (X’). Thus
UL, X/ € X%(Go, A), which combined with (7.21) contradicts that |J;_; &; € Max(X%(Go, A)).
This completes Claim A. O

By induction hypothesis, I\/Iax(.’{;l(Go,A’ )) is finite for any of the finite choices for A’ €
Pz(Go). Thus, since | J;_; X; € Max(X}(Go,A)) was arbitrary, it follows in view of (7.19)
and Claim A that every | Ji_, X; € Max(X%(Gp, A)) has [J5=} &; € Max(X*_,(Go, A")) for some
A" € Py (Gp). Thus to show Max(X%(Go, A)) is finite, it suffices to show there are only a finite
number of (J;_; X € Max(X:(Go,A)) extending each possible maximal series decomposition
Uizl & € Max(X*_,(Go, A')). To this end, fix A’ € Pz(Go) and J5=; &; € Max(X*_| (G, A))
and let |J;_; X; € Max(X%(Go,A)) be arbitrary having R = (X; U {vi},..., X U {vs}) as a
A-pure realization with (X3 U{v1},...,Xs1 U{vs_1}) a A'-pure realization. Set X=U_ X
and Y = Uf:% AX;, so YV is fixed and XS is arbitrary (subject to the constraints described).

Let £ = RYAX 1 U...UX,_1) = RYY) = R(A") and let 7 : R? — £ be the orthogonal
projection. Since R is A-pure, we have x(i) = %x(i) for all « > 1 and x € Xs, with 7(x(7))
constant. Thus 7(X(k)) is a fixed set for all tuples k. By Proposition 7.16, the set of one-
dimensional half-spaces m(Xs) € X(7m(Gp)) is irreducible, and thus 7(Xs(k)) € X(7(Gp)) is also
irreducible. As a result, Theorem 7.18.1 implies there are only a finite number of possibilities
for m(Xs) and m(Xs(k)). Thus it suffices to show there are only a finite number of possibilities
for X when w(Xs) = Vs and also m(X(k)) = Y are fixed, say for the fixed subsets Y; C 7(Gp) C
EL and Y, € X(7(Gop)). Since there are only a finite number of possible choices for the sets
O{x}) C X U...UX,_1 =) for x € X, we can likewise assume these sets are also fixed for X.

To summarize, we have arbitrary fixed values for A, A", Y = (J7—; ! X, Vs, Yg and By C
X1U...UXs_q for y € Vs (we will later drop the subscript y when the corresponding set B is
needed for only one y € V). Set £ = RY(X; U...UX,_ 1) = R(A’) and let 7 : R — £+ be the
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orthogonal projection. Let € consist of all maximal series decompositions

s—1

L & U & € Max(X5(Go, A))

i=1
having a A-pure realization R = (X3 U {v1},..., X U {v}) of X = |JiZ] &; U X, with (A3 U
{vi}, .o, X1 U {vse 1}) A’-pure realization such that 7(Xs) = Vs, 7(Xs(k)) = Ys for all
tuples k, and O({x}) = Br(x) for every x € Xs. Our goal is to show (2 is finite for the arbitrary

choice of fixed values used to define €.

Claim B. Suppose -] XiU X, € Q and 2] XU Z, € Q. If x € X and z € Z, with
m(x) = m(x), then 2] & U (X, \ {x} U{z}) € Q.

Proof. Let 2] XU X, € Q and 2] X U Z5 € Q, and let Ry = (X U {vi},..., X1 U
{vs_1}, AsU{vs}) and Rz = (A1 U {Wl} X1 U{ws_1}, ZsU{ws}) be A-pure reahzatlons
of X and Z, respectively, with ( Xlu{vl}, ol S_lu{vs_l}) and (X U{wi}, ..., Xs_1U{ws_1})
each A’-pure realizations of Y = X \ X5 = £\ Z;. Since each w; is a maximal element in the
poset of half-spaces from Rz, we can swap each w; for v; (for j € [1,s — 1]), allowing us to
assume w; = v; for all j € [1,5 — 1], so that Rz = (X1 U{vi},..., X1 U{vs_1}, Zs U {w,}).
For x € X, there is some nonzero y € Ys; C w(Gy) such that 7(x(i )) =y for all i. Then y = w(y)
for some 7 € Gy C A, meaning each x(i) = 7 + &/(i) for some & (i) € ANE (as kerm = &€ and
x(i),y € A). As discussed after (7.13), the value of Z(X (k)) = Z(Y (k)) +Z(X}) = A +Z(X(k))
depends solely on the values of & (i) mod A’ for x € X, with distinct possibilities for the & (7)
modulo A’ giving rise to distinct lattices. Thus, since A = Z(X (k)) and A" = Z(Y (k)) are fixed
for all tuples k, it follows that there are & € ANE for y € Y such that & (i) = & mod A’
for all ¢ and x € X with 7(x) = y. Applying these same arguments to Z, instead of Xy, we
likewise conclude that &,(i) = & mod A’ for all ¢ and z € Z; with n(z) = y. As a result, if
n(x) =7(z) =y € Vs, then Z((X \ {z}U{z})(k)) = Z(X (k)) = A for all tuples k, as the values
of A" and & modulo A’ for y € ), completely determine the lattice A.

Let x € X5 and z € Z; with n(x) = 7(z). Then n(X; \ {x} U {z}) = 7n(Xs) = Vs with

Ry = (XiU{vi}, ..., X1 U{vs_1}, (X \ {x} U{z}) U{vs}) a purely virtual Reay system over
Go, 0({z}) = ({x}) = Br(x) = Br(z) and 7(X; \ {z} U {2})(k) = Y for all tuples k. In view of
the conclusion of the previous paragraph, we see that R’y is A-pure, while (X;U{v1},..., Xs_1U

{vs—1}) is A’-pure by assumption. Applying Proposition 7.16 to the maximal decomposﬂ:wn
U;_, &; and using that 7(X; \ {x} U {z}) = Vs = n(X) shows that the series decomposition
USZ! XU (X, \ {x}U{z}) is maximal. It follows that [Ji=; &; U (X, \ {x} U{z}) € X%(Go, A). Tt
remains to show Uf;ll X; U (X \ {x} U{z}) € Max(X%(Go,A)) in order to complete the claim.

Assume by contradiction that |J5~] X/ U (X, \ {x} U{z})’ is a maximal A-pure series decom-
position with [JSZ] &; U (X \ {x} U{z}) <& USZ; &/ U (X \ {x} U {z}). Let

R = (A U{vi} o X U v b (A \ {xF u{z}) U {v(})
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be a A-pure realization. Since each representative of a half-space y is also one for y’, it follows
from Proposition 5.1.1 that

(7.22) kerm =RYXTU...UX, 1) =RY(AU...uX._,).

For y € X\ {x} U {z}, the condition y C y’ implies n(y) C n(y’) with both 7m(y’) and = (y)
one-dimensional half-spaces (which follows by applying the definition of oriented Reay system
to Rx, Rz and R'), whence

(7.23) n(x) =7(z) =7(z') and w(y)=mn(y’) forally € X\ {x}.

Since R’ is A-pure and £ = R(X U...UX,_1) = RU(X[U...UX!_;) = R{(X \ X;)'(k)) for
all tuples k& (by Proposition 5.1.1), we have

(r24)  AnE=(ZUX\X) () + Z(X\ {2} U L1 (R)) NE = Z((X \ X, (K)),

for all tuples k, where the final equality above follows since 7((Xs \ {z} U {z})'(k)) is a linearly
independent set of size |Xs| by (OR2) for R'. Since Ry = (X1 U{v1},..., X U{vs}) is A-pure
and (X3 U{v1},..., X1 U{vs_1}) is A’-pure, we have

(7.25) ANE = (Z{X\ X,)(8) +Z(X, (k) NE = Z{(X\ X,)(k)) = A

for all tuples &, with the second equality above following since kerm = & = RY(X1U...UX;_1) =
R((X \ X5)(k)) (by Proposition 5.1.1) with 7(X(k)) a linearly independent set of size |X;| (by
(OR2) for Ry). Combining (7.24) and (7.25), we find that

A= ANE=Z((X\ X,)' (k)

for all tuples k, ensuring that (X] U{vi},..., X/ U{v,_,}) is A'-pure.
We have

(7.26) Z(Y:) = Zr((X,)(1)) = m(Z4(X \ Xo) (k) + Z(Xs(K) ) = m(A)

= m(ZUX\ X, (k) + Z{(X: \ {o} U =1 (R))) = Z(m (X, \ {2} U {1/ (8) ),

for all tuples k, with the first equality since | J;_; &; € €, the third since Ry is A-pure, the fourth
since R’ is A-pure, and the second and fifth since ker 7 = RY(X1U...UX;_1) = R{(X\ X,)(k)) =
R{(X \ X)) (k)) = RX[ U...UX!_}). In view of (7.23), we have w(z’) = 7(x), which is a
one-dimensional ray positively spanned by an element from Yy (per definition of 2). Likewise,
eachy € X;\{x} has 7(y’) = 7(y) being a one-dimensional ray positively spanned by an element
from Y,. Thus, since Y is linearly independent, it follows that only way (7.26) can hold is if
m((Xs \ {z} U{z}) (k) =Y for all tuples k.

As a result, R’ now satisfies all the same hypotheses as Ry and Rz needed to define analo-
gously the elements &,/ (i) for y € USZ! XU (X \ {x} U {z}) for R’ as they were defined for Ry
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and Rz. By (7.23) and the discussion after (7.13), it again follows that

(727) fy’ (Z) = ETr(y’) = gTr(y) mod A

forally € X, \ {x} U{z} and i >1

Suppose y =y’ for all half-spaces y € Uf;ll X; U (X5 \ {x}). Then we must have z C z’ since
Uizl BU(X\{x}U{z}) <5 USZ] X/U(X\{x}U{z})". Insuch case, since 7(2z') = 7(z) (as follows
by (7.23)) and d({z'}) C USZ{ &/ = U=} X, (as y =y’ for all other half-spaces), it follows that
Uf;ll X;U(Zs\{z}U{z'}) is a series decomposition. Since 7(Z;\{z}U{z'}) = 7(Zs) (by (7.23)),
it follows from Proposition 7.16 applied to the maximal series decomposition Uf;ll X; U Zg, and
then to USZ] &; U (2, \ {2z} U {Z'}), that |J>] &; U (2, \ {2z} U {#'}) is maximal. Moreover,
Uf:_ll X;U (25 \ {2z} U{z'}) is A-pure since Rz is A-pure with (1) = {r(z1) = &r(zy mod A" by
(7.27). Thus USZ] XU Z, <¢ UiZ] iU (26 \ {2} U{z'}), which contradicts that | JIZ] X; U Z, €
Max(X%(Go, A)). So we can instead assume yo C y6 for some yg € Uffll X U (X \ {x}).

Let tix = (u1,...,us). Since 0({x}) C A1 U...U Xs_; encases —ily, we have uj, ..., u—1 €
RY(O({x})) CRY(X 1 U...UXs1) = RY X U...UX!_) (by (7.22)). Thus Proposition 7.4.3
applied to a realization of Uf;ll X! implies that there is a subset C C X] U ... U X’/_; that

minimally encases —1is

< allowing us to define a half-space x’ with 9({x'}) = C, Uy = Ux and
x'(i) = x(i) for all 4, so X’ = RY(C) + Ryu;. Then 7(x') = 7(z) = 7(x) = Rym(uy) is a

one-dimensional half-space (as kerm = RY(X; U...U X,_1)) with

(X \ {x} U{z})) = m(X) = (X)) = Vs

by (7.23). Combined with (7.22) and Proposition 7.16, we find Uf;ll X! U X! is a maximal
series decomposition since Uf;ll X! U (X \ {x} U{z}) is a maximal series decomposition. We
have £,/ (i) = () = &r(z) = Er(x) = éx(7) mod A’ for all i by (7.27) and (7.23). Thus, since
x' (i) = x(i) with {2} &/ U (X, \ {x} U{z})" A-pure, it follows that [ J5=] &/ U X! is also A-pure.
We have now established that |J;_; X7 € X¥(Go, A).

Since C C X{U...UX!_; and 0({x}) C &1 U...UX,_; both minimally encase —uy = —1y,, it
follows from Proposmon 7.20 and Proposition 5.5.1 that (9({x})")* = C, whence 9({x})" C |C,
ensuring

0(x) = R70({x})) S R7(0({x})") S R7(IC) =R7(Lo({x'})) = d(x)  and
O({x}) Nx = C(a({x})) € C(a({x})) € C7(IC) = C7(Lo({x'})) = a(x') N/,
with the first inclusion in both lines above since y C y’ for all y € 9({x}). Combined with the
fact that u, is representative for both x and x’, it follows that x C x’ with every representative
for x one for x'. Since J5=} XU (X \ {x}U{z}) <& U} AU ((X\{x})'U{z'})), we have y C y’
and y° C (y')° for all y € [JSZ} & U (X, \ {x}). Tt follows that (JS=; & U X, <& USZ] &/ U XL,
with the relation strict since yo C y{, for some half-space yo € Uf;ll X; U (Xs \ {x}), which
contradicts that (JS=} &; U Xy € Max(X%(Go, A)), completing Claim B. O
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We continue assuming (J7_; X; € Q with all notation as defined earlier. In particular, R =
(X1 U{vi}, ..., X U{vs}) is A-pure realization of X = J;_; &;. Let y € Vs be arbitrary. Then
there is a support set B =By, C &; U...UX,_1 = ) and some representative y € Y, C m(Gy)
for y, such that, if x € X is any potential half-space with m(x) = y, then 9({x}) = B and
7(x(i)) =y € & for all i > 1. Note y # 0 since it is a representative of a half-space from
Vs € X(m(Gy)). Let

75 : R — RY(B)E

be the orthogonal projection. Letting iy = (ug(l), e u(tx)) we have (by Proposition 6.6)
(7.28) x() = (afgul) + .+ alm VY L) &ty

for some a(f) > 0, wix € RYB) and & € € NRY(B)L, with a(]) — oo for j € [1,tx — 1],

( ) € o(a; ( )) for j € [2,tx — 1], and ||w; x| € o(a; (t" 1)). Note {x + ¥ is a representative for the
half—space X. Since & € ENRY(B)* and y € SJ- is nonzero, it follows that distinct values for
&x determine distinct half-spaces x. Also, we have mp(x(i)) = &x +y € m8(Go) C m5(A), while
() is a lattice by Proposition 2.1. The set B is empty precisely when tx = 1. For each z € B,
let

B, = B\ {z} Ud({z})

and let 7, : R? — RY(,)* be the orthogonal projection.

If, for each y € ), there are only a finite number of possible half-spaces x with 7(x) = y that
occur for the X € €1, then () will be finite, as desired. Therefore we can assume there is some
y € YV, for which this fails, instead having an infinite sequence of distinct half-spaces {Xj}?i1
with 7(x;) = y for all 7 > 1, and each x; lying in some X9 with Uf;ll xUxY e We
use the notation of the previous paragraph with each x; except that we replace everywhere the
subscript x = x; by j (to lighten notation some). We also write x;(i) := x(i,j) for i, j > 1, to
emphasize the dependence of the representation in (7.28) on both the parameters ¢ and j. Let

xs(i ) = aful + 40l VY fwi € RUB),

so x(i, j) = x50, 7) + & + 9.

In view of Claim B, we can assume the other half-spaces in Xs(j ) remain fixed and consider
the half-space x; € A&, corresponding to y, as varying. Then, each choice of a half-space x;
with 7m(x;) =y, gives rise to a set XY with Uiz a4 U X9 e Q and XU = Uiz AU x99,
where X \ {x;} is a fixed set. Note, we will for most of the argument drop the Super—scrlpts
(7) as this information will be irrelevant to all but the final arguments.

Since the half-spaces x; are distinct with 0({x;}) = B fixed, the representatives &; + y €
m8(Go) C mp(A) are also all distinct, and since these are lattice points, this means the sequence

{fj}?; is unbounded. Thus, by passing to a subsequence, we can assume

€] = 00 with  [|&]| >1 for all 4,
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and that {¢; };";1 is an asymptotically filtered sequence of terms with fully unbounded limit.
Claim C. If 7 = (vy,...,v) € GiM with v1,...,v; € RY(B), then B encases —.

Proof. The set B = 0({x}) minimally encases the fully unbounded (or trivial) limit —g (by
Proposition 6.6), and since B C X U...UX,_1, the encasement is urbane with B a support set.
Proposition 6.3 implies there is a virtual Reay system Rz = (21 U{z1},..., 2y U{zy}) over Gy
with |B = Uflzl Z;. If B =1, then Rp is the trivial (empty) virtual Reay system. Otherwise,
Uy is fully unbounded, and the strict truncation of any u, with y € |[B C A1 U...U X,
is also either trivial or fully unbounded (by Proposition 6.6). Thus, per the comments above
Proposition 6.3, Rp is purely virtual. Claim C now follows from Proposition 7.4.3 applied to

Rs. O

We aim to contradict the maximality of |J;_, X; by using the infinite sequence of distinct
half-spaces {x; };";1 to construct a new, strictly larger half-space u. To define u, we will need to
construct an appropriate representation sequence {u(j)}32;. We define u(j) = x(i(j),7) € Go,
where i : Z4 \ {0} — Z is a function that associates to each j > 1 a sufficiently large index 1,
constructed as follows. If B = (), then simply take i(j) = j for all j > 1. Otherwise, for each fixed
j = 1, the sequence {xp(i,j)}{2; is an asymptotically filtered sequence of terms with limit @}
such that —47 is fully unbounded (by Proposition 6.6) and minimally encased by B = 9({x;}).
Thus Lemma 7.19.1 implies that ||7,(x(7,7))|| = oo for all z € B (as i — o0). Since &; is a

fixed element, it is thus possible to choose i(j) to be sufficiently large so that
(7.29) 172 (x5(3,9)) || > 27[1&5[1 > 27 for all i > i(j)

and all z € B. For j > 1 and B # (), define i(j) to be any sufficiently large index such that (7.29)
holds. Note that, even if we pass to a subsequence of {x;}32,, then (7.29) remains true under
the new re-indexing of the remaining terms from {x;}22,. With the function i : Z4 \ {0} — Z4
fixed, we set

us(j) = xs(i(j),7) €RVB)  and  u(j) =x(i(j),5) = us(j) + & +y € Go.
If B=0, then ug(j) =0 and u(j) = & +y for all j > 1. Otherwise, (7.29) ensures that
(7.30) [mz(us(i))| = oo and &l € of[lmz(us(5))]) forall z € B.
In particular, since |[ug(§)|| > |72 (us(§))|, we have
(7.31) lag()[| o0 and Il € o(Jlus(j)[)  when B # 0.

If B # 0, then (7.31) gives |lug(j)|| — oo. Thus, by passing to an appropriate subsequence of
{x;}32,, we can assume {ug(j)};2; is an asymptotically filtered sequence with complete fully
unbounded limit ¥ = (vy,...,v;). Let

up(j) = x5(i(4),j) = a§-1)v1 +...+ ag-t)vt + ¢
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be the representation of ug(j) as an asymptotically filtered sequence with limit ¥/, so aér) > 0 and

) S ooforre [1,1], ay) € o(ay—l)) for r € [2,t], and ||¢;]| is bounded. Since ug(j) € RY(B)
for all j, we must have v1,...,v; € RY(B). When B = (), we instead set ¢ to be the empty tuple,

o
sot=0and g; =0 for all j.

Claim D. —7 is encased by B.

Proof. It B = (), then the claim is trivial, so we may assume B # (). Note that u(j) = ug(j) +

& +y € Gp for all j. Since ag-r) — oo for all r € [1,t], we have the constant sequence y € o(a;-r))

for all » € [1,¢]. Since 045-1) ~ |lug(j)]|, (7.31) implies that ||&;|| € o(agl)). Thus there is a

maximal index ¢’ € [1,¢] such that
IS1IRS o(ay)) for all r € [1,¢'].

In such case, {u(j)}32; is an asymptotically filtered sequence of terms from Gy with fully
unbounded limit ¥ = (vy,...,vy), in which case —¢' is encased by B in view of Claim C (note
we need u(j) € Go to use Claim C, so we cannot directly apply Claim C to {ug(j)}32;). Let
B' < B be such that B’ minimally encases —%’. Since B’ < B C X; U...UX,_1, the encasement
of —¢" by B’ is urbane with B’ a support set. Thus we can apply Proposition 5.5 and let

0=B,<B,<...<B,=B =B

be the support sets and 1 = r; < ... <rp < rpr; =t + 1 be the indices given by Proposition
5.5 applied to the encasement of —¢' by B'. If B’ = B, then B = B’ encases —¥ in view of
v1,...,v € RY(B) and Proposition 5.5.2 (particularly, part (c)), yielding the claim. Therefore
we may assume B’ < B, whence B’ < B, for some z € B, implying B’ C |B,. Hence 7,(v;) =0
for all ¢ € [1,¢/].

If m,(v;) = 0 for all i € [1,¢], then ||7,(us(j))|| = ||72(g;)||, which is bounded as ¥ is a complete
fully unbounded limit for ug(j), contradicting (7.30). Therefore there must be some minimal
t" € [t' + 1,t] such that m(up) # 0. But then ||m,(ug(j))| € @(ay//)), which combined with
€51l € o(||mz(ugp(4))]]) from (7.30) yields [|&;]| € o(ayu)). In consequence, since agr) € o(ay_l))
for all » € [2,t], we have ||| € o(ag-r)) for all € [1,¢"], implying by the maximality in the
definition of ¢’ that ¢ > ¢”, contradicting that t” € [t' + 1,t] as shown above. This establishes
Claim D. O

If B # 0, then Claim D implies that {—up(j)}32; is an asymptotically filtered sequence of
terms with complete fully unbounded limit — encased by B, while ||7,(ug(j))|| is unbounded
by (7.30) for all z € B. Thus Lemma 7.19.2 implies that B minimally encases —, a fact which
is trivially true when B = () as well. Since B C X U...U X,_1, the encasement is urbane. Let

@ZB()-<61-<...—<BZZB
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be the support sets and 1 =r; < ... < ry < rp41 =t + 1 be the indices given by Proposition
5.5 applied to the encasement of —#' by B. By (7.30), we have |&;| € o(||mz(us(j))||) for all
z € B, and thus also ||§; + y|| € o(||mz(up(j))|]) for all z € B as ||m;(us(j))|| — oo by (7.30).
Thus Lemma 7.19.3 (applied with j replacing i, with z; taken to be ug(j), and with y; taken to
be &; +y) implies that {u( j)}j?"":1 is an asymptotically filtered sequence of terms from Gy with
fully unbounded limit (vy,...,v,,) (after discarding the first few terms), when B # (). However,
when B = ), we have u(j) = & + y, which is also an asymptotically filtered sequence with
fully unbounded limit, which we can set equal to (vi,...,v,,). By passing to a subsequence of
{u(j)}?‘;l, we may assume {u(j)}j?"":1 is an asymptotically filtered sequence of terms from Gy
with complete fully unbounded limit @ = (v1, ..., vp,, w1, ..., wy).

Since {u(yj )}524 is asymptotically filtered with complete fully unbounded limit 1, so too is the
sequence {u(j) —y}72, obtained by translating all terms by a fixed constant (after discarding
the first few terms). As a result, since u(j) —y = xg((i(4),7) + & € RUX U...U X)) =&,
we conclude that vi, ..., v, w1, ..., w, € €. Consequently, since {u(j)}32, is an asymptotically
filtered sequence of terms from Gy with fully unbounded limit 4, it follows from Proposition
7.4.3 (applied to (X1U{v1},..., Xs_1U{vs_1})) that Y = X1 U...UX,s_1 encases —w. Let C C Y
be a subset which minimally encases —. Then, since B C ) minimally encases —(v1,...,vy,),
it follows in view of Proposition 5.5 that B < C, with equality only possible if wy,...,w, €
RY(B). However, if wy, ..., w, € RY(B), then {mz(u(j))}32, will be a bounded sequence (as
W is a complete fully unbounded limit and vy, ...,v,, € RY(B)), contradicting that mg(u(j)) =
m8(x((i(5),7))) =& +y with ||&|| = oo. Therefore we conclude that

B<C.

Let mc : R4 — RY(C)* be the orthogonal projection.

Now u(j) = ug(j) + & + y with ug(j) € RY(B) C RY(C) and y € £+ = RY(Y)+ C RY(C)*.
Thus mc(u(j)) = me(§;) +y with {mc(u(4))}52; a bounded sequence (as w is a complete fully
unbounded limit) of lattice points from 7¢(Go) (in view of Proposition 2.1). By passing once
more to a subsequence, we can thus assume mc(u(j)) = m¢(§;) + y is constant (as a bounded set
of lattice points is finite), say with 7c(&;) = &€ € RY(C)* for all j. As y # 0 with y € £+ and
& €&, wehave { +y # 0. Let

m

u(j) = WBJ('I)Ul et 5g(mvm +7; wr+ ..t 7§n)wn + 25

be the representation of {u(j)}j?’i1 as an asymptotically filtered sequence with complete fully
unbounded limit @. Since m¢(u(j)) = £ + y # 0, by passing to a subsequence we can assume
{u(y) 721 is an asymptotically filtered sequence with (V1s ey Uppy Wi, oo, Wiy Wig 1, -+« -+, Wigy) AS
limit, for some wy 41, ..., Wp1r—1 € RY(C) and wy,1, ¢ RY(C), say with representation

u(j) = Bj(l)vl .+ BJ(-W)UW + fyj(.l)wl 4t fyj(.n)wn + fy(”+1)wn+1 + ...+ ,Y(n+7“)wn+r + zé
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Then € +y = me(u(j)) = ’Y§n+r)ﬂc(wn+r) + me(2}) is constant. Thus, since ||z} € o(fy](.nJrr)),

we cannot have ’y](nJrr) — 0, for this would imply £ + y = me¢(u(y)) — 0, contradicting that

&+ y # 0. Hence, since {'y](-nJrT)}‘?‘il is bounded, we must have fyj(.nJrr)

now ’)/( ") ¢ O(VJ(»nM_l)) ensures that v7*"~ !

— a for some a > 0, and

— 00, which is only possible if r = 1. Therefore

u(j) = BJ(‘I)Ul ot 5;” Ur, + 7]('1)11)1 T A M, 4D

/
J J Wnt1 + Z;

(n+1)

with ~; (v (n+1))

me(wn+1) + me(2)) = € +y for all j > 1. Since [|2}]| € o
whence £ +y = limjﬁoo(yj(." l)wc(wnH) + me(2})) = amc(wn41), ensuring that y = n(§ +y) =
am(Wp41)-

Define a new half-space u with © = RY(C) + Rywp41 and d(u) Nu = CY(C). Defining

the limit @y = (v1,...,0p, W1,..., Wy, Wnt1), We see that we then have C C X} U ... U X,

we have ||z}|| — 0,

minimally encasing —iy = —(v1,..., 0, W1,...,Wy,), allowing us to set d({u}) = C. As just
shown above, £ + y = am¢(wp41), ensuring that m¢ (& +y) = £ +y = ame(wny1) for all 7. Thus
the representative &, + y for the half-space x, will also be a representative for the half-space
u. Moreover, am(wp4+1) = 7(&§ +y) = 7(§ + y) = y, ensuring that the representative for the
half-space u modulo £ is equal to a positive multiple of the representative for the half-space x,
modulo €. Consequently, if we fix some x, € X; for defining X', say x, € XS(T) with X = X,

and then replace x, € Xs(r)

R = (Xlu{vl} Xs—1 U{vs_1}, (A )\{XT}U{U})U{Vs})

over Gy with &’ == YU & \ {x,} U{u}. Set x/, = u and y’ = y for all other half-spaces
y from R(). Since W(XS(T) \ {x,} U{u}) = W(XS(T)) = ), it follows from Proposition 7.16
applied to the maximal series decomposition Uf;ll A U Xi(T) that Uf;ll X U (XS(T) \ {x,} U{u})
is a maximal series decomposition. Since B < C, we have d(x,) = RY(B) C RY(C) = 9(u).
Thus, since we have some representative for x, that is also one for u, it follows that any

with u, we obtain a new virtual Reay system

representative for x, is also one for u. Since RY(B) C RY(C), Proposition 5.1.9 implies B C |C,
whence x, N d(x,) = CY(B) C CY(C) = und(u). If RY(C) = RY(B), then Proposition 5.1.9
ensures that C C |B, implying C = C* =< B, which would contradict that B < C (note C* = C
follows as C minimally encases the limit —). In consequence, since any representatlve for x,
is one for u, it follows that x, C u, whence J5~{ A; U x <y Uizl au(x § \ {x,} U {u}).
Finally, the representative sequence {u(j)}32; for u has u(j) = x((i(4),4), which is a term
from the representative sequence x;(i). By construction, any such term, together with the
remaining representatives for the other half-spaces from X\ {x,} = X’ \ {u}, generates
the lattice A (as argued in Claim B). But this ensures A € Py (X’), which together with
Ui} xuxm <5 Uiz XiU(XS(T)\{xT}U{u}) contradicts that | J5~] xux e Max(X%(Go, A)),
completing the proof. O
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Corollary 7.23. Let A C R? be a full rank lattice, where d > 0, and let Go C A be a fini-
tary subset with C(Go) = R%. Then Max(X(Go), =u), Max(X*(Go), =?), Max(X (Go, ) u)
and Max(X*(Go, A), =) are all finite, with \Max(X(Go)) = X(Go), IMax(X*(Go)) = X*(Go),
IMax(X(Go, A)) = X(Go, A) and [Max(X*(Go, A)) = X*(Go, A), for any A € ‘BZ(GO)

Proof. Let X € X(Gy) and let X = X} U...U X, be a maximal series decomposition. If

X" € X(Gp) with X <y X/, then > dimd(x) < ), dimd(x’) (as argued when showing anti-
XEX x'eXx’!

symmetry for <). Thus, since 0 < Y. dimd(x) < d?, we see that there can be no infinite
xeX
ascending (or descending) chains in (X(Go), <u). Since | J;_; X <{ Ui_; X, implies X <y &7,

there are also no infinite ascending (or descending) chains in (X*(Gp), <{)). It thus suffices to
show Max(X(Gp), =u), Max(X*(Go), =), Max(X(Go, A), =u) and Max(X*(Go, A), =) are all
finite, for any A € Pz(Gp). Since each X € Max(X(Gp)) with A € Pyz(X) is also an element of
Max(X(Go, A)), and since Pz (G)p) is finite by Theorem 7.18.2, it suffices to show Max(X(Gg, A))
and Max(X*(Go, A)) are finite for an arbitrary A € Pz (Go). If X € Max(X(Go,A)) and X =
U;_, &; is any maximal series decomposition, then [ J;_; X; € Max(X*(Go, A)) (since |J;_; Xi <,
Ui_, &/ would imply X <y &' = [J;_; &/). Thus it suffices to prove Max(X*(Go, A)) is finite
for an arbitrary A € Bz (Gy), as all other parts follow routinely from this as just explained, and
this was proved in Theorem 7.22. O]

We continue with another finite-like property of finitary subsets, showing that, even though
a finitary set Gy can have an infinite number of atoms, every atom must nonetheless contain
some term from a fixed finite subset of Gy.

Proposition 7.24. Let A C R? be a full rank lattice, where d > 0, and let Gy C A be a finitary
subset with C(Go) = R%. Let

Ae(Go) = {U € A(Gy) : there exists X C Supp(U) with ) # X € X(Gop)}
Then the following hold.

1. A(Go) \ Ae(Go) is finite.
2. There exist finite sets X C G§ and Y C Gy with A(Go \ X) finite and A(Go\Y) = 0.

Proof. 1. Let AZ™(Go) = A®™(Go) N Ae(Go). We begin by showing that A™(Gp) \ A (Go)
is finite. Assume by contradiction that {U;}?°, is an infinite sequence of distinct elementary
atoms U; € A®™(Gy) such that no nonempty subset of Supp(U;) lies in X (Gy), for all i > 1. By
passing to a subsequence of {U;}°,, we can w.l.o.g. assume |U;| = s > 2 for all 4, say with each
Ui = {J;El), .. ,xgs)}. Since the U; are elementary atoms with |U;| > 2, we have 0 ¢ Supp(U;)
with Supp(U;) a minimal positive basis, for all 7. Thus, by again passing to a subsequence of
{U;}32,, we can further assume each sequence {mZ(J )}fil is a radially convergent sequence of
terms from G with limit u;, for j € [1,s]. Moreover, since Go C A is a set of lattice points
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(so that any bounded subset of Gy is finite), we either have u; unbounded or w.l.o.g. {xz(j)}fil
constant, for each j € [1, s|. Since the U; are all distinct, the latter cannot occur for all j € [1, s].

If 0 ¢ C*(uy,...,us), then Lemma 7.9 implies there will be an open half-space £5 containing
all u; for j € [1, s]. Consequently, since xgj)/]azgj)]\ — u; for each j € [1, s], it follows that each
Supp(U;), with 4 sufficiently large, will also be contained in the open half-space £2, ensuring
0 ¢ C(Supp(U;)), which contradicts that each U; is an atom. Therefore we instead conclude that
0 € C*(u1,...,us). Thus there is some nonempty subset J C [1,s] such that U = {u; : j € J}is
a minimal positive basis. If u; ¢ G§° for all j € J, then J C [1, 5] is a proper, nonempty subset
(since at least one u; with j € [1, s] is unbounded). In such case, {acgj) :j € J} C Supp(U;) will
be a minimal positive basis, contradicting that each Supp(U;) is a minimal positive basis, thus
ensuring any proper subset is linearly independent. Therefore we instead conclude that there is
some ¢ € J such that u; € G§°, and in view of G being finitary, it then follows that JNGY® = {t}.
But now {xz(j) o j € J\{t}}U{us} is a minimal positive basis. Thus {a:l(»j) : j € J\{t}} minimally
encases —u; € G§°, ensuring that each X; = {:EZ(-j) : j € J\{t}} C Supp(U;) is a subset with
§ # X; € X(Gp), contrary to assumption. So we instead conclude that A%™(Go) \ AS™(Gy) is
finite.

By Theorem 4.6, every atom U € A(Gy) has a factorization U = H;e[l,z] Ui[a"] with each
U; € A9 (Gy) and each a; € Q with 0 < a; < 1. In particular, Supp(U) = Ule Supp(U;).
Thus, if U ¢ Ae(Go), then U; ¢ AS™(Gy) for every i € [1,£] as well, implying that

(7.32) Supp(U) C U Supp(V).
VeAelm (Go)\Aﬁlm (Go)

However, as just shown, A%™(Gp)\.AS™(Gy) is finite, ensuring that Uvesmcopagm(ce) Supp(V)
is finite, implying via Dickson’s Theorem [54, Theorem 1.5.3, Corollary 1.5.4] that the set of
atoms .A( UVeAé'm(Go)\Ai'm(Go) Supp(V)) is also finite. Hence there can only be a finite number
of atoms U satisfying (7.32), which implies A(Gp) \ Ae(Gp) is finite, completing the proof of
Item 1.

2. Every U € A.(Gp) has some nonempty X € X(Go) with X C Supp(U). Since any X €
X (Go) contains some X; C X with X; € X(Gy) irreducible, we conclude that every U € Aq(Gy)
has some (nonempty) irreducible X € X (Go) with X C Supp(U). By Theorem 7.18.1, there are
only a finite number of irreducible sets in X (Gy). Let X be obtained by including one element
from each irreducible set from X(Gg). Then X is finite and A(G \ X) € A(Gp) \ A«(Go) is
finite by Item 1. Moreover, since X C Gf for any X € X(Go) (as remarked at the start of
Section 7.2), we have X C G§. Let Y be obtained by taking X and including one element from
the support of each atom from A(G \ X). Since A(G \ X) and X are finite, so too is Y, and
A(Go \ }7) = () by construction, completing the proof of Item 2. O

Next, we give the finiteness from below property for the partial order <z. We will strengthen
the implied consequence that Min(X (Go), =z) is finite later in Proposition 7.26.
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Theorem 7.25. Let A C R? be a full rank lattice, where d > 0, and let Gy C A be a finitary
subset with C(Go) = R%. Then there are neither infinite descending chains nor infinite antichains

in (X(Go), =z). In particular, Min(X(Gy), =z) is finite and tMin(X(Go), <z) = X (Go).

Proof. We need only prove X (Gy) contains no infinite anti-chains nor infinite descending chains,
as the remainder of the theorem then follows from Proposition 2.2. In view of Theorem 7.18.2,
there are only a finite number of lattices A € Bz (Gp). Thus it suffices to prove X (Go,A)
contains no infinite anti-chains nor infinite descending chains for an arbitrary A € Pz (Go),
which we now fix. Recall X <7 Y for X, Y € X(Gop, A) is equivalent to C(X) C C(Y). Let
Xs(Go,A) C X(Go,A) consist of all X € X(Go,A), so Z(X) = A, having a maximal series
decomposition of length s, say X = X; U...U Xs. We proceed by induction on s = 1,2...,d
to show that Xs(Go,A) contains no infinite anti-chains nor infinite descending chains, which
will complete the proof as there are only a finite number of possible values for s € [1,d]. Note
X1(Go, A) consists precisely of all irreducible sets X € X(Gp, A). Thus X;(Go, A) is finite by
Theorem 7.18.1, in which case it trivially can contain no infinite descending chains nor infinite
anti-chains, completing the base s = 1 of the induction. So we now assume s > 2.

Let X € X5(Go,A) be arbitrary with maximal series decomposition X = XjU...UXg. Then
Y =X, U...UX,_1 € Xs_1(Gop) by Proposition 7.16. Let A" = Z(Y) € Pz(Go). As there are
only a finite number of possibilities for A’ by Theorem 7.18.2, it suffices to show there are no
infinite anti-chains nor infinite descending chains involving sets X € X (Gp, A) having a series
decomposition X = X7 U...U X with A’ =Z(X; U...U X_4), for an arbitrary A" € Pz (Go)
which we now fix. Let & = R(Y) = R(A’) and let 7 : R? — &1 be the orthogonal projection.
Observe that A’ and A N E are both full rank lattices in €& with A’ < ANE. Thus (ANE)/A
is finite, ensuring there is a finite set A C A N &€ of coset representatives for A’.

Proposition 7.16 implies that m(X) € X (7(Xp)) is irreducible. Proposition 7.6 implies that
m(Gyo) is finitary with 7(A) a lattice. Thus Theorem 7.18.1 implies that there are only a finite
number of possibilities for 7(X5), and so we may add the condition that there is a fixed subset
Ys € Go N A with |7(Y5)| = |Y5| so that 7(Xs) = m(Y5) is the same fixed irreducible set for all
X under consideration. Note Y U Y is a lattice basis for A.

If x € X has w(z) = 7(y) with y € Yy, then x —y € Ankerm = ANE. It follows that
r =y+ & — w, for some w, € A’ and & € A. Since there are only a finite number of
possibilities for &, € A, we can add the condition that, for each y € Yy, there is a fixed ¢, € A,
such that, for all X under consideration, the element z € X, with n(x) = 7(y) always has
r =y+ & — w, for some w, € A'. Let Y; = {y1,...,y,} be the distinct elements of Y; and
adapt the abbreviation §; = §,, for j € [1,r]. Thus, if X = {z1,...,2,} are the elements of X
indexed so that m(x;) = 7(y;) for j € [1,7], then x; = y; + &; — w,,; with w,, € A".

By induction hypothesis and Proposition 2.2, we have tMin(Xs_1(Go, A")) = Xs-1(Go, A7)
with Min(Xs_1(Gp, A")) finite. Thus every Y € X,_1(Go, A’) has some Yy € Min(X;_1(Go, A'))
with Yy <z Y. As there are only a finite number of possibilities for Y, we may add the condition
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that there is some fixed subset Yy € Min(Xs_1(Gp, A")) with Y <z Y = X3 U...U X4 for all
X under consideration.

In summary, the above work means there are fixed A, A" € PBz(Gp), a fixed subset Yy =
{y1,.. .9} € GoN A with 7(Ys) € X(n(Gyp)) irreducible, a fixed set of representatives A for
the lattice A N & modulo A/, where £ = R(A’), fixed &1,...,6 € A C ANE, and a fixed
Yy € Min(Xs_1(Go,A’)) such that, letting Q@ C X(Gp) consist of all X € X(Gy) having a
maximal series decomposition X = X; U...U X, such that Z(X) = A, Z(Y) = A/, R(Y)=¢,
Yo =z Y, and X, = {z1,...,2,} with each

mjzyj-i-fj—wﬂg]-

for some w,; € A’ where j € [1,r] and Y = X; U...U X1, then it suffices to show there
are no infinite anti-chains nor infinite descending chains in 2, for the arbitrary fixed parameters
indicated, to complete the induction and thus also the proof.

For j € [1,7], let )?j ={wy; : X €Q} CA'CE. Let Ry be a realization of Y € X(Go, A)
in which all half-spaces corresponding to Yj are one-dimensional. If {z;}5°, is an asymptotically
filtered sequence of terms from X ; with fully unbounded limit @ = (uq,...,u), then ug,...,u €
E =R(A") =R(Yp) (as )~(j C &), and then {—z; + & + y;}2, will be an asymptotically filtered
sequence of terms from Gy with fully unbounded limit — (after discarding the first few terms).
Thus Proposition 7.4.3 applied to Ry ensures that « is encased by Yj, in which case Theorem
3.9.4 applied to C(Y}p) implies that )Z'j is bound to C(Yp) for all j € [1,r], and thus )Z'j is also
bound to Cz(Yp) for all j € [1,r]. This means there is some fixed ball B C & such that every
w € Uiy )A(:j has some z € Cz(Yy) such that w € B+ 2. As w, z € A, we are assured that
w—2z € BNA’, which is a bounded set of lattice points. Thus each w; € X has w; —5; € Cz(Yp)
for some ¢; € BN A'. As there are only a finite number of choices for ¢}, we can make one
last restriction by only considering X € €2 for which the same fixed value of 55- occurs for all
wj € X ;, for each j € [1,7]. Let Q" C Q be resulting subset. This means it suffices to show there
are no infinite anti-chains nor infinite descending chains in €’ to complete the proof. Moreover,
replacing the fixed coset representative §; with the alternative fixed coset representative §; — 5;-

for each j € [1,7] (thus replacing w; by w; — &’

%), we obtain

Wy, S Cz(}/b)
rather than simply w,, € A" = Z(Yp), for each j € [1,7].
Each X € €V corresponds to the tuple
QD(X) = (Yv, TILyew- ,wr) S Xsfl(Go,A/) X Cz(Y@) X ... X Cz(ifw) .

T

Indeed, Y C X consists of all z € X with m(x) = 0, while, since 7(Ys) consists of |Ys| = r distinct
elements, there is a unique indexing of Xy = X \'Y = {z1,...,2,} such that n(z;) = n(y;) for

all j € [1,7], and then w; = w,, = —x; +y; +&; as defined above. Moreover, if X’ € Q' is a set
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with corresponding tuple o(X') = (Y, w},...,w.) = (Y,w1,...,@,) = ¢(X), then X = X',

T
Thus we see that the elements X € £ are in bijective correspondence with a subset

W - Xs_l(Go,A/) X Cz(}/@) X ... X Cz(%) .

~\~
T

Given a set Y € X,_1(Go, A’), we define a partial order <y on Cz(Y}) by declaring
w2y w when ' €w+CY),

for w, @’ € Cyz(Yp). Note <y is transitive as C(Y) is convex, is reflexive as 0 € C(Y), and is
antisymmetric since Y is linearly independent (which ensures that C(Y) N —C(Y) = {0}). Also,
since w, w’ € A" =Z(Y) for all Y € X;_1(Gp, A’) with Y linearly independent, we have

o €ew+CY) ifandonlyif o €w+ Cy(Y).

Claim A. For X, X' € Q' with ¢(X) = (Y, w1,...,w,) and p(X') = (Y, @],..., @), we have
X =z X" if and only if Y <7 V" and w; <y @] for all j € [1,7].

Proof. Suppose X <7 X'. Then Cz(X) C Cz(X’). Let Y ayy € Cz(Y') be an arbitrary element,
yey
where ay € Zy. Then ) ayy € Cz(Y) C Cz(X) C Cz(X'), whence Y ayy = > Bz’ for
yey yey x'eX’
some 3, € Z4. Thus, since R(Y) = R(Y’') = & = ker 7w with (X’ \ Y’) a set of | X'\ Y’| linearly

independent elements, it follows that 5,y = 0 for all 2’/ € X"\ Y/, whence )" oy = Y. Bpa’ €
yey ey’
Cz(Y"), which shows Cz(Y) C Cz(Y’), and thus that Y <7 Y. Let X \ Y = X, = {x1,...,2,}

and X' \Y' = X, ={a),..., 2} with
rj=yj+&—w;  and 2=y +&—w; forje(l,r]
Let j € [1,7] be arbitrary. Then z; € Cz(X) C Cz(X'), implying that z; = > Sy’ for some

'eX’
By € Zy. Since w(zj) = w(y;) with 7(X'\Y’) = {m(y1),...,7(y,)} linearly independent, it

follows that 8,y = 0 for all 2" € X\ {z’;} and By = 1. Hence

yit&—wi=ay =i+ Y By =+ G-+ Y By €yt & — )+ Ca(Y),
y'ey’ y'ey’

implying that @ € w; + Cz(Y”), and thus that w; <y+ @j. This establishes one direction of

the claim.
Next suppose that Y =z Y’ and w; =ys @) for all j € [1,7]. Let > azz € Cz(X) be
zeX
arbitrary, where a, € Z. Since Y =<7 Y’, we have Cz(Y) C Cz(Y’), ensuring that > o,y €

yey
Cz(Y'). Now Xy = X\Y ={xy,...,2,} withz; =y; +§ —wj and X, = X'\Y' = {z],... 2.}

with 2/, = y; +§; — @}. Thus, since w; <y» @), which ensures —w; € —w’; + Cz(Y”), we have
zj € a; + Cz(Y'), for j € [1,7]. As a result, since Cz(Y”) is a convex lattice cone (closed under



172 DAVID J. GRYNKIEWICZ

addition and positive scalar multiplication by integers), we have

Zax:c = Zayy + Zazjmj € Zaxjx; + Cz(Y’) C CZ(X;) + CZ(Y’) — CZ(X/)'
j=1 j=1

rzeX yey

Since Y a,z € Cz(X) was arbitrary, this shows Cz(X) C Cz(X’), implying X <z X', which
zeX

completes the other direction in Claim A. O

If Cz(Y1) C Cz(Y2), where Y1, Yy € X 1(Go,A’), then w =<y, @ implies w <y, @w’. In
particular, @ <y, @’ implies @w <y @’ for any Y occurring as the first coordinate of an element
from € (recall that Cz(Yy) C Cz(Y) since Yy =<z Y by construction of Q). We make (¥
into a poset by declaring (Y,w@1,...,@,) 2 (Y, @],...,@,) when Y <z Y’ and w; <y' @]
for all j € [1,r], with transitivity guaranteed by the observation just noted. Claim A then
ensures that ¢ gives an isomorphism between the posets € and €. Moreover, it is readily

>~

seen (since Yj is linearly independent) that there is an isomorphism of posets (Cz(Yy), Xy,) =
Z‘fw‘ using the product order on ZB/Q". Consequently, in view of Claim A, we see that we

can remove relations from the poset €’ = € to result in a poset isomorphic to a subset of
Xs-1(Gop, A) x Zlf‘”' X ... X Z‘}_/”‘. By induction hypothesis, there are no infinite anti-chains nor

M
infinite descending chains in X,_1(Gg, A’), and there are also no infinite anti-chains nor infinite
descending chains in Z'f‘”' (recall the discussion in Section 2.2). Therefore iterated application

of Proposition 2.3 implies there are no infinite anti-chains in X,_1(Gp, A’) x ZLY@I X ... X ZE/@‘,

~\~
T

and thus also no infinite anti-chains in ', as this lattice can be obtained from X 1(Gp, A’) x

Z‘I”‘ X ... X Zlf‘”' by adding additional relations and removing elements (which both can only

~~

T
reduce the size of an anti-chain). It remains to show that €' also has no infinite descending

chains.

Suppose by contradiction that {X;}2°, is a strictly descending sequence of X; € Q' and
let p(X;) = (Yi,wgl), . ,wlm) for ¢ > 1. Then, in view of Claim A, it follows that {Y;}°;
is a descending sequence of Y; € X 1(Go,A’). As a result, since X,_1(Go, A’) contains no
infinite descending chain by induction hypothesis, it follows that, by discarding the first few
terms in {X;}22,, we obtain Y; =Y for all i. Since {X;}3°, is a descending sequence, Claim A
now ensures that {wij >, is a descending sequence in (Cz(Yy), =y) for each j € [1,7]. Since
Cz(Yp) C Cz(Y) in view of Yy <z Y, it follows that (Cz(Yp), <y) is a sub-poset of ‘(CZ(Y), <y),

which is isomorphic to Zlfl as Y is linearly independent. However, the poset Z‘f contains no
infinite descending chains (as discussed in Section 2.2), meaning neither the isomorphic poset
(Cz(Y), Ry) nor the sub-poset (Cz(Yp), =y) contain infinite descending chains. It follows that

each chain {ng )}izl for j € [1, 7] eventually stabilizers, contradicting that {X;}?°, is a strictly
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descending chain. With this contradiction, we instead conclude that €’ contains no infinite
descending chains, completing the induction and proof. O

7.4. Interchangeability and the Structure of X (Gy). The goal of this subsection is study
the structure of X(Gp). One of our main aims is to partition X (Gp) into a finite number of
subsets, each consisting of various X € X (Gj) having the same type, such that sets of the same
type posses common regularity properties. We begin with the basic definitions.

Let A < R? be a full rank lattice and let Gy C A be a finitary subset with C(Gg) = R%. Let
X € X(Gp), let X = X1 U...U X, be a maximal series decomposition of X. For j € [0, s], let
Aj=7Z(X1U...UX;) and let m; : R — R(X; U...UX;)" be the orthogonal projection. Note
A;=R(X1U...UX;)NA, for j € [0,s], as X is linearly independent, where A := Ay = Z(X).
Also, if x € X, then j is the minimal index such that 7;(z) = 0. Suppose X’ € X (Gy) is another
set with maximal series decomposition X’ = X U... U X| such that mj_1(X;) = m;_1(X}) for
j=12,...;5 Then R(X; U...UX;) =R(X{U...UX]) for j =0,1,2...,s. Moreover, each
x € X identifies uniquely with some z’ € X’. Namely, € X; with j € [1, s|] the minimal index
such that m;(z) = 0, and then 2’ € X7 is the unique element with m;_1(z) = 7;_1(2’). This
allows us to define a bijection between and X and X’ by sending = + 2’ as just defined. In such
case, we say that X and X’ have the same linear type. If we additionally have

Z(X1U...UX)) =Z(X;U...UX;) forevery j € [l,s],

then we say that X and X’ have the same lattice type. For each possible lattice type, we
can fix a representative set Z € X(Gg) with series decomposition Z = Z; U ... U Z; having
this lattice type. Then, given any other X € X(Gp) having the same lattice type, say with
associated maximal series decomposition X = X U...U Xg, there is a bijection ¢ : X — Z such
that Z(X1 U...UX;) = Z(¢(X1) U...U¢(X;)) with ¢(X;) = Z; for j € [1,s]. If X’ € X(Go)
is another set with the same lattice type, we likewise have a bijection ¢’ : X’ — Z. Moreover,
if x € XN X', then ¢(z) = ¢'(x) by how the bijections ¢ and ¢’ are defined above. Thus
we can extend the domain of ¢ to obtain a map ¢ : |Jy X — Z, where the union runs over
all X € X(Gp) having the same lattice type as Z, and we identify ¢ as the lattice type of
Z itself, allowing us to say a set X € X(Gp) has lattice type ¢. Note a given X € X(Gy)
may have multiple types. However, each maximal series decomposition X = X; U ... U X
corresponds to precisely one. The type ¢ associated to the empty set is called the trivial type,
which corresponds to when s = 0. Only the empty set has trivial type. We remark that
the lattice type ¢ depends on the associated linear type and the lattices A; for j = 1,...,s.
However, once the linear type is fixed, in turn fixing the values of the subspaces R(X;U...UX})
for j € [0,s], the value of Ay = Z(X) then completely determines the other values A; with
Jj<ssince Z(Z1U...UZj) =Z(Z1U...UZ) NR(Z1U...UZ;) = A, NR(X1 U...UXj) =
Z(X1U...UXs ) NR(XG U...UX;) =Z(X; U...UXj) as Z and X are linearly independent.
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The linear type of X € X(Gy) associated to the maximal series decomposition X = X;U...U
X is determined by the values of 7;_1(X;) for j € [1, 5], where m;_1 : R? — R(X;U...UX;_1)*
is the orthogonal projection. The sets ¢;_1(X;) are each irreducible by Proposition 7.16, while
Theorem 7.18.1 ensures that each finitary set m;_1(Go) (by Proposition 7.6) only has a finite
number of irreducible sets as possibilities for ¢;_1(X;). It follows that there are only a finite
number of linear types for Gy. The discussion after (7.13) ensures that each linear type only
has a finite number of associated lattice types. Thus the number of lattice types for Gy is also
finite. Indeed, per the discussion after (7.13), the value of the lattice A; = Z(X; U... U X}) is
uniquely determined by A;_; and the values of {; mod A;_; for x € X, where

&r i =x — ¢(SL‘) eA OR<AJ‘,1>.

Note §, = 0 for all y € Y, ensuring {4(,,) = 0 for all z € X. Thus, given a lattice type ¢ having
Z = Z1U...UZs as the associated maximal series decomposition of its codomain, there are
elements &, € ANR(A;_q) for z € Z such that, if X € X(Gp) has the same linear type as ¢,
then X also has the same lattice type as ¢ precisely when

(7.33) §e =€) =0 mod Aj_;  for every r € Xj and j € [1, 5],

where X = X; U...U X, is the associated maximal series decomposition and A;_y = Z(Z; U
.U Zj,1>.
We let T(Gy) consist of the set of possible lattice types ¢ for the sets X € X(Gp). Given
¢ € T(Gy), let
X(¢) € X(Go)
consist of all X € X (Gp) that have lattice type ¢ and set
)= J X
Xex(o)
so each ¢ € T(Gp) is a map ¢ : XY(¢) — Z, where Z € X(¢) is a distinguished set with type ¢
having associated series decomposition Z = Z; U ... U Z,. Note the lattice types associated to
X € X(Gp) are in bijective correspondence with the maximal series decompositions of X.
Suppose X, X' € X(¢) and z € X and 2’ € X' are elements with ¢(z) = ¢(2’). Define a
new set X” = X \ {z} U {2’} C Gy. Then X" € X(¢) as well, as the following short argument
shows. We must have z € X; and 2’ € X]‘ for some j € [1,s], where X = X; U...U X, and
X' = X{U...UX] are the associated maximal series decompositions. Since X and X’ both have
the same type, we have Z(X1U...UX;_1) = Aj_1 = Z(X]U...UX] ), and since ¢(z) = ¢(z’),
it follows that {, = & =0 mod A,_1, for j € [1, s], ensuring that

(734) Aj :Z<X1U...UX]'> :Z<X1U...UXj_1U(Xj\{.I‘}U{$/})> fOI‘j € [1,8],

since the values of A;_; and each { mod A;_; for x € X; determine the lattice A;. Let
R = (X1 U{vi},...,XsU{vs}) be a realization of X € X (Gy) associated to the maximal series
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decomposition X = XjU...UX; with all x € X = X U...U X, having dimension one. Note R
exists per the discussion at the beginning of Section 7.2, and by this same discussion, replacing
the half-space x = R,z with x’ = R;2/ results in another virtual Reay system (after possibly
modifying the v; for i € [j+1, s]), showing that X U.. . UX;_1U(X;\{z}U{2'})UX;11U.. .UX, is
a series decomposition of X", which is maximal in view of Proposition 7.16 since X = X;U...UX|
was maximal and 7;_1(z) = mj_1(z'). In view of (7.34), it now follows that X" also has type ¢,
as claimed.

What the above important observation means is, if X, X’ € X(¢) have the same type ¢, then
it is possible to exchange elements between X and X’ equal under the mapping ¢ and have the
resulting set remain in the class X(¢). Indeed, if Z, € X(¢) is the representative for the type
¢and X C XY (¢) = U Zex(p) £ 18 any subset consisting of precisely one element z € X with
¢(x) = z for each z € Zy, then X € X(¢) (as X can be constructed by a process of at most
|Z4| — 1 exchanges just described). We call this the interchangeability property of X(¢),
which essentially amounts to saying each X"(¢) has the structure of a direct product. Thus

X(Go)= U %
$€Z(Go)
is a decomposition of X (Gy) into a finite number of exchange closed subsets (with the union not
necessarily disjoint).
A lattice type corresponds to a map ¢ : XY(¢) = UXex(qb) X — Zy, where Zy € X(¢) is a
distinguished representative. The choice of representative Zy is rather arbitrary. A map

p: U X = Z,
XeXm(p)

obtained from ¢ by first changing the representative set used for the codomain from Z; to some
Z, € X(¢) and then restricting the domain to a union of sets from some subset X,,(¢) C X(¢)
which contains the new codomain, so Z, € X,,(¢), will be called a refinement of ¢. In such
case, we set

o= U x

XeXm(p)

and note ¢ : X(¢) — Z,.

In view of Proposition 7.26 below, we refer to the sets X € X,,(¢) as having the same
minimal type ¢. Note, if X and X’ both have the same minimal type ¢, then they must also
have the same lattice type, as the notion of minimal type refines that of lattice type, and by a
small abuse of notation, we will often use ¢ for this lattice type as well. In what follows, we say
an element x € X € X,,,(p) is at depth j € [1,s] when p(x) € Z;, where Z, = Z; U ... U Z,
is the maximal series decomposition associated to the codomain Z, of the minimal type ¢, and
we call

dep(p) = s
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the depth of the minimal type ¢. We likewise define all such terms, as well as dep(¢), for a
lattice type ¢ € T(Gp). The argument for the existence of the finite set T,,(Gp) is similar to
that used for Theorem 7.25.

Proposition 7.26. Let A C R be a full rank lattice, where d > 0, and let Gy C A be a finitary
subset with C(Go) = R%. Then there is a finite collection T,,(Go) with each ¢ € T,,(Go) being
a map ¢ : X3 (¢) = UXGXm(ga) X — Z, satisfying the following properties:

(a) X(Go) = U(pETm(GO) Xm(p).

(b) ¢ is a refinement of some lattice type for Gy.

(c) Zy, 2z X for every X € Xpn(p), i.e., Cz(Z,) C Cz(X).

(d) Forany X € Xp,(p) andx € X at depth j € [1, s], we have p(x) € x+Cz(Z1U...UZ;_1),
where Z, = Z1 U ...U Zs is the mazimal series decomposition associated to Z.

(e) The interchangeability property holds for X,(¢), meaning, given any X, X' € X, (p)
and x € X and 2’ € X" with p(x) = p(2), we have X \ {z} U{z'} € X, (p).

Proof. Since T(Gy) is finite and X(Go) = Upez(g,) X(9), it suffices to show each X(¢), for
¢ € T(Gyp), can be written as a finite union of sets satisfying (b)—(e). Let ¢ € T(Go) be an
arbitrary lattice type with codomain Y € X(¢) and associated maximal series decomposition
Y=Y U...UY,, so
¢:X%(¢) > Y1 U...UY, 1 UY,.

We proceed by induction on s = 0,1,...,d. If s = 0, then (b)—(e) hold with ¢ = ¢ the trivial
lattice type and X,,(¢) = X(¢) = {0}. If s = 1, then (b)—(e) hold with ¢ = ¢, X,,,(p) = X(¢) =
{Y} ={¥1} and Z, = Y. Therefore we may assume s > 2. Let X € X(¢) be arbitrary with
associated maximal series decomposition X = X; U...U X;. By definition of a lattice type,

A:=Z{Y1U...UY,) =Z{XjU...UX,) and A :=ZYU...UYs 1) =2Z(X1U...UX, 1)

are fixed (with A = Ay and A’ = A, in the notation from the start of Section 7.4).

By induction hypothesis, there are only a finite number of possible minimal types ¢’ for the
set X1 U...UXs_1 € X(Gp) that are refinements of the lattice type defined for Y \ Y by
the maximal series decomposition Y \ Yy = Y3 U ... UY,_; (maximality follows by Proposition
7.16 since Y = Y, U...UY; is maximal). Note any X € X(y) with associated maximal series
decomposition X = X3 U...U X, has X \ X; = X1 U...U X1 of the same lattice type as
Y\Y; =Y U...UYs_1, as X and Y both have lattice type ¢. For any such minimal type ¢’
(refining the lattice type defined by Y1 U ... UY, 1), let X,» C X(¢) consist of all X € X(¢)
having associated maximal series decomposition X = X7 U...U X such that X \ X € X,,(¢).
Note the condition that ¢’ refine the lattice type defined by Y3 U... U Y;_1, and thus also that
defined by X; U...U X,_;, guarantees the subtle condition that ¢'(z) = ¢'(2) if and only if
¢(z) = ¢(2), for any z and z in the common domain of both ¢’ and ¢. Now X(¢) = U, Xy is
a finite union of sets X, with all X € X having X \ X, of the same minimal type ¢, so it
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suffices to show each X,/ can be written as a finite union of sets satisfying (b)—(e). To this end,
let ¢’ be arbitrary and suppose Zy = Zy U...U Z,_; is the codomain of ¢', so

O XD (P = 21U U Zs .

In view of the interchangeability properties for ¥(¢) and X(¢’) and that guaranteed in (e) by
induction for X,,(¢’), it follows that X, also has the interchangeability property. Note that

Z<Z<p/> = Z(Zl U...u Z5—1> =A

as ¢’ refined the lattice type associated to Y1 U ... UY, 1.

If Z{U...UZ._, € X, (¢") C X(¢') and X{U...UX] € X(¢), then we have Z(Z]U...UZ!_,) =
A =ZY 1 U...UY,_1) = Z(X{ U...U X, ), with the first equality as ¢’ refines the lattice
type associated to Y7 U...UY;s_1. Thus

(7.35) A =Z(X1U...UX._)+Z(X.) =Z(Z1U.. . UZ,_)+Z(X}) =Z(Z{U...UZ._UX]).

Since ¢’ refines the lattice type associated to X1 U...UX,_1 and X{U...UX/ € X(¢), it follows
that Z{ U...U Z._; U X/ has the same linear type as ¢, which combined with (7.35) ensures
that Z] U...UZ!_; UX/ has the same lattice type as ¢. Hence Z] U...UZ._; UX] € X(¢) with
Z1U...UZ,_; € X,(¢'), ensuring by definition of X, that Z]U...UZ,_UX] € X,. Applying
this with Z1 U...UZ,_ =Z;U...UZs_j and X{U...UX, =Y, U...UYj, we conclude that

7.36 Yy =Z1U...UZ1UYs € X .
® ®

Since all X € X, C X(¢) have the same lattice type, it follows by (7.33) that any = € X"(¢)
with dep(z) = s has

(7.37) & =2 —¢(r) =0 mod A
For y € Y, define
)?y = {& : thereis some X € X, and z € X with ¢(z) =y} C A".
By definition of &, and )N(y, we find that
(7.38) e X, implies &4y==¢& +(x)=2xcX(p)C Go.

Let R, be a realization of Z, = Z1U...UZs_1 in which all anchored half-spaces have dimension
one. If {—&;}2°, is an asymptotically filtered sequence of terms from —)N(y with fully unbounded
limit @ = (u1,...,u¢), then ug,...,uy € R(A") = R(Zy), and then (7.38) ensures {& + y}2,
is an asymptotically filtered sequence of terms from Gy with fully unbounded limit —«. Thus
Proposition 7.4.3 applied to R ensures that 4 is encased by Z,/, in which case Theorem 3.9.4
applied to C(Z,/) implies that —)~(y is bound to C(Z, ), and thus —)~(y is also bound to Cz(Z,/).
This means there is some fixed ball B, C R(Z,) such that every § € )A(:y has some z € Cz(Z)
with —§ € By + 2. As §, z € A, we are assured that —{ — z € A’ N By, which is a bounded set
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of lattice points, and thus finite. Consequently,
(7.39) each ¢ € )Zy has w + & € Cz(—Z,) for some w € A’ N By,

For each y € Yy, there are only a finite number of choices for an element w, € A’N B,. For each
fixed choice of elements w, € A’N B, for each y € Y;, we can define a subset Q C X, consisting
of all X € X,/ such that, whenever x € X with ¢(z) =y € Y, then wy + &, € Cz(—Z,). In
view of (7.39), we see that X is the union of all possible €2, as we range over the finite number
of possible choices for the w,. It thus suffices to show (b)-(e) hold for each possible 2 C X.
Fix one such arbitrary possibility for 2. For y € Y, define

)N(Z? = {& : thereis some X € Q and x € X with ¢(z) =y} C )N(y.

Then, by definition of 2, we are assured that, for all y € Y;, we have
(7.40)
Ty +X3 C Cz(—Z,) and y+XZ§) C{reGp: € X for some X € Q and ¢(z) =y},

with the latter inclusion above following by noting that £ € )2'3 implies { = x — ¢(x) =2 —y
for some = € X with X € Q (by (7.37) and definition of )N(;l)

The restriction added to a set X = X; U...U X, when passing from X, to 2 C X, only
applies to conditions involving X, and the restrictions imposed for each x € X are independent
of each other. Thus, since the interchangeability property holds for X/, it follows that it also
holds for 2, i.e., if X, X' € Qand z € X and 2’ € X' with ¢(x) = ¢(2’), then X\ {z}U{z'} € Q.
Moreover, if X' = X{U...UX, € Xy and X = XjU...UX, € Q, then X{U...UX! UX, € Q.
In particular, the case X' =Y, € X, (by (7.36)) tell us that, if X = X; U...UX, 1 UX, €Q,
then Z1U.. . UZ, 1 UX;,€Q. If € € )???, then (7.40) implies there is some X € ) with

y+£:¢)($)—|—f:l’€X:Xlu...UX3,1UXS,

and by the previous conclusion, we can w.l.o.g. assume X = Z; U...U Zs_1 U X, (note z € X,
as ¢(x) =y € Yy). As a result, if, for each y € Yy, we have some ¢, € )Z??, then swapping the
elements y + §, into the series decomposition X = Z; U...U Z,_1 U X, one by one, yields a
series decomposition Z; U...U Zs_1 U Zs € Q with Zy = {y+ &, : y € Y}

The natural partial order on Cz(—Z,), by declaring a < b for a,b € Cz(—Z,) when b €
a+ Cz(—Zy ), makes Cz(—Z, ) into a partially ordered set isomorphic to ZLFZ"’/‘ (since Zy is a
linearly independent set). Since w, + )NC;) C Cz(—Z,) by (7.40), Hilbert’s Basis Theorem (see
Section 2.2) ensures that Min(w, + )?;2) is finite with TMin(w, + )?3) = wy + )?;2, for each
y € Y. For each y € Y;, we can choose some minimal element w, + &, € Min(w, + )?52) and
then set

2y =Y+ &y
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Letting Zs = {2, : y € Y;}, the discussion of the previous paragraph ensures that
th =Z1U...UZs_1UZ; €.

As Min(w, + )NC;)) is finite, there are only a finite number of possibilities for how to construct
the set Z;. For each possible Z;, we can define a subset X,,(¢) C Q consisting of all X € Q
such that, for every y € Y; and z € X with ¢(z) = y, we have w, + §, < w, + &. Changing
the codomain of ¢ to Z, and restricting to the domain (Jycy () X gives rise to a refinement
¢ Uxex,n(p) X = Zp of ¢. We now have ) written as a finite union of sets Xy, () such that
(b) holds.

Let ¢ be an arbitrary possible restriction defined above, let X € X,,(¢) be arbitrary and let
x € X. If x is at depth j < s, then, since X € X,,,(p) € Q2 C X, we have X; U...UX,_; €
Xm(¢') satisfying (d), meaning ¢(z) = ¢'(z) € v+ Cz(Z1 U ... U Z;—1). If x is at depth s,
then w, + & < wy + &, where y = ¢(x). Thus &, € § — Cz(Z1 U... U Zs_1), in turn implying
o(x) =2y =&+y € &+y+Cr(Z1U.. . UZsq) = 2+ Cy(Z1U. . .UZs_1), with the final equality
by (7.37). In particular, (d) holds, and we have z € Cz(Z1U...UZs_1)+Cz(X,) for every z € Z,
(as p(X,) = Zs). Since X € X,,(¢) € Q C Xy, we have X1 U...UX 1 € X,,,(¢') satistying (c),
meaning Cz(Z1U...UZs_1) C Cz(X1U...UXs_1), whence z € Cz(Z1U...UZs_1)+Cz(Xs) C
Cz(X) for every z € Z,. Thus Z, C Cz(X), implying Cz(Z,) C Cz(X), showing that (c) holds
for X,,(¢). It remains to show that the interchangeability property holds for X,,(¢). However,
the restriction added to a set X = X;U...UX, when passing from Q to X,,(p) C  only applies
to conditions involving X, and the restrictions imposed for each x € X, are independent of each
other. Thus, since the interchangeability property holds for €2, it follows that it also holds for
X (o), e, if X, X' € X,(¢) and z € X and 2’ € X' with p(z) = ¢(2'), and hence ¢(x) = ¢(a’)
too, then X \ {z}U{2'} € X,,(¢). Thus (e) holds, which completes the induction and proof. O

8. FACTORIZATION THEORY

8.1. Lambert Subsets and Elasticity. In this final section, we apply the machinery regarding
Convex Geometry and finitary sets developed in prior sections to derive some striking conse-
quences regarding the behavior of factorizations. Our first goal, which is one of the most difficult
and crucial steps in the characterization of finite elasticities, is to obtain a multi-dimensional
generalization of a result of Lambert for subsets of Z. After we have achieved this, we then char-

acterize when pg41(Go) is finite. Recall that vx(S) = > v,(5) for S € F(Gp) and X C Go.
rzeX

Definition. Let G be an abelian group and let Gy C G be a subset. We say that X C Gy is
a Lambert subset if there exists a bound N > 0 such that vx(U) = > vg(U) < N for all

rzeX
U e A(Go) .

Lambert [86] (see also [53, Lemma 4.3] and [11, Theorem 3.2]) showed that, if Go C Z is

a subset with Go N —Z finite, then ) v, (U) < N for every U € A(Gyp), where N =
.’L'EG()PIZ+
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| min(Gop N —Z4 )|, which, in terms of the notation just introduced, means Go NZ; C Gy is a
Lambert subset. His proof was a clever adaptation the well-known argument for obtaining the
basic upper bound D(G) < |G| for the Davenport Constant [73, Theorem 10.2]. The hypothesis
|Go N —Z4| < oo readily implies that Gy is finitary. Indeed, it is essentially a characterization
of being a finitary set in Z (either Go N —Z, or Go N Z4 must be finite for a subset of Z to be
finitary). Moreover, if Gy is infinite, then G = (Go N —Z4) \ {0}, so Lambert’s conclusion can
be reworded as saying Go \ G§ C G C Z is a Lambert subset.

Consider a more general subset Gy C A, where A < R? is a lattice and d > 0. If C(Gy) # R,
then terms from G\ &, where & = C(Gp) N—C(Gy) is the lineality space of C(Gy), are contained
in no atom, and can essentially be discarded. Assuming C(Gy) = R?, then Proposition 7.2
implies X C Gy \ G§ for any Lambert subset X C Gy. We will later in this subsection see
that, when Gy is finitary, then Gp \ G§ is the unique maximal Lambert subset of Gg, giving
a multi-dimensional analog of Lambert’s result. However, we begin first with two propositions
entailing some of the basic relationships between finitary sets and finite elasticities.

Proposition 8.1. Let G be an abelian group and let Gy C G be a subset. Suppose X C G is a
subset with A(X) = 0 and Go\X C Gy is a Lambert subset with bound N. Then p(Go) < N < oo.
In particular, pr(G) < p(Go)k < Nk < oo for any k > 1.

Proof. Let Uy, ..., U € A(Gp) be atoms. Suppose Uy +...- Uy = Vi-...-Vp for some Vi,...,V; €
A(G). Since A(X) =0, it follows that each V; must contain a term from G\ X. However, since

Go \ X C Gy is a Lambert subset with bound N, there are at most kN terms in Uy - ... Uy
from Go \ X. Thus ¢ < kN, implying ¢/k < N, and the proposition follows by definition of
p(Go). O

Proposition 8.2. Let G be an abelian group with torsion-free rank d > 0 and let Gy C G be a
subset. Then, regarding the statements below, we have the implications 1. = 2. = 3. = 4.

1. There exists a subset X C Gq such that A(X) =0 and Go\ X C Gq is a Lambert subset.
p(Go) < oo.
3. pr(Go) < 0o for all k > 1.
4. pd+1(G0) < 0.

o

Proof. The implication 1. = 2. follows by Proposition 8.1, while the implications 2. = 3. and
3. = 4. follow from the definition of p(G). O

Proposition 8.3. Let A < R? be a full rank lattice in R?, where d > 0, and let Gy C A be a
subset with C(Go) = Re. If pgy1(Go) < 00, then 0 ¢ C*(GY). In particular, Gy is finitary.

Proof. Note 0 ¢ G by Proposition 7.1.2. Assume by contradiction that 0 € C*(G§). Then
Carathéordory’s Theorem implies that there is a minimal positive basis X C G§. Let X =
{x1,..., 24} be the distinct elements of X, where 2 < s < d+1, let V € A*™(Gy) be the unique
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elementary atom with Supp(V') = X (by Proposition 4.7), and let N' = max{v,, (V) : j € [1,s]}.
Since each z; € G§, Proposition 7.2 implies that, for each j € [1, s, there is a sequence {Ui(j)};’il
of atoms Ui(j) € A%M(Gp) with vy, (Ui(j)) — 00. Let M; = min{vxj(Ui(j)) : j €[1,s]} and observe
that M; — oo since each vxj(Ui(j)) — 00. Consider the product W; = Ui(l) ... .-UZ-(S) for< > 1 and
let m; = LA]{;J Then W; = VImil. W/ is a factorization of W;, where W/ =W, - yl=mil ¢ B(Gy)
and V € A(Gp). Moreover, since N is fixed and M; — oo, it follows that m; — oo, showing

that ps(Gp) = oo. However, since s < d + 1, we have ps(Go) < pg+1(Go) by (2.9), forcing
pa+1(Go) = oo as well, contrary to hypothesis. Note 0 ¢ C*(G§) implies Gy is finitary by
Theorem 7.5. (|

We will need the following lemma for our generalization of Lambert’s result.

Lemma 8.4. Let A C R¢ be a full rank lattice, where d > 0, let Go C A be a finitary subset
with C(Go) = R, let R = (X U{v1},..., Xs U{vs}) be a purely virtual Reay system over Gy,
let X = X U...UX,, and let m : RT = RY(X)L be the orthogonal projection. If U € Fra(Go)
with ©(U) = W for some rational number a > 0 and W € A¥™(n(Gy)), and there exists some
w € Supp(W) such that 7= (w) N Supp(U) C Gy \ G}, then —a(U) € CYU(X).

Proof. Suppose U is a counter-example with | Supp(U)| minimal. By replacing U with Ul/el
we can w.l.o.g. assume a = 1. Let wy,...,wy € Supp(W) be the distinct elements of Supp(W)
and let o;; = vy, (W) € Zy for i € [1,t]. Since W € A®*™(7(Gy)), it follows that {w1,...,w;} is
either {0} or a minimal positive basis with aywy + ...+ ayw; = 0. By hypothesis, we have some
wj, say wi, such that 71 (w;) N Supp(U) C Gy \ G§, i.e., every u € Supp(U) with 7(u) = w;
has u € Go \ G§. Partition Supp(U) = Uy U... U U, such that each U, for i € [1,¢], consists of
those u € Supp(U) with 7(u) = w;. Note Uy C Gy \ G§.

Let X C Supp(U) be an arbitrary subset such that |X N U;| = 1 for every ¢ € [1,t], say
with X NU; = {x;} for i € [1,t]. Then Ux := H;e[l,t} xgai] € F(Gp) with m(Ux) = W and
| Supp(Ux )| = | Supp(W)|. As a result, since z1 € Uy C Go \ G, it follow from Proposition 7.11
applied to Ux that wt(—c(Ux)) =0, i.e.,

(8.1) —o(Ux) € CY(X).
- ) )
3= min{vfj(UX) i1t} = min{% e 1,4} > 0.
Since vy, (Ux) = a; = > vy (U) > vy, (U) for each i € [1,¢] (as 7(U) = W), we have 8 < 1 with
ueU;

equality only possible if U)[('B I—u x =U.
In view of the definition of /3, we have U)[?] | U with vxi(U)[?}) = v, (U) for every i € [1,t]
attaining the minimum in the definition of 8. Thus U)[?} € Frat(Gp) with

| Supp(U - U)[;m)\ < |Supp(U)| and W(U)[(m) — w8l
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By (8.1), we have —O’(U)[?]) = —Bo(Ux) € CY(X) (since CY(X) is a convex cone by Proposition
5.1.2). Consequently, if 5 = 1, so that U)[?] = U, then —o(U) = —O'(U)[?]) € CY(X), as desired.
On the other hand, if 3 < 1, then we have U - U)[(_'B] € Frat(Go) with w(U - U)[(_m) = wh-4,
Thus the hypotheses hold using U - U )[(_ 8 ], in which case the minimality of | Supp(U)| for the
counter-example U ensures that —o(U - U)[; A }) € CY(X). Combined with (8.1) and the convexity
of CY(X) (Proposition 5.1.2), we conclude that —o(U) = —O‘(U)[?]) —o(U - U)[(_m) € CY(X), as
desired. O

We now come to the key generalization of Lambert’s result. Theorem 8.5 requires the hy-
pothesis 0 ¢ C*(G§), which is slightly stronger than being finitary (in view of Theorem 7.5). In
exchange, we actually attain a decomposition of an arbitrary atom U € A(Gy), reminiscent of
Theorem 4.6 (Carathéordory’s Theorem), which implies that Gy \ G§ € G is a Lambert subset.
A simplification of the argument used to prove Theorem 8.5 works when we only have G being
finitary, though it only yields that G \ Gf C Gp is a Lambert subset and not the additional
decomposition result for atoms. We deal with this in more detail afterwards in Corollary 8.6.
The proof of Theorem 8.5 is algorithmic and yields recursively defined values for the constants
Ng and N7, which are quite large and dependent on the structure of the individual set Gy. We
have not optimized the estimates for Ng and N7, instead opting for arguments that simplify
the recursive definitions and presentation. We remark that the proof of Theorem 8.5 does not

require minimal types, that is:

Theorem 8.5 remains valid when @1, ..., o5 € T(Go) are the distinct nontrivial lattice types,

rather than the distinct nontrivial minimal types.

In such case s + 1 = |T(Gp)| rather than |T,,(Go)|, which is in general smaller, thus requiring
less iterations of the algorithm, and so yielding improved bounds for Ny and Ng. However, we
will need the added refinements provided by minimal types later for Theorem 8.12.

Theorem 8.5. Let A < R? be a full rank lattice, where d > 0, and let Gy C A be a subset
with C(Go) = R Suppose 0 ¢ C*(GY) and let @1, ..., ps € Tn(Go) be the distinct nontrivial
minimal types ;1 X5, (p;) — Z,, indexed so that dep(p;) < dep(w;) whenever i < j. Then
there are bounds Ng > 0 and Ny > 0 such that any atom U € A(Go) has a factorization

U=Ap-A1-...-As, where A; € Brat(Go),
such that, for every j € [1,5],
(a) no subset X C Supp(Ag+...+ Aj_1) with X € X(Go) has minimal type p;;
(b) [Supp({Ao})| < Ns and [ Supp({4;})| < Ns;
(C) |A()‘ S NT and VGO\}:';Jn(QD]’)(Aj) = Z V;,;(Aj) S NT,' and
)

r€G\ X}, (v5)
Y w(de e ~C(Z,).
r€Go\X}), (v5)

d
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Proof. If d = 0, then there are no nontrivial types and U = 0 is the only possible atom, in which
case the theorem holds with s = 0, Ng = 0 and Np = 1. Therefore we may assume d > 1. Since
0 ¢ C*(Gy), it follows from Theorem 7.5 that G is finitary. We construct the bounds Ng and
Nr as well as the subsequences A; inductively for j =s,...,1,0. Assume, for some t € [1,5+ 1],
we have already constructed bounds Ng > 0 and Ny > 0 so that, for any atom U € A(Gy), we
can find a factorization

U=V-A-...-A;, where V, A; € Bat(Go),
such that, for every j € [t,s], the following hold:

(a) no subset X C Supp(V + A¢...- A1) with X € X(Gp) has minimal type ¢ ;

(b) |Supp({V})| < Ns and \Supp({A DI < Ns;

(€) VGo\xv,(p;)(Aj) < Nr; and
)

@ % wlA)re -C(Z,).
z€GO\XR, (#5)

For instance, (a)—(d) hold trivially when t = s + 1 taking V' = U and Ng = Ny = 0, completely
the base of the inductive argument.

Suppose the inductive process is finished, that is, (a)—(d) hold with t = 1. Set Ag = V. Then
the theorem holds apart from showing |V| = |Ag| < Np. From (a) we conclude that there is
no nonempty subset X C Supp(V) with X € X(Gp) (as any such X has some minimal type
¢;). In view of Proposition 7.24, there are only a finite number of atoms W € A(Gy) such
that there is no subset X C Supp(W) with ) # X € X(Gy). In particular, there are only
a finite number of such elementary atoms, say Wi,..., W, € A®™(Gy), such that there is no
nonempty subset X C Supp(W;) with X € X(Gy), for j € [1,€]. By Theorem 4.6, any zero-
sum rational sequence has a factorization as a product of rational powers of elementary atoms.
For the rational zero-sum V' € B,:(Go), only the elementary atoms Wi, ..., W, can occur in
such a factorization (in view of our prior work). Thus V = Hje[l q W[ ) for some rational
numbers a; > 0. As V | U with U € A(Gy), we must have o; < 1 for all j € [1,4]. Hence

¢ 4 4
V] = > oj|W;| < > |Wj|. Observing that ) |W;| is a fixed constant independent of U, we
j=1 j=1 j=1

L
can now replace Ny by max{Np, > |W;|} and thereby obtain the final remaining conclusion

7j=1
|V| < Np, which would complete the proof. So we may instead assume t > 1 and proceed with

the construction of A;_q.
Let o = 1, let Z, = Z1 U ... U Z; be the codomain of ¢, let
Zy, = {z%gp), . z,(;/’)},
with zyp), ey z,(f) € Z, the n < d distinct element in Z,, and let

m: R = R(Z,)*
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be the orthogonal projection. Since ¢ is nontrivial, we have Z, # (), whence dim R(Z@L <d.
Let X = X} (¢) = Uxex,, () X € G (the inclusion follows by the remarks from the beginning

of Section 7.2) and, for each i € [1,n], let X; C X consist of all z € X with ¢(x) = zi(@). Thus
x=Jx caGs.
i=1

In view of Proposition 7.6, 7(Gy) is also finitary. Let U € A(Gg) be an arbitrary atom. By
induction hypothesis, we have bounds Ng > 0 and Ny > 0 and a factorization U = V- A¢-.. .- A,
such that (a)—(d) hold. Let Vx | V be the rational subsequence consisting of all terms from X
and let Vg \x | V' be the rational subsequence consisting of all terms from Gg \ X. Thus

V=Vx-Vgpx With Vx € Frar(X) and  Vig\x € Frar(Go \ X).
Note, since Supp(Vx) N Supp(Vg,\x) = 0, that

V3 = HVa + {Veox -

Since any X € X,,(¢) has R(X) = R(Z,) = ker 7, we have 7(x) = 0 for all x € X by definition
of X. Thus V € B,at(Gp) implies

T(Vao\x) € Brat(m(Go))-

If there is no subset X C Supp(V) with X € X(Gy) having minimal type ¢ = @1, then
we may take A;_; to be the trivial sequence and find that (a)—(d) hold for the factorization
U=V.:A_q-...-A;, completing the induction and proof. Therefore we may assume otherwise
that there is some Y € X,,(¢) with Y C Supp(V), say with corresponding maximal series
decomposition Y =Y; U...UYs. In particular, Y C Supp(Vx) with Vx nontrivial (as ¢ = @1
is nontrivial).

If there were some nonempty subset Ys11 C Supp(V) such that |7(Ysy1)| = |Ysy1| and
m(Ysy1) € X(w(Gp)) is irreducible, then we could greedily extend the realization associated to
Y =Y, U...UY; by that associated to m(Ys41) to conclude Y/ =Y, U...UY; UY,41 € X(Go)
with Y/ C Supp(V). By Proposition 7.16, Y/ = Y; U ... U Y; U Ys,1 is a maximal series
decomposition. Letting ¢’ be a minimal type associated to Y/ =Y, U...UY; U Y1, it follows
that dep(¢’) = s+ 1 > s = dep(¢) = dep(pi—1), which in view of the choice of indexing for the
@; forces ¢’ = p; for some j > t, contrary to the conclusion of (a). Therefore we can instead
assume no nonempty subset X C Supp(m(V')) has X € X (7(Gyp)), as any such set must contain
an irreducible subset. In consequence, since Supp(w(V')) = Supp(7(Vg\x)) U {0}, we also find
that no nonempty subset X C Supp(7(Vg,\x)) has X € X(7(Go)).

Definition and Properties of the T}. Since m(G)) is finitary, it follows from Proposition
7.24 that there are only a finite number of atoms W € A(7(Gy)) such that there is no nonempty
subset X C Supp(W) with X € X (7(Gp)). In particular, there are only a finite number of such
elementary atoms, say Wo, Wy..., W, € A¥™(7(Gy)), where Wy is the zero-sum consisting
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of a single term equal to 0, such that there is no nonempty subset X C Supp(W;) with X €
X(m(Gy)), for j € [0,£,]. By Theorem 4.6, any zero-sum rational sequence has a factorization
as a product of rational powers of elementary atoms. For the rational zero-sum 7(Vg,\x) €
Brat(m(Go)), only the elementary atoms Wy, ..., Wy can occur in such a factorization (in view
of our prior comments). Thus 7(Vgo\x) = H;E[&M Wj[wi] for some rational numbers w; > 0.
Since m(U) is not an atom, we cannot conclude w; < 1. However, letting m; = |w;| and
gj =wj —m; € [0,1) NQ, we have

_ y (myl | y [¢5]
™(Veo\x) = (Hje[o,e¢}Wj ) (Hje[o,eg,}Wj )
L
Let ¢}, = imi + i [e;]. Then there must be a factorization
i=0 i=0

Voox =T7+...- é’u’ where each T}, € Frat(Gh),

such that
Ly
e for each k € [1, Zmz] we have 7(T}) = W for some j € [0,/,], and
=0
&p ecp esé’
e for each k € [ZmZ + 1,0y, say with k = Zmz +aand a €1, Z [e;1] € 1,4, 4+ 1], we

=0
have 7(T}) = W[ 7 for the a-th largest j € [0, £,] with ; > 0.

Indeed, the T}, can be sequentially constructed for k = 1,2,...,¢, by always first attempting to
only include terms in 7}, from Vg g« (T7-...- T, ,2_1)[_” with integer multiplicities until this is no
longer possible, after which we attempt to only include terms in 7}, from Vao\x* (Ty-.. 1)[ 1]
with their full remaining multiplicity in Vg x - (T7-.... Té_l)[’l} until this is no longer pOSSlble,
and then finally (potentially) including one last term from Vg\x - (77 - ... - T, )Y with
multiplicity less than one, which we need only do at most once for each element of Supp(7(7})).
Additionally, when choosing a term y to include in 7} according to the previous guidelines,
always choose one with y € G \ G§ whenever possible. Assume the T} have been constructed
according to such restrictions.

Let us analyse how the fractional subsequence {Vg;\x } compares to { Vg x-(IThes 7% )1, for
a subset I C [1,/,]. For each T}, we have n(T}) = W; or W][ 7 for some j €10,£4,]. The process
of constructing T}, first takes available terms with integer multiplicities in Viz\x+(T7 . . .-T,g_l)[_l]
to construct |7} |. Removing these terms cannot create a new fractional term. The process then
includes terms with their full available fractional multiplicity. Including these terms actually
removes a term with fractional multiplicity. Finally, only the last term y included into T},
for each w € Supp(W;) (so m(y) = w), can actually create a new fractional term that was
not already present in Vig\x + (77« ... - T} )Y, and this can only occur if y has multiplicity
at least one in Vg« (17 +...- T} _ - |7, )7U. Let Ly C G consist of all y included as a
last term into T}, potentially one for each w € Supp(Wj), such that the term y is included
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with non-integer multiplicity in 7}. Note |Supp(W;)| < d, since W; € A®™(7(Gp)) is an
elementary atom with dim(im7) = dimR(Z,)* < d, so |Li| < |Supp(W;)| < d. Note that
Ly, < Supp({Vop\x}) U L1 U... U Ly 4, since every term is included into Tf/b with its full
remaining multiplicity. Moreover, if j = 0, then we obtain the improved estimate | Supp(Wp)| =
|Wh| = 1 as an upper bound rather than d.

L

©
For k € [1, > m;|, we have 7(T}) = W;, with the multiplicity of each term in W; being an

integer (since ZVI%- is an elementary atom). If T} € F(Go), then T}, | [Vg\x], and removing
T} creates no new fractional term. If 7} ¢ F(Go), then there is some w € Supp(W;) such
that v, (W;) > vy (7([T}])). However, since both v,,(W;) and v,,(7(|[T}])) are integers, we have
Vs (W) =V (m([ T} ])) > 1. Thus all remaining terms y to be included into T}, each with 7(y) = w
for some w € Supp(W) satisfying vy, (W;) > v (n([T}])), must come from {Vi\x} and have
their full remaining multiplicity in Vg« (77 ... T} _; - [T} ] )= strictly less than one (else y
could be included with integer multiplicity in view of v,,(W;) — vy (7([T},])) > 1). In particular,

including the last term into 7}, for each w € Supp(Wj), does not create a new fractional term,
Lo

meaning Ly C Supp({Vg,\x}) for k € [1, > m;]. Moreover, for each w € Supp(W;) satisfying
i=1

Vi (Wj) > vy (m(|T}])), of which there is at least one in view of T} ¢ F(Gy), the next term y

included into Ty, with 7(y) = w is from {V,\x} and included with its full remaining multiplicity
as vy (Voo - (T1 .. Tpp_y (T )Y < 1 < v (W) — v (7 (| T} ])). Thus we lose one fractional

12
term from {Vg\x} for each k € [1, im,] with T}, ¢ F(Gh).
i=1
The results of the previous two paragraphs can now be combined to derive the following

©
summary statements. For each T} with k € [1, Y m;], we either have T} € F(Gp) or else

i=0
(8.2) |Supp({VGo\3€ (T -...- T })y < ysupp({vgo\aE (T ... T, ) 11})‘
Z‘P
Consequently, (b) ensures there are at most Ng+ Y [&;] < Ng+ £, + 1 indices k € [1,¢};] with
i=0
Ty ¢ F(Go). Moreover, for any I C [1, /], we have
max [
(8.3) SUPP({VGO\x erlT' )= l]}) € Supp({Vgo\x}) U U Ly.
‘ ‘s
We have |Li \ Supp({Vg\x})| = 0 for k € [1, > m;]; we have |L| < d for each of the ) [e;] <
i=0 i=0
L
l,+1 values k € [i’%mi—i— 1, y]; and we have Ly, C Supp({Vgo\x})UL1U...ULy 1. Moreover,
» ‘

if equality holds in the estimate )" [e;] < £, + 1, then n(T}) = W(EEO} for k = > m; +1
=0 1=0
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with corresponding improved estimate |Ly| < 1. Thus (8.3) applied to [, T} = Vaox -
[-1]
(er[l v ]\]T ) , combined with (b), implies (since d > 1) that

8.4) [Supp({T]_ TH}I < Ns +max{0, (¢, — 1)d+ 1} < Ns+£od,  for any T C [1,4)].

Each T} with k € [1,¢;;] has n(T}) = Wj or W[J] for some j € [0,4,], with £; < 1. Thus
(T3] < [Ty| < [Wjl. Let

My = max_|Wj;|.
J€[0,L,]

Then, for every k € [1,£;], (8.4) applied with I = {k} yields
(8.5) | Supp({T},})] < Ng + max{0, ({, — 1)d+ 1} and |[T}]| < |T}] < Mw.

Definition and Properties of the T;. We next proceed to define a new factorization
Veox =T1+...-Ty,,  where each Tj, € Frar(Go),
by modifying the sequences T}, with k € [1, ;] as follows. Let
A=Z(Z,) and A =ANR(Z,).

Then A and A" are both full rank lattices in R(Z,) with A < A’. It follows that A’/A is a finite
abelian group with Davenport Constant D := D(A’/A) < |A’/A| (see Section 2.3).

Consider an arbitrary sequence T; with k € [1,¢]. Then n(T}) = W; or W[ 7 for some
j €1[0,€,]. Let us call T} pure if there is some w € Supp(W;) such that 7= (w) ﬁ Supp(7},) C
Go \ G§.

By definition of the T}, we have o(1}) € kerm = R(Z,) for every k € [1,¢]. Thus, if
T} € F(Go), then we have o(T}) € R(Z,) N A = A'. If I C [1,¢,] is any subset of indices
k € [1,4;] with T] € F(Go) and |I| > Da, then the definition of Da ensures that there is some
minimal nonempty subset I’ C I such that [I'| < Da and o([]hcp 7)) € A.

The rational sequences Ty, and sets Iy C [1,£] such that Ty - ... - Ty = [[i; T} will be
constructed sequentially for k = 1,2,..., ¢y (though we will sometimes need to define multiple
Ty at the same time). Set Iy = () and take Tj to be the trivial sequence. Assume we have
already constructed Ty -...- T} = Hle I T’ Then we construct Ty (or possibly Txy1 and To
simultaneously, in which case only I} is defined and not I 1) according to the following three
possibilities.

(i) Suppose there is a nonempty subset I C [1,¢;] \ Ij of indices i € [1,£};] \ I such that
T € F(Go) is pure for every i € I and o(][}; T/) € A. Then choose a minimal such subset I and
set Tp11 = Hle ;T and I41 = I;UI. Note |I| < D in such case, as remarked previously. Since
each T € F(Gy), for i € I, it follows that 7(T}) € B(n(Gp)) is a zero-sum sequence (not just
rational sequence) with Supp( (7)) = Supp(W) for some elementary atom W € A®™(7(Gy)),
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which forces 7(T7) to be an integer power of W (by definition of an elementary atom), and thus
7(T]) = W by construction of the T}.

(ii) Suppose the hypotheses of (i) fail but there is some ¢ € [1, £;;]\ I with Supp(T}) ¢ G§. We
have 7(T!) = W for some elementary atom W € A*™(7(Gy)) and rational number ¢ € (0, 1].
For each w € Supp(W), write ay, 1= v (W) = o + oS, where

ag = > wl(T) and aj = Y wl(T).

m(z)=w (z)=w
xeSupp(T))\G§ xzeSupp(T})NG]
Let
¢ = ¢ -max{ad /o, : we Supp(W)} € (0,6] NQ C (0,1] N Q.

Note that ¢’ > 0 in view of Supp(T}) € G§ and that ¢’ = ¢ precisely when T} is pure. Now Wl
has WET | W and v, (WET) > al for every w € Supp(W), with equality holding for each
w obtaining the maximum in the definition of €’. Define a new rational subsequence Tj41 | T/
with 7(Tjy1) = WET as follows. Include in Ty, all terms = € Supp(T7) \ G with their full
multiplicity from 77, which is possible in view of v, (W) > a. Continue to include terms
in Tj41 from = € Supp(7}) N G with their full multiplicity from 77, so long as this is possible,
and finally (potentially) add one last term to Ty, for each w € Supp(W), with only part of
its multiplicity from 7]. Note Tj4; = T, when T pure. In such case, we set I = I U {i}.
If T! is not pure, then Tjio = T} - T,E:_ll} is a nonempty sequence, and in such case, we set

Iiyo = Iy U {i}, defining Tyy1 and Tj4o simultaneously under these circumstances. For any
w € Supp(W) attaining the maximum in the definition of &', we have

(8.6) 7 (w) N Supp(Tiy1) € Go \ G

Also, Supp(Tj42) € G since all terms from Supp(77) \ Gf, were included in Tjyq with their full
multiplicity from 77.

(iii) Suppose the hypotheses of (i) and (ii) both fail, i.e., Supp(7}) C G§ for every i € [1, £;;]\I.
Then take any remaining ¢ € [1,¢},] \ I, and set Tj41 = T, and Ipy1 = I U {i}. If no such ¢
exists, i.e., if I, = [1,£], then set {yy = k.

We partition the interval

1,ly] =1z7UlIgU I,
where Iz C [1,{y7] consists of all k+ 1 € [1, fy7] for which T} was constructed under condition
(i), where I consists of all k+ 1 € [1,¢y] for which T4 was constructed under condition (ii),
and where I, consists of all k41 € [1, ¢y7] for which Ty was constructed under condition (iii) as
well as all k + 2 € [1,y] for which Tj2 was constructed under condition (ii). By construction,
Iz, consists of the first |Iz| elements from [1,/;7]. We have the following observations.
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If k € Iz, then there is a nonempty subset I C [1,¢};] with |I| < Da and T}, = [];-;7} such
that, for every ¢ € I, we have

(8.7) T € F(Go), m(T}) € A"™(n(Gy)), and

(8.8) 7 (w) N Supp(T}) C Go \ G§  for some w € Supp(n(T})).
Moreover,

(8.9) |Tx| < DaMyy, Ti€ F(Gy) and o(Ty) € A, forevery k € Iz,

where the first inequality follows in view of (8.5) and || < DAa.
If k € Ig U L, then Ty, | T} for some i € [1,¢;;], and W(T,LE’“]) € A®™(7(Gy)) for some rational
€r > 1. Thus (8.5) implies

(8.10) Tx| < |T7| < My forall k € IgU L.

If k € I, then (8.6) implies that

(8.11) 7Y w) N Supp(T) € Go \ G5 for some w € Supp(w(T})).

If k € I, then (per the hypotheses of Condition (iii) and the remarks regarding T o in Condition
(if))

(8.12) Supp(T}) € Gg.

Claim A. |Ig| < Da + Ns + 20,.

Proof. If k € Ig, then there was some i € [1,£};] such that Ty | T/ with Supp(T}) € G§. By
construction, the same ¢ does not occur for two distinct k£ € Ig. We can assume there are at
most Da — 1 such 7] with T} € F(Gy) and T pure, else the algorithm for producing T} would

have used condition (i) rather than (ii). As noted after (8.2), there are at most Ng + £, + 1
L
indices ¢ € [1,{};] with T} ¢ F(Gy), and this estimate includes all indices from [i ma + 1, 0y].

a=0
Ly
It remains to find an upper bound for the number of i € [1, Y m,] such that Supp(T)) € G§,
a=1

T! € F(Go) but T is not pure. For any such 77/, we have 7(1}) = W; for some j € [0, £,] (since
L

i€ll, i ma]). Since T] € F(Gy), it follows that 7] was filled entirely with terms from [V'| (cf.
=1

o=
(2.6)). Since Supp(T}) € G}, there is at least one x € Supp(7}) with z € Go\ G§. Thus we must
have j # 0, else Supp(T}) = {z} C Gy \ G (since |Wy| = 1), contradicting that 77 is not pure.
Since T} is not pure, we have 7! (w)NSupp(T;) NG # 0 for every w € Supp(W;) = Supp(n(T7)).
Ly
Suppose T/, is another sequence with i’ € [1, Y m,] such that
a=0

T} € F(Gy) and «(T}) =W; ==(T}).

(2 (2
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Since T}, T}, € F(G), it follows that both T and T, were constructed by only including terms
with integer multiplicities. Moreover, when there was a choice between a term from G'\ G and
another from G{ (with available integer multiplicity), those from G\ G° always had preference.
If ¢/ < i, then, since there is some = € Supp(77) with z € Go \ G§, it follows that, when choosing
terms y to place into T}, with m(y) = m(z), we did not exhaust all possible choices from G \ G§.
Thus, due to our preference to include terms from Gy \ G when possible when constructing
the T/, we conclude that every term y € Supp(T},) with 7(y) = w(z) satisfies y € Go \ G§,
ensuring that 77, is pure. On the other hand, if ' > i, then, since every w € Supp(Wj) has
7 (w) N Supp(T}) N G # 0, we must have exhausted all possible terms from Gy \ G§ that
could every be included in T, (again, in view of our preference to choose terms from Gy \ G§).

Hence Supp(T},) € G§. In conclusion, we see that, for each j € [1,4,], there is at most one
Y4

]

i € [1, > mg] such that Supp(T}) € G§, T! € F(Go) but T/ is not pure. Combined with our
a=0

previous estimates, we now conclude that [Ig| < (Da —1)4+ (Ng+£{,+1)+4€, = DA+ Ng+ 2L,

completing Claim A. O

Claim B. For each k € Iz U Igp, we have —o(T}) € C(X) for any X € X,,,(¢). For each k € Iz,
we have —o (1)) € Cz(X) for any X € X,,(p). In particular, both these statements hold with
X =17,

Proof. Let Rx = (X1U{v1},...,XsU{vs}) be a realization of X (associated to the minimal type
¢) with all half-spaces from (Jj_; &; having dimension one, in which case RY(X) = R(Z,) =
ker 7 and Z(X) = Z(Z,) = A. Since ¢ € X,,(Go), Rx is purely virtual. Since all half-spaces in
R x have dimension one with the elements from X being representatives for the half-spaces from
X, we have CY(X) = C(X). If k € Ig, then (8.11) allows us to apply Lemma 8.4 to T, and thereby
conclude —o(T},) € CY(X) = C(X), as desired. If k € Iz, then Ty, = [[,; T/ for some I C [1,¢}].
Then (8.7) implies that each T! € F(Go) with (T}) = W for some W € A®™(7(Gy)). Hence,
in view of (8.8), we can apply Lemma 8.4 to each T} to conclude —c(T}) € CY(X) = C(X), for
i € I. Thus, in view of the convexity of C(X), we have —o(T}) = —> o(T]) € C(X). In view of
el

(8.9), we have o(T)) € A. Thus —o(T}) € C(X) N A = Cz(X), with the latter equality in view
of the linear independence of X and Z(X) = A, completing Claim B. O

Each k € Iphas Ty, | TZ.’(k) for some i(k) € [1,¢};], whence Supp(]_[;d@ Ti) C Supp(]_[;d@ Ti’(k)).

By (8.4), we have | supp({ [Ther, T } )| < Ns-+£yd. Claim A and (8.5) imply |[[Tfe;, Tl )| <
> \TZ.’(k)| < [Ig|Mw < (Da + Ng + 20,) My . As a result of all these calculations, we now find
kelg

that (via (2.2))

L] [ ] / / L] ’
supp(IT;._, 7o)l < ISwn([T;, Tl < LT, T+ 15mep{TT; ., Zi D
(8.13) < (Da+ Ng +20,) My + Ng + £d.
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Recall the definition of X = (J;_; X;. In view of the interchangeability property of X,,(¢)
(Proposition 7.26), the sets X € X,,(¢) with X C Supp(Vx) are precisely those obtained by
choosing one element z; € X; N Supp(Vx) for each i € [1,n]. Moreover, since Y C Supp(Vx) with
Y € X,,(p), the sets X; N Supp(Vx) are all nonempty, for i € [1, n].

Let X € X,,(p) be arbitrary, say with X = {z1,...,z,} the distinct elements x; € X, and let
g € AN—C(X). Then X C Gj is a linearly independent set with Z(X) = A (cf. the remarks at
the beginning of Section 7.2). It follows that

(8.14) Cz(X) = C(X) NA.

As a result, if —g = aqx1 + ... + ap2y, is a linear combination with a; € Ry expressing that
—g € C(X), then it follows by the linear independence of X (and recalling that g € A = Z(X))
that

(8.15) aj € Zy  forall j € [1,n].

The Outer Loop. We proceed to recursively construct fractional sequences By € Frat(Go),
for k=0,1,..., with
By, | Vi - (Bo L. Bk_l)[il].
We refer to the process which constructs the By as the Outer Loop, and initially set By to be
the trivial sequence. We view

Vii=Vx-(By-...-B) =V - (B -...- B!

as the current state resulting after k iterations of the outer loop. We view each j € [1,n]
(indexing X;) as a box which contains some of the damaged elements

Dy == Supp({Vi}) € G§.

A box j € [1,n] is depleted if X; N Supp(|Vi]) = 0, which means every z € Supp(Vi) N X;
has v, (Vi) < 1. All elements contained in a depleted box are damaged. A box j € [1,n]| with
X; N Supp(|Vk|) # 0, meaning there is some = € Supp(Vy) N X; with v, (Vi) > 1, is called
undepleted. An undepleted box contains at least one undamaged element. Let J,‘j C [1,n]
consist of all depleted boxes j € [1,n] after k iterations, and let Ji C [1,n] consist of the
remaining undepleted boxes j € [1,n] after k iterations. Note, once a box becomes depleted, it
remains depleted in all further iterations of the outer loop. If there is some box j € [1,n] with
X; N Supp(Vi—1) = 0, that is, an empty box, then the outer loop process halts after (k — 1)
iterations. Assuming this is not the case, then the next sequence By, for & > 1, must satisfy the

following properties.
1. |Dk ﬁ%ﬂ < |Dk_1 ﬁ3€j\ + 1 for all j € Jlg—l‘

2. |DyNX;| < |Dp_1 NX | for all j € J2 .
3. Either ]Jg| > |J,§_1\ or else | Dy N X;| < |Dj—1 N X;| for some j € Jg = Jg_l.
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4. 0(By) = —Brgx for some B € Q4 with 0 < S < 1, where

o(Ty), for k < |Iz];
|Iz]
g =19 > (1 =Bi)gi+ > o(Ty), fork=|Iz]+1;
=1 icly
gk = (1 = Br—1)gk—1, for k > |Iz| + 2.

Moreover, i, = 1 is only possible if either k > |Iz|+1orelse k = 1 = |Iz|, |lg| =|I| =0
and V = U, and in either case, the Outer Loop process then halts after k iterations.

Recall that Iz = [1,|Iz]|] by construction.

Suppose it is possible to construct such sequences By as described above (the algorithm for
their construction will be given afterwards). We proceed to give some basic properties which
must then hold, as well as an estimate for how many iterations the outer loop process can run.

First observe that Claim B combined with C(X) being a convex cone ensures that

(8.16) —gr € C(X) forall X € X,,(p) and k > 1, and
—gr € Cz(X) forall X € X,,,(¢) and k < |Iz].

If g = 0 with k < |Iz]|, then o(T}) = 0 with T} | U and T}, € F(Gp) (by (8.9)), in which
case U € A(Go) being an atom forces U = T}, | Vg \x, contradicting that Vx | U is nontrivial.
Therefore we instead conclude that gi # 0 for all k < |Iz|. We next show g # 0 for k = |Iz|+1.
In this case, g = |f:l(l — Bi)o(T;) + > o(T;) with o(T;) € —C(X) for all i € Iz U Ig (in view

i=1 i€l
of Claim B). Since 0 ¢ C*(X) (as each g)( € X (p) is linearly independent), a sum of elements
from C(X) can only equal zero if all elements in the sum are themselves zero. Thus, assuming
by contradiction that g, = 0, it follows that (1 — 3;)o(T;) = 0 for all i € Iz and o(7;) = 0 for all
i € Ig. As we have already established that o(7;) = ¢; # 0 for each i € Iz, this forces 3; =1 for
all i < |Iz|. However, per Item 4, we know the Outer Loop halts immediately at step ¢ if every
some (3; = 1. Thus, if Iz # (), then the Outer Loop must have halted at step ¢ = 1, meaning
k = |Iz| +1 > 2 does not exist. We are left to conclude that g = 0 for & = |Iz| + 1 is only
possible if I, = ) and o(T; ) =0 for all i € Ig. As a result, since V' € Brat(Go) has sum zero, it
follows that o(Vx - [[5c;, Ti) = o(V - (Hzel@ulz =) = 0. However, Supp(Vx - [Iier, Ti) € G
by (8.12) and X C G§. Thus our hypothesis 0 ¢ C*(Gf) (note this is the first time we have
used the hypothesis 0 ¢ C*(Gf) rather than the weaker consequence that Gy is finitary) forces
Vy - Hz.e 1, Ii to be the trivial sequence, contradicting that Vx is nontrivial. So we instead
conclude that g # 0 also for k = |Iz| + 1. As a consequence, a simple inductive argument now
shows g # 0 for all k > |Iz| 4+ 1 (since Item 4 ensures that S;_1 # 1, else the Outer Loop halts

immediately at step k£ — 1). Summarizing:

(8.17) gr #0  for all k.
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Next observe that |[Dy N X;| < Ng for all j € [1,n] (in view of (b)), which combined with
Items 1 and 2 ensures that

(8.18) |IDLNX,;| <k+ Ng foralljel,n]

The value |J¢| € [0,7n] is nondecreasing with k. There are therefore at most n’ < n ‘jump’ values
of k where |J¢| > |JZ ||, say occurring for 1 < k1 < ... < k. Let 9 = 0 and k41 = co. Note
that Item 3 ensures that |J&| > 1.

We wish to estimate how long the outer loop process can run without halting. Items 2
and 3 ensure that [Dy N ;¢ 7 X;| decreases by at least one after each iteration except when
|Jd| > |J& |, in which case it instead increases by at most (|J¢| — |J2 ,|)(k + Ng) in view of
(8.18). Thus

819) D0 | %51 = 1Dk | X < () = [TE)(k+14Ng) =1 forall k> 1.
jeJd jeJg |

Consequently, since | Dy N Y jerd X;| > 0 must hold for all £ > 0, it follows that every

k<kw+|De, 0 | Xl
jngn,
Indeed, apart from (possibly) &k = 0 and the final value of k, we must have | Dy N Uje Jd X >
|Jd| > |J¥] > 1, as otherwise the mechanism for halting the outer loop process is triggered. In
particular, either x,, = 1 (in which case ' = 1) or [Dy;, ,—1NU;¢ e ) X5 > 74, > |Jd > 1,
which is slightly better then the estimate that this quantity be ngn—negative. Thus we likewise
obtain estimates

(8.20) e < ki1 + Do, 0 | Xl forallt>2
J€TE
and k1 <1+ |DgN Ujng X;| (with equality only possible if k1 = 1 and [Dg N Ujng X;| =0).
For k < kyy1, we have passed t' <t jump values, which add at most
t/

t
D (T =1 D (ka + 14 Ns) = t' < Y (19| = I, )(ka +1 4 Ns) =

a=1 a=1
damaged elements into the depleted boxes (in view of (8.19)), on top of the initial number
| Do N Uje Jd X;| of damaged elements. At the same time, for each of the k£ — ' non-jump steps,
the number of damaged elements decreases by at least one (as remarked above (8.19)). Thus

t
8:21) [Den | J %1 < Do ([ %51 = k+ > (L[ =1L D(ka+ 1+ Ng) for k < rep1.
jeJd jeJg a=1

The above estimates gets larger when the values of k. are each as large as possible, that is,
delaying when the jumps |Jg| > |J¢ || occur can only increase the estimates. Also, increasing
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the number of times that we have jumps |J,‘j| > |J,§71] only increases these estimates, since this
breaks multiple simultaneous jumps into several jumps spaced out, with the later jumps having
larger contributing factor. Thus we can obtain an upper bound for how long the outer loop
process will run by taking n’ = n and delaying each jump as long as possible per the estimates
above. In particular, (8.21) now yields

t

(8.22) 1De, 0 | X1 <D0 | Xj| = ke + D (ke + 1+ Ns).
jeJg, jeJg a=1
| Do N Ujng Xj| — k1 + (k1 + 14 Ng) <2(1+ Ng). A simple inductive argument, using (8.20),
8.22) and the estimate |Dg N J..a X;] < 1+ Ng, now gives x; < (28 — 1)(Ng + 1) and
JeEJG I

‘Dﬁthjngt X;| <2Y(Ng+1) for all t € [1,n]. We thus find every k < bn+ | Dy, NUjega X5] <
(2" —1)(1 + Ng) +2"(1 + Ng) = (2" —1)(1 + Ng), meaning the outer loop process must halt
after at most

Note [Dy N Ujng X;j| < Ng (in view of (b)). Thus k1 < 1+ Ng and D, N Ujngl X5 <

(2" —1)(1 + Ng)
steps, which is independent of U.

Suppose we run the above outer loop process and it stops at step k < (2! — 1)(1 + Ng).
For each i € [1,k] with i < [Iz|, let C; = B; - T If B, = 1 = k = |Iz| and |Ig| = |I,| = 0, then
Vao\x = T1 | C1, ensuring Supp(V - C’{*H) CXCG§. If k> |Iz] + 1, then we have

_ . - (~Biiz)
Ve(Croos O = (Vee (Bre o B )T) - (Ve -0y )

- (B -...- [—u) : ( /S B O B )
(V3E (Br-- Biy) HiEIZTZ HieI@TZ Hiezoﬂ '
. 1-5; ° (B ] .
Let S|IZ‘+1 = HiEIZ,I;[ 6] . HiEIQTi and C|]Z‘+1 = B|IZ‘+1 . S|IZ‘|I%,-|IF1 . For 1 € [|IZ| + 2,]43 + 1],
let S; = Sz[l:lﬁi*l]. For i € [|Iz| + 2,k], set C; = B; - SZ[BJ. For i > |Iz| + 1, we have g; = 0(5;),

while S; is the subsequence obtained from [[5, 1, Ti * [ier, Ti by removing the terms from the

i€l
subsequence [ ], Iy Ti[ﬁ i 'H;eﬂ Iz +1,j-1] Si[ﬁ i}, as can be seen by a short inductive argument on j =
‘Iz| +1,...,k+1. Thus C;-...-C} | V and Hzejz Tz[ﬁl} 'H;EHIZHL/C] SZ[BZ] | H:GIZ E'H;EIQ T; with
equality holding precisely when g = 1. In particular, combined with the previous observation

for what happens when §, = 1 = k = |Iz| with |Ig| = |I,| = 0, we conclude that

(8.23) Supp(V - (Cy+...-C)IFY) C G when 8, = 1.

In view of Item 4, we have C; € Byat(Gy) for all i € [1, k]. Define
A1=Ci-...-Cp and V' =V.-(Cy-...-Cp)V=v.all

Since the V, C1,...,Cy € Bat(Go), it follows that V' € Byat(Go). Let us show that there are
bounds Ng > Ng and N7. > Ny such that (a)-(d) hold for U = V'« Ay - A¢- ...+ A;. Note,
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since (a) held originally for U =V - A¢-...- Ag, it suffices to show Supp(V’) contains no subset
X € X(p) = X (pi—1) in order to show (a) holds for the new factorization.
If k < |Iz|, then H;€[1,k] TZ.[Bi] is the subsequence of A1 = Cy - ...+ C} consisting of all terms

k k
from G\ X, and ZJ(T}B"]) = > Bio(Ti) € —C(Z,) in view of Step B and the convexity of C(Z,,).
i=1 i=1

If k > [Iz|+1, then o(S|p, 1) = o ([0, T - 0es, T3) € —C(Z,) in view of Claim B and the
convexity of C(Z,). A short inductive argument now shows o(S;) € —C(Z,,) for all i € [|Iz]|+1, k],
as C(Z,) is a convex cone. Now [[7c; T, i'B] I leym+1h Siwi} is the subsequence of A_; =
C-...-C} consisting of all terms from G\ X. Thus, since o(S;) € —C(Z,,) for all i € [|Iz|+1, k],
the convexity of the convex cone C(Z,,) ensures that o([[5c, Tl[gi] Tlem1n S}Bi]) e —C(Z,)
We conclude that (d) holds for the factorization U = V'« A1+ Ag+ ...+ As.

There are two ways the outer loop process can halt. First, we may have 5, = 1. In this case,
(8.23) implies Supp(V’) C G§, while V' € By.t(Gy) as already remarked above. In consequence,
since 0 ¢ C*(G§) by hypothesis, we conclude that V' is the trivial sequence. (Here, we have
again used the hypothesis 0 ¢ C*(G§) rather than weaker consequence that Gy is finitary.) In
such case, the remaining part of (a) holds trivially. Moreover, V'’ being trivial forces V} to be
trivial, as Vj, = Vg « (By - ...« By)!7Y consists of all terms of V from X. In particular, D; = ()
and J¢ = [1,n], so that

(8.24) Item 4 holding with £ = 1 implies Items 1-3 trivially hold in the Outer Loop.

The second way the outer loop process can halt is if there is an empty box j € [1,n] with
X; NSupp Vi = 0. In view of the definition of V', we have Vi = Vy « (By - ...~ B =,
where V. | V' is the subsequence of terms from X. Thus the remaining part of (a) holds in this
case as well.

If k < |Iz]|, then (8.9) implies

k k
Vaox (A1) =) BT < IT| < kDaMy < (2" — 1)(1 + Ng)Da My .
i=1 i=1
By Claim A and (8.10), we have ) |Ty| < |Ig|Mw < (Da + Ng + 20,)My,. As a result, if
k’GI@

k> |Iz|+1, then |Iz| < k—1 < (2" —1)(1+ Ng) — 1, and combined with (8.9) we now obtain

Vapx(A1) < ) ITi+ Y ITi < (2" = 1)(1+ Ns) — 1) DaMw
i€ly 161@

+ (Da + Ng +26,) My = (2" —1)(1 + Ng)Da + Ng + 20,) My,
Thus, setting
(8.25) Njp = max{ Nz, (2" —1)(1 + Ng)Da + Ns + 20,) My},

which is independent of U, we see that (c) holds.
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Itk < |Iz], then V! = V+(Cy-.. .- Cpp)-1 = (Vx-(Bl-. . .-Bk)[—ll)-(VGO\x-(T}W-. . .-T,Lﬁ”)[—ll)
with Vi, = Va+(Bi-...-Bp)l"Y and Tj € F(Gy) for all i < k (by (8.9)). In view of (8.18), we have
|Dyp N Xj] < k+ Ng for all j € [1,n]; in view of (b) and Supp(Vx) N Supp(Vg,\x) = 0, we have
[Supp({Ve\x DI = [Supp({V})[| — | Supp({Va})| < [Supp({V'})| < Ng; in view of T; € F(Go)
and (8.9), we have | Supp({T/"1})| < |Supp(T})| < |Ti| < DaMy. Thus (2.4) and (2.5) yield

k

|Supp({V'})| < |Supp({Vi})| + | Supp({Vezrx )| + Y | Supp(T3)]
=1

n k
> 1Dk N &j| + [Supp({Vax I + D | Supp(T))|
j=1 i=1

n(k + NS) + Ng + kDA My
< (n+DaMw)(2"*" = 1)(1+ Ns) + (n+ 1)Ns.

IA

IN

Itk > |Iz)+1, then V/ = V- (Cyr....Cp)l-1] = (Vx-(Bl-. ..-Bk)[_”> : (VGO\x-H;@Zu]Q T}*’Yﬁ)
for some 7/ < 1 with Vy = Vy+ (By ...+ B)l7. In view of (8.18), we have |Dy N X;| < k+ Ng
for all j € [1,n]; in view of (a) and Supp(Vx) N Supp(Vg,\x) = 0, we have | Supp({Vg\x})| =
| Supp({V'})| — | Supp({Vx})| < |Supp({V})| < Ng; in view of T; € F(Gp) for i € Iz and
(8.9), we have |Supp(T;)| < |Ti| < DaMyw for i € Iz; in view of k > |Iz| + 1, we have
[I7] < k < (271 —1)(1 + N,). Combining these estimates with (8.13), we obtain (via (2.4) and
(2.5))
[Supp({V'P < [Supp({Vi})| + | Supp({Vex )l + D | Supp(T3)] + | Supp(HieIQTi)\

€1y,
> 1Dk N %] + [ Supp({Ve\x DI + Y I Supp(T3)| + | Supp(l_L.G
j=1 i€ly
n(k + Ns) + Ng + [Iz| DaMw + | Supp(] [ T0)]

i€lg

n(k: + Ns) + NS + k‘DAMW + (DA + NS + 2&0)MW + NS + fwd
(n 4+ DaMy) (2" = 1)(1 + Ng) + (n + 2)Ns + £yd + (Da + Ng + 20,) My

IN

ol

IANIA

IN

Setting N = (n+ DaMw)(2"™ —1)(1+ Ng) + (n+2)Ng + £pd + (Da + Ng + 20,) My > Ny,
which is independent of U, we see that the first bound in (b) holds.

Finally, (2.5) implies Supp({A¢-1}) € Supp({V'}) U Supp({V’ - A—1}) = Supp({V'}) U
Supp({V'}). Thus, in view of the above work and (b) for the original factorization U =
V Ve ...+ Vs, we have | Supp({Ac1})] < |Supp({V'})] + |Supp({V})] < NZ + Ns. Thus,
letting

(8.26) N§ := (n+DaMw)(2"" —1)(1+ Nsg) + (n+3)Ng + £y,d + (Da + Ns +20,) My > N,
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we see that the second bound in (b) also holds, which completes the induction. It remains only
to show that it is indeed possible to construct the sequences By, of the outer loop with the desired
list of properties, and then the proof will be complete.

The Inner Loop. Assume that the rational sequences By, ..., By_1 € Frat(Go) of the Outer
Loop have already been constructed, for k > 1, and that X; N Supp(Vi—1) # 0 for all j € [1,n],
and 0 < 8; < 1 for all i < k, so that the Outer Loop process has not terminated. Let

V' =V =Va-(By-...- Bp_)l7l.

We then construct the sequence By | V' by a separate recursive process which we refer to as
the Inner Loop. Since X; N Supp(V’') # 0 for all j € [1,n], we can select a fixed element
zj € X; N Supp(V’) from each depleted box j € J,ffl. Let X ={z;: j € Jl?q}- Observe that

(8.27) XCDwan () % and X CSupp({V'})

JETR
by its definition and that of a depleted box. Let
Wy = erX:r["“”(V vy

Since all the terms in Wy are depleted in Vi_; = V| it follows that Supp(|V'|)NSupp(Wx) = 0.
Assume we have already constructed a sequence C' € Fr.:(Go) which satisfies

ClV']-Wx
such that o(C) = —Bgy for some g € Q4 with 0 < 5 < 1, and such that
(8.28) Z" = Supp(C) N Supp(|V'] - Wx - CI=1)
is a subset Z' C X satisfying
a) |Z'NX;| <1 forallje[l,n];
b) Z'NUjess % € X;

)
)
(c¢) If B =0, then C is trivial; and
(d) If B =1, then either k > |Iz|+ 1 orelse k =1 =|Iz|, |lg| = |Io|] =0and U = V.

(
(

For instance, we could initially start with C taken to be the trivial sequence, in which case
Z" =( and B = 0. In view of (8.28), we see that the terms z € Supp(C) \ Z’ are those which
are completely removed from |V’| - Wx when we remove the sequence C. Thus,

(8.29) if z € Supp(C)\ Z’ and z ¢ X, then v, (V' - Cl-1) = v ({V'}) < 1,

and if z € Supp(C) \ Z’ and z € X, then v, (V' - Cl71) =0 < v, (V') < 1 (as the elements from
X come from depleted boxes). As a result, if we were to halt the Inner Loop process and set
B,=Cand V), =V'. C[_l], then D would be obtained from Dj_; by removing all elements
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from (X N Supp(C)) \ Z’ and including (possibly) some of the elements from Z’, meaning
(8.30) Dy, € (Dg—1 \ (X NSupp(C))) U Z".

If we have X ¢ Supp(V’ - CI=1), which is equivalent to X ¢ Supp(| V'] - Wx - C[71) in view
of the definition of Wx and the fact that all elements of X are from depleted boxes, then the
Inner loop halts and we set By = C and V, = V' - Cl71. Note, since X C Supp(V’), that
this is only possible if C' is nontrivial. Thus Item 4 of the Outer Loop holds with g = £ by
definition of C, (c) and (d). It follows in view of (8.30) and (a) that Item 1 of the Outer Loop
holds. It follows in view of (8.30), (b), and (8.27) that Item 2 from the Outer Loop holds. Since
X ¢ Supp(|V'] - Wx -Cl71) and X = Supp(Wx), it follows that there must be some term from
X N Supp(C) completely removed from |V'] - Wx, whence X N Supp(C) € Z'. If there is some
j€e Jg \ Jgfl, then Item 3 of the Outer Loop holds. Otherwise, we have J,‘j = Jlir In this case,
any element z € (X NSupp(C))\ Z’, which exists as we just observed (X NSupp(C)) € Z’, is an
element of Dy_; (by (8.27)) not in Dy, (by (8.30)), which combined with the already established
Item 2 of the Outer Loop yields Item 3 of the Outer Loop. Thus By = C satisfies all conditions
for the Outer Loop, as required. Therefore instead assume X C Supp(V’-C [_1}), equivalent to

(8.31) X C Supp(|V'] - Wx - CI71).

If B =1, then (d) ensures either k > |Iz| + 1 or else k =1 = |Iz|, |Ig| = |lo|=0and U = V.
In this case, the Inner loop requirement that o(C) = —fgr = —gi ensures that Item 4 of the
Outer Loop holds with 8; = f = 1 taking By = C, and then Items 1-3 do as well by (8.24),
meaning we can set By = C for the Outer Loop, as required. Therefore we may instead assume

(8.32) B <1

If x € X; with j € Ji* |, then z ¢ X = Supp(Wx), as all terms from X are from depleted
boxes. Thus C' | V'] - Wx ensures that v,(C) < v,(|V']). Hence either v,(C) = v(|V']) or
x € X;NSupp(|V']-Wx -Cl=1]). Now suppose there were some x € X;NSupp(|V’-CI=1|) with
z ¢ X;NSupp(|V']-Wx-C), where j € Ji* . Then v, (V') —v,(C) > 1 and v, (C) = v, (|V"]),
ensuring that v, ({V'}) = vo (V') = v (|V']) = va (V') — v4(C) > 1, contrary to the definition of
{V'}. So we instead conclude that

(8.33) X; N Supp(| V' - o1l ¢ X; N Supp(| V'] - Wx - c=y  for every j € JE .

If there is some j € Ji* | with X; N Supp(| V' - CI=1]) = 0, then the Inner loop halts and we
set By = C and Vj, = V' - CI71. Note this ensures that |[JZ| > [J¢ | (as j € J\ J& ), so
Item 3 of the Outer Loop holds. Since X; N Supp(|V’|) # 0 for every j € Ji* , by definition
of an undepleted box, we must have C nontrivial. Thus Item 4 of the Outer Loop holds with
Br = B by definition of C, (c¢) and (8.32). By the same arguments used to establish (8.31), it
follows from (a), (b), (8.27) and (8.30) that Items 1 and 2 of the Outer loop hold. Thus B, = C
satisfies all conditions for the Outer Loop, as required. Therefore instead assume every j € J;'
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has some z; € X; N Supp(|V'-CU]) C X; N Supp(|V’] - W - CI7Y), with the inclusion in view
of (8.33).

In view (b), for every j € J,f_l, the set Z’ either contains z; € X N X; or no element from
X; at all. In view of (8.31), every j € J? | has z; € Supp(|V'| - Wx - CI=Y). In view of
(a), for every j € J{* |, the set Z’' contains at most one element from X;. In view of the
conclusion of the previous paragraph, for every j € Ji* | for which Z' N X; = (), there is some
zj € X;NSupp(|V'-CI=1]) € x;nSupp(|V’] - Wx - CI71). As a result of all these observations,
(8.28) and the Interchangeability Property of X,,(¢) (Proposition 7.26), we can find some subset
(say)

Z=A{z,...,2n}
with Z € X,,(¢) and

(8.34) XUZ' CZCSupp(|V']-Wx - C17Y) € Supp(V'- 1Y),

where the latter inclusion follows by recalling that Wy | {V'}. In particular, since X =
Supp(Wx ), we have

(8.35) Z\ X C Supp(|V')).

In view of the definition of the g;, it follows that g (indeed, every g;) is a positive rational
linear combination of the o(7;) with i € Iz U Ig. Let 8 < 1 be the rational number 5 € Q4
from the definition of C'. Since 8 < 1, it follows that (1 — 3)gy is a positive scalar multiple of g,
and thus —(1 — 8)gr € C(Z) in view of Claim B, Z € X,,(¢), and the convexity of C(Z). Since
Z € X,(p) is linearly independent, let a1, ..., a, € R; be the unique real numbers such that

121+ ...+ anzp = —(1 = B)gx.

Since gy, is a positive rational linear combination of the o(7}) with i € Iz U Ig, with each o(T5)
a positive rational linear combination of terms from Gy C A (since T; € Frat(Go)), and since
B € Qy, it follows that —m/(1 — B)gr € ANC(Z) C ANR(A) = A/, for some integer m’ > 1
(recall that Z(Z) = Z(Z,) = A since Z, Z, € Xp(p)). Thus, since A’/A is a finite abelian
group, it follows that there is some integer m > 1 such that —m(1 — fB)gr € ANC(Z) = Cz(2),
with the equality in view of (8.14). Consequently, (8.15) ensures that ma; € Z4 for all i € [1,n],
showing that aq,...,a, € Q4.

Claim C. Either v, (|V']|-Wx - Cl71) < o for some i € [1,n], or k> [Iz|+1, or k =1 = |Iy],
[Ig| = |l =0and U = V.

Proof. Suppose k < |Iz| and v.,(|V'| - Wx - CI=1) > q; for all i € [1,n]. We will show that
k=1=|Iz|, |Ig| =|Is| =0and U = V. Since k < |Iz|, we have

—gr = —0(Ty) € Cz(Z2) CL(Z) = A
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from (8.16) and Z € X,,(¢). Also, Wx | {V'} ensures that |V'| - Wx | V' = Vj_1, which is
a subsequence of V, thus disjoint from T}, | Vig,\x. Hence, since o(C) = —Bgy = —B0(T}) by
hypothesis of the Inner Loop process, we conclude that

T:=T1,-C- H:E[Ln}zi[ai] € Brat(Gp) and T |U.
In particular, T is zero-sum. By (8.9), we have
Ty € F(Gy).
By (8.29), we have v, (V' - Cl=1) = v, ({V'}) for all z € Supp(C) \ (2’ U X). Thus
vo(C) = vp(V)) = v (V- CTY)
(8.36) = vo(V') = vo({V'}) =vo(|V']) € Zy  for all z € Supp(C) \ (Z' U X).

Since T' is zero-sum and Supp(7x) N Z € Supp(Vig\x) N X = (), we have

dve@zi=— > v(Qr—0o(T)=— > v(C)z— g

1=1 x€Supp(C)\Z z€Supp(C)\Z
As the elements from any X; are contained in some set from X,,(¢), with every such set being
a lattice basis for A, it follows that Supp(C) € X C A. Thus, since g € A and v,(C) € Z4
for all x € Supp(C) \ Z C Supp(C) \ (Z’ U X) (in view of (8.36) and (8.34)), it follows that

Yov,(T)z € A. Since v, (T) = v,,(C) + o > 0, we have Y v, (T)z € C(Z). But now
i=1 i=1

Yovi.(T)z € ANC(Z) = Cz(Z) by (8.14), whence v,,(T) € Zy for all i € [1,n] by (8.15).
i=1

Combined with (8.36), X U Z’ C Z (in view of (8.34)) and T} € F(Gp), we conclude that
T € F(Gy) is an ordinary zero-sum sequence. However, since T | U is nontrivial (as each T
is nontrivial) with U € A(Gp) an atom, this is only possible if 7' = U, which, in turn, is only
possible if |Iz| = 1 =k, |Ig| = |I,| = 0, Vgpx = T1, and U = V. This establishes Claim C. [

Let
v =min({1} U {v.,(|V'] - Wx - C) /oy : i €[1,n], a; #0}) < 1.
We cannot have a; = 0 for all ¢ € [1,n] in view of § < 1 and (8.17). Step C ensures that v =1
is only possible if £ > |Iz| + 1 or else k = 1 = |Iz|, |lg| = |Is] =0 and U = V. In view of
(8.34), v, (|V'] - Wx - CI=1) > 0 for all i € [1,7], implying v > 0.

By definition, we have v, (|V’] - Wy - C[=1) > yq; for all i € [1,n], with equality holding for
any i € [1,n] attaining the minimum in the definition of . Moreover, since V', C' € Fat(Go),
we have a;, v, (V'] - Wy - CI71) € Qy, implying v € Q, is a positive rational number, and
thus va; € Q4 for every i € [1,n]. Define

[ . ¢ [you]
¢ =c Hie[l,n]zi ’
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Note C” is nontrivial in view of v > 0 and not all ; = 0. By construction, C" | |[V'] - Wx and
C" € Frat(Go) (since C € Frat(Go) with ya,; € Q4 for all i € [1,n]). Note

o(C") =0(C) —~v(1 = B)gr = —Bgr —v(1 = B)gr = —(B+~v(1 = B))gn-

Since 8,7 € Q4 with 0 < v < 1land 0 < 8 < 1, we have ' := 8+ v(1 — 8) € Q4 with
0 < 8/ < 1. Furthermore, 3/ = 1 if and only if v = 1. Since Z' C Z = {z1,...,2,} and C | (',
it follows from (8.28) that

Z" = Supp(C") N Supp(|V'] - Wy - ') € .

Since Z C X with |ZNX;| = 1forall j € [1,n] (as Z € X,,(¢)), it follows that the subset Z” C Z
satisfies Z” C X with |Z"NX%;| < 1for all j € [1,n]. Note Z”ﬂUjng_1 X; C ZﬁUjng_1 X =X,
with the equality in view of X C Z € X,,(¢) (from (8.34)). Finally, if 5/ = 1, then v = 1, whence
either k > |Iz| + 1 or else k =1 = |Iz|, |Ig| = |I,| = 0 and U = V (as remarked after the
definition of ). Thus the rational sequence C’ satisfies all the requirements for our recursive
construction of the Inner Loop. Hence we may replace C' by C’ and repeat the Inner Loop
process just described once more.

If at any point while iterating the Inner Loop Process we obtain v = 1, then 3’ = 1 follows,
and the Inner Loop immediately halts and outputs C’ = By, as described earlier (when arguing
that we could assume § < 1). Otherwise, there will always be an index i € [1,n] attaining
the minimum in the definition of v, in which case z; € Z C Supp(|V’'] - Wx - CI=1) but
2 & Supp(|V']-Wx - '), thus ensuring | Supp([V'] - Wx - CU)| > [ Supp(|V'] - Wx - ¢’ )]
has strictly decreased. As a result, we cannot iterate the Inner Loop process indefinitely, as the
non-negative integer |Supp(|V’] - Wx - CI=1)| strictly decreases after each iteration, ensuring
that the process must halt for one of the three possibilities described earlier, all of which lead to
the construction of the next sequence By in the outer loop process. As this shows it is always
possible to construct the sequence Bj with the needed properties for the Outer Loop process,
the proof is now complete. ]

Corollary 8.6. Let A < R? be a full rank lattice, where d > 0, and let Gog C A be a finitary
subset with C(Go) = R?%. Then Go \ G§ C Gy is a Lambert subset.

Proof. Suppose 0 ¢ C*(Gp) (which implies Gy is finitary by Theorem 7.5). Let U € A(G)p)
be arbitrary. Per the remarks above Theorem 8.5, apply the lattice type version of Theorem
8.5 to the atom U, so s equals the number of nontrivial lattice types rather than minimal
types. Letting X“(p;) = UXGX(%_)X, observe that X"(¢;) C G§, for all j € [1,s], since
X"(pj) is a union of sets X € X(Go) with each X C Gf, as discussed at the beginning of
Section 7.2. Thus Go \ G§ C Go \ X"(p;) for all j € [1,s], whence Theorem 8.5(c) ensures

S5
vanag(U) = > vgo\as(Ai) < (s + 1) N, showing that Go \ Gf € Gy is a Lambert subset with
i=0

bound (s + 1) Ny, where Ny is bound given in Theorem 8.5.
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If Gy is only finitary, with 0 € C*(Gp), then the corollary does not follow directly from
Theorem 8.5. However, most parts of the proof of Theorem 8.5 only require the hypothesis that
Gy is finitary, not the stronger hypothesis that 0 € C*(Gp). Indeed, this stronger hypothesis is
only used twice in the proof: first, in the paragraph after (8.16), where it is used to show g # 0
for k > |Iz|, which is needed for the Inner Loop to construct By, and second, in the paragraph
above (8.24), where it is used in the case when [}, = 1, which is needed to show (a) holds for
the next iteration U = V' + A1 - A¢- ...+ As. Note the latter only occurs when k > |Iz| + 1 or
when k =1=|Iz|, [Ig| = |I,|=0and V =U.

One can modify the Outer Loop by requiring it to prematurely halt during the construction
of Ai_y if ever k = |Iz| is reached. In this way, both cases where the hypothesis 0 ¢ C*(Gy)
is used are never encountered. To avoid confusion, let Nj(f) and N g) denote the recursively
defined constants for which (a)—(d) holds for U =V - A; - ...+ As (assuming the process did not
prematurely halt before A; could be constructed), and let Ny and Ng denote the final values,
so Ng = Nél) and Np = max{N(l), ZZ: |W;|}, where W1, ..., W, € A(Gp) are the distinct atoms

i=1

having no nonempty X C Supp(Wj) with X € X(Gy), of which there are a finite number as
noted at the beginning of the proof of Theorem 8.5 (which only requires the assumption that
Gy is finitary, not that 0 ¢ C*(G§)). Note Ny and Ny still exist, with their values independent
of U, even if we cannot complete the construction of all A;_; for some atom U. Indeed, Nr_(pt)
and N ét) are simply defined by the dual recursion given by (8.25) and (8.26), so N}t*l) = NI,
and Ng‘_l) = Ng with N}, and Ng defined by (8.25) and (8.26) using Ng‘) and Nj(f) in place of
Ng and Nr in the formulas (8.25) and (8.26) (and initial values N}BH) = NSH) = 0). Since all
constants used in the recursive formulas (8.25) and (8.26) depend only on the individual lattice
types  for the finitary subset Gg, the resulting values of Ny and Ng are well-defined.

If, for the atom U, the Outer Loop process never prematurely halts during the construction
of any A;—1, then we obtain vg,\gs(U) < (s +1)Nr, as we did when 0 ¢ C*(Gf). Now instead
suppose, for the atom U, that the process prematurely halts during the construction of A 4
for some t € [2,5 4 1], so we have U =V - A¢- ... A, satisfying (a)—(d) but fail to construct
A¢_1. There are two ways this failure can arise. First, we may have completed the Outer Loop
process with it ending when gy, = 1, k = 1 = |Iz|, |Ig| = |I,| = 0 and V = U, leaving us
unable to conclude (a) holds for A¢_;. In such case, Vgo\x = T1 with vg\gs(U) = vga\gs (V) <
Vaoxl < |Th| < DaMy < Né,tfl) < N7 by (8.9) and (8.25), as desired. Second, the Outer
Loop process has constructed By, ..., B|r, and has not finished, so the terminal value k& > | 17|,
vet g, +1 = 0, leaving us unable to construct the next sequence B, 1 using the Inner Loop.
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In this case, since Supp(T;) C G§ for i € I, by (8.12), and since Supp(Vx) C X C G§, we obtain

Vonas(V) < 3 |T < |Iz|DaMyy + |Ig|Myw < (k— 1)DaMyy + (Da + N + 20,) My
iGIZUIQ

(8.37) < (@ = 1)1+ NYDa + NP 4 20,) My < NV < Ny,

with the second inequality in view of (8.9) and (8.10), with the third inequality in view of

k > |Iz| and Claim A, with fourth in view of the upper bound k& < (2"*! — 1)(1 + NS)),

estimating how long the Outer Loop Process can run, and with the fifth in view of (8.25). Thus
5

Varas (U) = vanas (V) + Cvanas (i) < NY Y + (s — t+ )N < (s + 1) Ny now follows from
=t

(c) holding for U =V - At_- ...+ Aq. In all cases, Gp \ G C Gy is a Lambert subset with bound
(s + 1) Np, completing the proof. O

We can now extend Theorem 7.10 to characterize the set Gf in terms of Z_ -linear combinations
and atoms, rather than Q4 -linear combinations and elementary atoms.

Corollary 8.7. Let A < R? be a full rank lattice, where d > 0, and let Gy C A be a finitary
subset with C(Go) = R%. Then

Gy = {ge€Go: sup{v,(U): Uec A™(Gy)} = o0}
= {g€Go: sup{vy(U): U € A(Gy)} = oo}.

Proof. The equality G§ = {g € Go : sup{vy(U): U € A*™(Gy)} = oo} holds by Theorem 7.10.
Since A®M(Go) C A(Go), the inclusion {g € Go : sup{vy(U): U € A™(Gy)} = o0} C {g €
Go : sup{vg(U) : U € A(Go)} = oo} is trivial. To see the reverse inclusion, let g € Gy with
sup{vy(U) : U € A(Go)} = oo. Then Corollary 8.6 ensures gg € G = {g € Go : sup{vy(U) :
U € A9M(Gy)} = oo} O

We can now achieve one of our mains goals: the characterization of finite elasticities for
subsets Gg C Z%. Note that Theorem 8.8.1 characterizes pa+1(Gp) < oo in terms of a basic,
combinatorial property of Gy, one which trivially implies pg41(Go) < oo (cf. Proposition 8.2),
while Theorem 8.8.5 characterizes pg11(Go) < oo in terms of the subset G§ C Gy, which can be
defined purely in terms of Convex Geometry (cf. Proposition 7.1).

Theorem 8.8. Let A < R be a full rank lattice in R, where d > 0, and let Gy C A be a subset.
Then the following are equivalent.

There exists a subset X C G such that A(X) =0 and Go\ X C Gy is a Lambert subset.
p(Go) < o0

pr(Go) < oo forall k >1

pi+1(Go) < 0.
0 & C*(Gg).

Ot W=
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Proof. The implications 1. = 2. = 3. = 4. follow by Proposition 8.2. Let £ = C(Gy) N —C(Gy)
be the lineality space of C(Gg). Let Go = {g € Go : g € Supp(U) for some U € A(Gp)}.
Corollary 4.5 implies

(8.38) GonNE=Gy and C(Gy) = C(Gy)N—C(Go) =E&.

Thus, by definition of G, we have G§ = G§. Note that A = AN E < A is a sublattice. Since
Go C A is a subset which linearly generates &£, it follows that A < € is a full rank lattice in €.
Let d = dim €. Now suppose we knew Theorem 8.8 held for Gy € A < €. Then pa+1(Gp) < oo
would imply pd~+1(C~;0) < pas1(Go) = pas1(Go) < oo, with the first inequality in view of d < d
and (2.9), in turn implying 0 ¢ C*(ég) = C*(G}), in turn implying there is a subset X C Gy
with A(X) = 0 and Gy \ X C Go a Lambert subset. But then clearly X = X U (G \ Go) C G
is a subset with A(X) = 0 and G \ X = Gy \ X C Go a Lambert subset. Thus the remaining
implications follow from the case when Gy = éo, which we now assume. In this case, the
implication 4. = 5. follows by Proposition 8.3 applied to Gy = éo, which we can apply in view
of (8.38) and pg, ,(Go) < pa+1(Go) < oo (by (2.9)). It remains to prove 5. = 1. To this end,
suppose 0 ¢ C*(Gp). Then Gy is finitary by Theorem 7.5 and (8.38), whence Corollary 8.6 and
(8.38) imply Go \ G§ C Gy is a Lambert subset. Since 0 ¢ C*(G§), Proposition 4.2 implies
A(G§) = 0. Thus Item 1 holds with X = G, completing the proof. O

Let Gg C G be a subset of an abelian group GG. For k > 1, we define the elementary elasticity
p8m(Gy) to be the minimal integer N such that, if

Uy .o U=V 1

with Uy, ..., U, € A9™(Go) and Vi,...,V; € A(Gp), then £ < N. If no such N exists, then we
set pSM(Gg) = oo. It is readily noted (by the same simple argument establishing (2.9)) that
PSM(Go) < p§™(Go) < ... Indeed, if Uy +...-Up_y = Vi +...- Vp with Uy, ..., Up_1 € A%™(Gy)

and Vi,...,V, € A(Gy), then the factorization Uy + ...+ Ug_1 - Uy = Vi - ... Vp - U shows
pSM(Go) > £+ 1. If pfm (Go) is finite, then we may take £ = pf™ (Gyp), and if p§™ (Go) is
infinite, then we may take £ to be arbitrarily large. In either case, p§™(Go) > p¢™ (Gp) follows.

Trivially, we also have
Pi™(Go) < pr(Go).
Thus if px(Go) is finite, then so is p§™(Gp). As a consequence of Theorem 8.8, we have the

following converse.

Corollary 8.9. Let A C R? be a full rank lattice, where d > 0, and let Go C A be a subset.
Then par1(Go) < oo if and only if pzlfl(Go) < 00.

Proof. We may w.l.o.g. suppose every g € Gy is contained in an atom, whence C(Gy) = &€ :=
C(Go) N —C(Gy) is the lineality space of C(Gy) by Corollary 4.5. Let d = dim€& < d. As
already remarked, one direction of the corollary is trivial. Suppose p‘fi'j:‘l(Go) < 00. Then
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pgml(Go) < pglrl(Go) < oo. If 0 ¢ C(GY), then pg+1(Go) < oo follows by Theorem 8.8.3, as
desired. Therefore we may assume 0 € C*(G§), in which case Carthédory’s Theorem implies
that there is a minimal positive basis X C G§ with s = |[X| < d+ 1. Let V € A*™(X)
be the unique elementary atom with support X = {g1,...,9s} € G§ (by Proposition 4.7)
and let m = max{v,, (V) : j € [1,s]}. By Proposition 7.2, every g € G§ has Supp{vy(U) :
U 6 A®M(Gp)} = co. Thus, for every i > 0 and j € [1 s] we can find an elementary atom

€ A°™(Go) with v, (U(J)) > 4. Then VIL/mll| U U( *) for every ¢ > 1. Hence, for
every 1 > 1, we have a factorization

1 Li/m]
vM... .U = (szl v)-B

for some B; € B(Gp). Since i — oo and m is a fixed constant, it follows that p&™(Gg) = oo.
However, since s < d+ 1, we have p&™(Gy) < pg'rl (Go), so that pfllfl(Go) = oo as well, contrary
to assumption. ]

8.2. The Structure of Atoms and Arithmetic Invariants. In this section, we give a
weak structural description of the atoms U € A(Gp) when 0 ¢ C*(Gy), equivalently, when
pa+1(Go) < oo. We then use this result, along with our characterization of finite elasticities
and prior machinery, to show that having finite elasticities implies nearly all standard invariants
of Factorization Theory are also finite, meaning the hypothesis pg41(Go) < oo is sufficient to
guarantee factorizations are as well-behaved as could be hoped.

We begin by describing what a set X with minimal type ¢ looks like when expressed using
the lattice basis Z,.

Lemma 8.10. Let A < R? be a full rank lattice, where d > 0, let Go C A be a finitary subset
with C(Go) = RY, let p € X,,(Go) be a minimal type with codomain Z, = Zy U ...U Zs, and
let X € X,,(¢) be a subset with minimal type ¢ and associated mazximal series decomposition
X=X1U...UX;. Forkell,s], let z%k), . ..Zgj) € Zy. and ajgk), . xg:) € Xy be the distinct
elements of Z and X, respectively, indezed so that go(:cz(k)) = zi(k) forallk € [1,s] and i € [1,1g].
Then, for every k € [1,s] and i € [1,1x], we have

k=1t

(8.39) asgk) = zi(k) - ZZ&S“),ZL(“) for some €W e Z,.

k=1:=1

Proof. For k € [0,s], let Ay = Z(Z, U...U Z;) and let 7, : R? — R(Ag)* be the orthogonal
projection. Set A = A,. Since X has minimal type ¢, we have Z(X; U ... U X;) = A; for
all j € [1,s]. Let k € [1,s] and i € [1,;] be arbitrary. Let Y = Z, \ {zl(k)} U {mgk)} By the
interchangeability property of X,,(¢) (Proposition 7.26), we have Y € X,,,(¢). Thus Y also has
minimal type ¢, and so Z, C Cz(Z,) C Cz(Y). In particular, we can write zi(k) as a positive
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integer combination of the elements from Y, say

k—1 tx tr S ti
zi(k) = ZZ{E”)ZL(”) + §§k)x£k) + fok)zi(k) + Z Z@(”)zf”) for some {L(N) €Zy.
rk=1:1=1 =1 k=k+1:t=1

L#1

The coefficients of zL(H) with k > k + 1 are all zero in view of the linear independence of Zj 1 U

... U Zs; modulo R(Ay) (cf. Proposition 4.9). Since X and Z, share the same minimal type ¢
Ek)) = sz), we have 2% — l‘gk) € R(Ax_1) NA = Ag_1. In particular, % and 2® are

with p(z
equal modulo R(Ag_1), in which case the linear independence of Z; modulo R(Ay_1) ensures
(k)

that the coefficients of zL(k) with ¢ # ¢ are also zero, and that the coefficient of z;’ is one. The

result now follows. O

For the next proposition, we need to view our sequences as indexed, so that two distinct terms
of a sequence S € F(Gp) that are equal as elements can still be viewed as distinct terms in the
sequence S. We follow the notation introduced in Section 2.3.

Proposition 8.11. Let A < R? be a full rank lattice, where d > 0, let Go C A be a finitary
subset with C(Go) = R%, let ¢ € X,,(Go) be a minimal type with codomain Z, = Z1 U ... U Zj,
let X = X\ (¢) = UXexm(cp) X, let S=g1-...-g0 € F(X) be a sequence, and for every k € [1, s],
let I, C [1,4] be the subset of all a € [1,4] with g, at depth k. Suppose o(S) € C(Z,). Then
there exists a system of subsets Ty, C [1,£] for a € [1,£] such that the following hold.

1. For every a € [1,4], say a € Iy, there is some O(a) € I1 U...U Ix_1 such that T, =

{a} UlUpeo(a) Tv is a disjoint union.

2. Ifb¢ T, and a ¢ Ty, then T, NT, =0, for every a, b € [1,4).

3. 0(S(Tw)) = ¢(ga), for every a € [1,4].
In particular, for any system of sets T, C [1, /] satisfying Items 1-3, the following hold.

4. If a € Iy, then Ty \ {a} C L U...UT_;.

5. IfbeT,, then Ty C1T,.

6. For every k € [1, s], there exists a subset Ji, C I1U...UI} such that Uz‘eJk T, = LU... .Ul

s a disjoint union, ensuring that

Hz‘.e[l,k]s(li) - H:GJ;CS(Ti)

s a factorization of the subsequence of all terms in S with depth at most k into a product

of subsequences whose sums each lie in Z,.

Proof. Ttem 4 follows from Item 1 and a quick inductive argument on k =1,2,...,s. Likewise,
Item 5 follows from Item 1 and a quick inductive argument on k, where a € I. To show Item
6 holds, let k € [1,s]. The set Ji is then constructed recursively in k steps. Set Jlik) = I.
Assuming J,gj) has been constructed, with j € [2, k], define Jlij_l) = Jlij) U <Ij_1 \ UceJlij) TC> -

I 1ULU...UI}. Set Jy = J\. In view of Ttem 4, any a € I; with j < k has T, C I, U...U1,.
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Thus J, = Ji) C L U...UT} and U,
b¢ T, and a ¢ Ty, for any distinct a, b € I; and j € [1,s]. Hence Item 2 ensures that | J

T, =1 U...UI; by construction. By Item 4, we have
i€l E is

a disjoint union for any j € [1,s]. In particular, | J ) T; is a disjoint union. Also, if a € J,E,j )

ieg*
and b € Ij_1 \ UCGJ(j) T., then b ¢ T,. Since b € I;_; ensures that T, C Iy U... U Ij_1 (by
k

Item 4), while a € J,E,j) C I; U...UI, we also have a ¢ T,. Thus Item 2 ensures that T, is

disjoint from T3, for every a € J,gj )

. We also have T}, disjoint from any other 7} with b’ € I;_4
as already mentioned. An inductive argument now shows that Ui€ @ T; is a disjoint union for
j=k,k—1,...,1. The case j = 1 implies Uz’eJ,il) T, = UiEJk T; is a disjoint union, and we now
see that Item 6 follows. It remains to establish Items 1-3.

For k € [1,s], let z§k), : zt(f) € Zj, be the distinct elements of Zj. Let X = [J;_, Uf"zl Xk,
with X;; C X consisting of all x € X with ¢(z) = zl(k). Given any z € R(Z,), we have

s tg

T = ZkaJ(:z;)zi(k) for some uniquely defined & ;(z) € R,
k=1i=1
as Z, € X () is linearly independent. If z € X, then Lemma 8.10 ensures that & ;(z) € Z for
all k& and . Moreover, if p(z) = zb(m), then & ;(x) = 0 whenever k > k, apart from the value
§eo(z) =1, and & ;(x) < 0 whenever k < k.

We construct the subsets d(a) and T, recursively, first for all a € Iy, then for all a € I3, and so
forth. For a € Iy, define d(a) = ) and T, = {a}. Then d(a) C I U...UIy = (), and Items 1 and
2 trivially hold. Moreover, since g, € X for some X € X,,(¢) with ¢(g,) € Z1 (since a € Iy), it
follows from the definition of lattice type (each minimal type is a refinement of a lattice type)
that g, = ¢(ge). Thus Item 3 holds. Assume the T, and 0(a) have been constructed for all
a€l1U...Ul,_1, where k > 2, such that Items 1-3 hold. Let J,_1 C I U...UI,_1 be a subset

such that UieJK_l T, =1L U...UlI, 1 is a disjoint union with

H:G[l,n—l}s(li) = H:eJK,IS(Ti)

a factorization of the subsequence of all terms in S with depth at most x — 1 into a product
of subsequences whose sums each lie in Z,, which exists by the argument used to derive Item
6 applied to the subsequence of S consisting of all terms having depth at most x — 1. For
ke[ln—1]and j € [1,t)], let J&9 C J._1 be all those b € Jo—1 with o(S(T3)) = 2\, Then
Jp—1 = Uz;% z’;l J,glﬁ]i) is a disjoint union. We proceed to construct d(a) and T, for a € I, as
follows.

For each k € [1,k — 1] and j € [1,%;], we have & j(ga) < 0, for a € I, in view of Lemma
ics. Ti (as k < k —1), it follows that [[5c;  S(T3)
contains all terms x from S with &, j(x) > 0. Thus, since o(S) € C(Z,) by hypothesis with Z,

linearly independent, we must have > |4 (g4)] < \J,gk_{)\ Consequently, it is possible to find

aEIn

8.10 as remarked earlier. Since I C |J
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disjoint subsets D7) € J(]f]i), for a € I, such that \D,(lk’j)\ = |€k,j(ga)| for each a € I,,. Note

K
Dk Jé’i]l) C Je1 CLU...UIL,_y. Define d(a) = i~} ;’;1 DY) C gy ChU... ULy
and T, = {a} UU.cy() Te- By construction, Items 1 and 3 both hold for all a € I, with

disjointness in Item 1 following from the disjointness of the union J;. J._, Li. Since
(8.40) U nn=nu.. vl
1€Jk—1

is a disjoint union, and since (J,c; 9(a) € Jx—1 is also a disjoint union (as the ng’j ) are disjoint),
it follows that T, N T, = 0 for all distinct a, b € I,. fa € I, andbe [ U... U, with b ¢ T,,
then b € T, for some ¢ € J,_1 \ 9(a) (in view of (8.40)), in which case the disjointness of the
union in (8.40) ensures that T, N T, = (). However, since Item 4 holds for Iy U... U I,_1, it
follows that b € T, implies T}, C T,.. Hence T, N T}, = @ follows in view of T, N T,. = (). Finally, if
a,be 1 U...Ul,_1 with a ¢ T, and b ¢ T,, then Item 2 holding for I; U...UI,;_1 ensures that
T,NT, = (. Hence Item 2 holds for I U...UI,, and iterating the construction for k = 1,2,...,s

completes the proof. O

Item 2 in Proposition 8.11 implies that either b € T,, (implying T}, C T, by Item 5) or a € Ty,
(implying 71 C T, by Item 5) or T, N T, = (). Thus any system of sets T, C [1,/] satisfying
Items 1-3 in Proposition 8.11 also satisfies

. aeT,and T, \ {a} C 1 U...UIx_1, where a € I,
2. either T, C Ty or T, C T, or T, N1y = ), and
3. o(S(Ta)) = ¢(ga),

for any a, b € [1,¢]. However, a system of sets T, C [1, /] satisfying Items 1-3’ must also satisfy
Items 1-3, meaning these are equivalent defining conditions for the set system T, C [1,¢]—as
the following short argument shows. If a ¢ Tj, then Item 1’ ensures T, ¢ T}. Likewise, if b ¢ T,,
then Item 1’ ensures T} g Ta. As aresult, if a € Ty, and b ¢ Ty, then Item 2’ implies T, NT, = 0,
yielding Item 2. Item 3 is the same as Item 3'. Let a € [1,/]. If b € T, \ {a}, then Item 1’ ensures
dep(gc) < dep(gp) < dep(g,) for all ¢ € Ty, implying a ¢ Tp,. Thus T, € T}, (as a € T, but a ¢ Tj)
and T, NT, # 0 (as b € T,NT}), in which case Item 2’ yields T, C T,, showing Item 5 holds. We
conclude (by Items 1" and 5) that b € Tj, C T, for all b € Ty, implying T, = {a} U Uper,\ (o3 To-
Let d(a) C T, \ {a} consist of all b € T, \ {a} such that there does not exist any ¢ € T}, \ {a, b}
with Tj, C T,.. By Item 1’, we have d(a) C I; U...UIx_1, where a € I. By definition of d(a), we
have T, = {a} U Uper,\ oy Tb = {a} U Upea(a) Tb- 1 b, ¢ € 9(a) are distinct, then the definition
of d(a) C T, \ {a} ensures that T, ¢ T. and T. € T, so that Item 2’ implies T}, and T, are
disjoint. By Item 1’, any b € d(a) C [1U...UIx_1 has T, C Iy U...UIx_1, ensuring that a ¢ T}
(as a € I). It follows that the union 7o = {a} U Upeg(q) Tb is disjoint, yielding Item 1, which
completes the equivalence of the conditions.
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It is entirely possible for the size of | Supp(U)|, for an atom U € A(Gy), to be arbitrarily large
even under the assumption pg4+1(Go) < co. This means that, if we partition the terms of the
sequence U according to whether they are equal as elements from G, then we cannot hope to
achieve a global bound on the number of partition classes we must use. However, the following
theorem shows that there is a less restrictive notion of support that does have the property

that any atom U € A(Go) can have its terms partitioned into at most N + > [Z,| <
PE€Tm (Go)
N +d|%,,,(Go)| types of elements, with elements of the same type behaving in the same essential

manner as described by Proposition 8.11. Theorem 8.12 can be viewed as a weak structural
description of the atoms U € A(Gy), allowing us to effectively simulate globally bounded finite
support.

Theorem 8.12. Let A < R? be a full rank lattice, where d > 0, and let Gy C A be a subset
with C(Go) = R?%. Suppose 0 ¢ C*(GS). Then there exists a bound N > 0 such that any atom
U € A(Gy) has a factorization

p— . ® . U
Uv==n Hsﬂe‘Im(Go)S‘P’ with R € F(Go) — and Sy € F(Xp(9)),

such that |R| < N and o(S,) € Cz(Z,) for all p € %,,(Go), where Z, is the codomain of ¢. In
particular, all conclusions of Proposition 8.11 hold for each S, .

Proof. Since 0 ¢ C*(Gy), Theorem 7.5 ensures that Gg is finitary. Let U € A(Gp) be an
arbitrary atom and let U = Ag - Hgoefm(Go) A, be the factorization of U given by Theorem 8.5,
with bounds Ng > 0 and Ny > 0 and Ao, A, € Brat(Go) (with A, the trivial sequence when
¢ € %,,(Go) is the trivial type). For each ¢ € T,,(Gp), we define the subsequence S, | | A, ] as
follows.

For the trivial type ¢, we set S, to be the trivial sequence. Let ¢ € T,,(Gp) be an arbitrary,
nontrivial type, let Z, = Z; U... U Z; be the codomain of ¢ and associated maximal series
decomposition, and let X = X} (p) = Uxex,(p) X For k € [1,s], let zgk), : ..zg:) € Zy, be the
distinct elements of Z;. Let X = |J;_, Uf’;l Xji, with X;; € X consisting of all x € X with
o(r) = zgk). Let X = Usep, 1) Xris

A=A, and A=Ax-Agyx

where Ay | A is the rational subsequence consisting of all terms from X, and Ag,\x | A4 is
the rational subsequence consisting of all terms from Gy \ X. For k € [1,s] and i € [1, ], let
Ay, . | Ax be the rational subsequence consisting of all terms x with ¢(z) = ZZ-(k), i.e., all terms
x € X, and let Ax, be the rational subsequence consisting of all terms from X;. By Theorem
8.5(d), we have o(Ag,\x) € —C(Z,), whence

(8.41) o(Az) € C(Z,) = C({zM : ke[1,8],i€[1,]})

follows in view of A = A, € Byat(Go) being zero-sum.
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Given any x € R(Z,), which includes any = € X, we have

(8.42) x = ZZﬁkz(x)zl(k) for some uniquely defined & ;(z) € R,
k=1i=1

as Z, is linearly independent. If x € X, then Lemma 8.10 ensures that £ ; € Z for all £ and i.
Moreover, if € X, ,, then & ;(z) = 0 whenever k > &, apart from the value . ,(x) = 1, and
&ki(z) < 0 whenever k£ < k. Consequently, & ;(x) < 0 for all x € Supp(Ax), apart from those
terms « € X}, ;, for which we instead have & ;(z) = 1.

We proceed to iteratively define rational subsequences D, | Ax, for r = 0,1,...,s — 1, such
that Do | D1 | ... | Ds—1 and

(a) Ax- DIV e F(x),

(b) g,”( (Ag€ DY) ez, for all k € [1,r] and i € [1, 4],
(¢) D (')forallkE[Or ]andjE[l k+1],
(d) |D |<N5+(\D |+\D 4. +|D 11), and
(e) |D 1] < Ng for k € [1,7],

where D \ Dy, denotes the subsequence of all terms from X, for k € [0,s—1] and j € [1, s]. Set
Dy = {Ax} Then (a)-(e) hold with |Dy| = [{Ax}| < |Supp({Ax})| < Ngs in view of Theorem
8.5(b) and (2.1). Assume we have already constructed the sequences Dy, ..., D,_1, with r > 1.
Then we construct D, as follows.

For k € [1,s] and i € [1, ], let Dfnliil) | D,_1 denote the rational subsequence of all terms from
Xj . The following makes implicit use of the comments after (8.42). All terms x € Supp(Ax)
with depth less than r have &, ;(z) = 0, while all terms x € Supp(Ax) with depth greater than
r either have &.;(z) = 0 or & ;(x) < —1 (as they must be integer values), for i € [1,t,]. Thus,
for each i € [1,1,], we have

D) = &,4(a(DY)) > &0 (Dyro1)).

For i € [1,t,], let B; | Ax - [ ] be a minimal length sequence B; € F(Gy) such that either
&ri(0(Bi)) < =&i(0(Dy—1)) (1f such B; exists) or else let B; | Ax - D 7[":11] consist of all terms z
with & ;(z) < 0. Note, if &.;(c(D;—1)) <0, then B; is the trivial sequence.

Regardless of which case holds in the definition of B;, we have &, ;(x) € Z with & ;(x) < —1
for all x € Supp(B;), ensuring B; only contains terms with depth at least » + 1 and that |B;| <
&r,i(0(By))| = —&i(0(B;)). If the latter case holds in the definition of B; (but not the former),
then &4(0(Bi)) > —&4(0(Dr—1)), implying |Bi| < ~&.4(0(By)) < &uilo(D,—1)) < [DIY).
If the former case holds in the definition of B; and &, ;(0(D;—1)) > 0, then, we have |B;| <
16:(0(Dy—1))| = &i(0(Dyr_1)) < [P in view of &.4(z) < —1 for all z € Supp(B;) and the
minimality of |B;|. Finally, if the former case holds in the definition of B; and &, ;(o(Dy—1)) <0,
then B is trivial, whence |B;| < |D(” | holds trivially. Consequently, in all cases, |B;| < |D(M |
for i € [1,¢,]. Thus, letting B = lem(By, ..., By, ) € F(Go) (which is the smallest subsequence
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of Ax - DL__ll} containing each B; as a subsequence), we have

tr
(8.43) B < |Bi| + ...+ By | < S IDV | = DY), .

i=1
Set D, = D,_1 -+ B. Since B € F(Gy) and Ax - 7[n 11] € F(X) (in view of (a) for D,_1),
it follows that Ay - DY e F(X), whence (a) holds for D,. For i € [1,t,], we either have
&ri(0(Dy)) = &,i(0(Dro1))+6,i(0(B)) < &ri(0(Dr—1))+&ri(0(B;)) < 0 (with the first inequality
in view of all terms = € Supp(B) having depth at least r + 1, which ensures &, ;(x) < 0), or
else B; contains all terms x with &, ;(z) < 0, in which case & ;(c(Ax - D,[fl])) > 0. However,
we can also obtain this latter inequality in the former case by noting that (8.41) combined with
&ri(o(Dy)) < 0 implies

&ri(0(Az - DY) = &i(0(Ax)) = &i(0(Dr) > &ri(0(Ax)) > 0
By the comments after (8.42), &,;(x) € Z for each x € Supp(Ax - Dkl}), whence
falo(Ax- DY) = S w(Ax- D) € 7,
z€Supp(Ax-DE )

with the final inclusion since (a) for D, holds. Thus &, ;(c(Ax DL_I])) € Z4 for i € [1,t,]. For
k < rand i € [1,tx], since B € F(X) only contains terms with depth at least » +1 > k, we
have —&, ;(0(B)) € Z4, which combined with (b) holding for D,_; implies & ;(o(Ax - DL_H)) =
&ri(o(Ax - D}f_ll})) —&,i(0(B)) € Zy. Thus (b) holds for D,. As B contains only terms with
depth at least r+ 1, it follows that DY) = Dfi) , for all j € [1,r], whence (c) holds for D, (as (c)
held for D,_1). We have |D,| = |D,_1| + |B| < Ng + (ID\"| + D | + ... + D5V + D, |
in view of (8.43) and (d) for D,_;, whence (d) holds for D,. Finally,

1 2 rl

D" < |Dr,1|—<|D”lr+|D“1|+ 41D

— D] - (IDV| + D |+ +rDr2’r>
(Ns + DM+ ..+ DY) = (1S + D + ...+ [DULY)) = N,

A

with the first equality in view of (¢) and the second inequality in view of (d), both for D,_;.
Thus (e) holds for D, as well, completing the construction, which shows that the D, exist.

Set S, = Ay - DIZY. Since D,_y | Ay, it follows in view of (a) that S, € F(X). In
view of (b), we have &, ;(0(S,)) € Zy for all k € [1,s — 1] and i € [1,t;]. However, since
&i(x) € Zy for all x € X (per the comments after (8.42)), we trivially have & ;(0(S,)) € Z4
for all ¢ € [1,t,]. Thus o(S,) € Cz(Z,). Set R ="U - (Hwef{m(Go) S@)[—l}. Since U € F(Go)
and every S, € F(Gp), it follows that R € F(Gp). It remains only to bound |R| independent
of U. To this end, we can combine (d) and (e) (applied with 7 = s — 1) to obtain the estimate
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|Ds—1| < sNs < dNs. We also have [Ag| < Nr and |Agyx| < Nr by Theorem 8.5(c), while
[T (Go)| < oo in view of Proposition 7.26. Thus |R| < [Ao| + >_,(|Ago\x| + [Ds—1]) < N with
N = Nr + (Nr + dNg)(|%(Go)| — 1) < oo (with the summation over all nontrivial minimal
types ¢), which is a finite bound independent of the atom U, completing the proof. O

The tame degree (see [54]) is an invariant of factorization theory whose finiteness implies the
finiteness of numerous other factorization invariants. The following theorem shows that having
finite elasticities ensures a weaker tameness property holds in B(Gp), though one which is just
sufficiently strong to still deduce the desired finiteness for the other invariants. We let t,,(Go)
be the minimal integer N > 1 for which Theorem 8.13 holds, which we call the weak tame
degree of Gy. The proof of Theorem 8.13 illustrates how Theorem 8.12 can be used to simulate

finite support in an argument.

Theorem 8.13. Let A < R? be q full rank lattice, where d > 0, and let Gog C A be a subset
with C(Go) = R and 0 ¢ C*(G3). Then there exists an integer N > 1 such that, given any
Ui, ..., U, Vi,..., Vs € A(Gy) with

Upeo. o Us=Vi-...-Vp,
where k, { > 1, there exist atoms W1, ..., Wy € A(Gy), r € [1,k] and T C [1,¢] such that
Upe oo Us=Wy-... Wy,
>0 and Uy | T]5er Wa with |I| < N.

Proof. Since 0 ¢ C*(G§), Theorem 8.8 and Proposition 8.1 imply there is an integer N, > 1 such
that
pr(Go) < N,k for all k> 1.

Since 0 ¢ C*(GY), it follows from Theorem 7.5 that G is finitary. In view of Proposition 7.26,
there are only a finite number of minimal types. Let ¢1,...,0m € Tn(Go) be the distinct
nontrivial minimal types for Gy. For each j € [1,m], let

Zy, =2 0. Uz

be the codomain of ¢; with s; < d and |Z,,| < d.
Consider Uy, ..., U, V1,...,V; € A(Gp) with

Si=Ue.. Ug=Vie...- Vi,
where k, ¢ > 1. By definition of pi(Gp), we have
(3.44) £ < pu(Go) < Nyh.
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Let S=g1-...-gs be an indexing of the terms of S. Let L U... Ul = [1,[S|]=J1U...UJ,
be disjoint partitions such that

S(I;) =U; and S(J;)=V; forallie[l,k]andje]ll4.

Since 0 ¢ C*(G§) and C(Gp) = RY, we can apply Theorem 8.12 to each atom V; for i € [1,/].
Let Nr > 0 be the global bound from Theorem 8.12 (which we can assume is an integer) and
let V; = R; - HTzl Sl-(j), for i € [1,/], be the resulting factorization given by Theorem 8.12, with
SZ-(j) € F(Gp) corresponding to the minimal type ¢;. Then O’(S-(j)) € Cz(Zy,,), meaning we can

1

apply Proposition 8.11 to each Si(j). Let Ji(j) C [1,]S]] be disjoint subsets such that
SN =R, and ST =89  forie (1,6 andje[1,m)].
Moreover, for each i € [1,4], j € [1,m] and n € [1,s;], let Jum ¢ Ji(j) be the subset of all

z € JY with pj(x) € Z9) at depth n. Then

%

m ) m Sj )
Ji = U JZ.(J) = Ji(o) U U U Ji(]’") for every i € [1,/].
=0 j=1n=1
Let
¢
Xo={JJ”, 2={0.0.): v€Xo} and Qo ={(j.2): jeLml z€Z,}
i=1

Moreover, partition
Qe =N U...UQy,
such that €2, consists of all (j, z) € Q, with z € Z7(1j) at depth n.
Since Theorem 8.12 implies |JZ-(0)\ = |Ri| < Ng for all i € [1,/], and since |Z,,;| < d for all

J € [1,m], we have
(8.45) [ Xo| <INk and  [Qo] = |Z,,| < md.
7=1

We view Q := QoU Qy, = Qo U QL U...UQy as the set of support types for S =V -...- V. A
support type 7 € €, is said to be at depth n. Note, if 7 = (j,2z) with 7 > 1, then the depth of
7 equals the depth of z € Z,,. For each x € [1,[S]], we have x € JZ@ for some unique i € [1,/]
and j € [0,m], allowing us to define s(z) = (0, g;) € Qo when j =0 and s(z) = (4, ¢;(9z)) € Qo
when j > 1. For I C [1,]5]], s(I) € F(Q2) is a sequence of support types from . We associate
the depth of s(z) (defined above) as the depth of x € [1,]|S]].

Let
- | )y
a_mm%%ﬁM+2£&dﬂme*J) E“M}



214 DAVID J. GRYNKIEWICZ

Technically, we exclude any terms 7 € €, in the sum defining o with v, (s([l, |S]])) = 0. Then

ka < Zp{mlHZZ + k||
1= lTGQ 1 ’S ))
k Ev
= Xol+ 2. ot ey D)y j10] < 1Xo] + (0 + B/
(11, \S )
TEQ i= 1
(8.46) < E(NR+md)+kmd§kNp(NR+md)+kmd,

with the first inequality in (8.46) in view of (8.45), and the second in view of (8.44). Thus
a < N := N,(Ng +md) + md,

which is a global bound independent of the U; and V.
Let r € [1, k] be an index attaining the minimum in the definition of a. Then |XoNI,| < a <
N, ensuring that there is some subset Zy C [1, /] with

(8.47) XonL, € |J Y and || < [XonL| <N
€1y

Likewise, letting

m_{ vo(5(1,)) % fur (5(1))

LS| S v sy TS et

we have

(8.48) Y ny<a—|XonL| <N —|Zl.
TEQ

We interpret n, = 0 when v-(s([1, [S]])) =

We now describe how the Wy,..., Wy € B(Gp) can be constructed. The idea is as follows.
An index set I C [1,|S]] indexes a sequence S(I) | S, but it also indexes a sequence s(I) € F(£2),
obtained by replacing each indexed term in the sequence S(I) with its corresponding support
type from Q, so s(I) = [[%c;s(x). When I C [1, S]]\ Xo, we have s(I) € F(£,) with €, a fixed,
finite set independent of S. Let 7 € €. If we select a subset Z, C [1, /] with |Z.| = n, such that
the v.(s(Jy)), for € I, are the n, largest values occurring over all v (s(J;)) with i € [1,/],
then the definition of n, ensures that

ve(s(U.p 7)) = mr (v (L 1S1)) /£) = ve(s(2,),

with the first inequality holding since the sum of the n, largest terms in a sum of ¢ non-negative
terms is always at least n, times the average value of all terms being summed. As a result,
s(I) | [13ezs(Jz), where T = Zo U, cq, Zr, with |Z| < N in view of (8.48). However, since
the map s is not injective, this does not guarantee that the associated sequence U, = S(I,)
is a subsequence of the associated sequence []5.7 V. = [[3c7 S(J.). We do, however, have
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S(XoN L) | [[iez, S(J2) = [1iez, Vo in view of (8.47). To deal with the terms from Q,, we
must use the sequences S(7) given by Proposition 8.11 to exchange terms between the V;.
If there are terms x € Ji(J) and y € Ji(,]) with s(x) =s(y), i # i’ and j > 1, say with g, and g,

at depth n, then Proposition 8.11 implies that there are subsets T, C JZ-(] ) and T, C Ji(,j ) such
that 0(S(T%)) = v;j(92) = ¢j(g9y) = 0(S(Ty)). If we exchange these sets, defining

K9 = (9N\T,)uT, and K9 =(9\T,)UT,
and correspondingly define
Ki=(J\T,)uT, and Ky=(Jy\T,) UT,,

then the new sequences W; = S(K;) and Wy = S(K;/) (replacing V; and V) will still be zero-
sum, though we do not guarantee that they remain atoms. However, since y € K; and x € Ky,
they are non-empty. Consequently, if either W; or W; is not an atom, then we can re-factor
them to write V; - Viy = W, - Wy = V- ... - V] as a product of w > 3 atoms. This leads to
a factorization Uy« ... Uy = Vi ... V- Vv oyr o oviinto 0/ = 0= 24w > ¢
atoms. In this case, we begin from scratch using this factorization in place of the original one
U -...-Ue=Vi-...-Vp. As ¥/ < |S] < 00, we cannot start from scratch endlessly, meaning
eventually we will never encounter this problem, allowing us to w.l.o.g. assume W; = S(K;)
and Wy = S(Kj/) are always atoms (where ¢/ = ¢ may have increased in size from the original
¢ given in the hypotheses). Furthermore, we still have J(S(Kfj))) = O'(S(Ji(j))) € C(Zy;)
and o(S(K Z(/j ))) =o(S (Ji(/j ))) € C(Z,;), with the inclusions originating from our application of
Theorem 8.12 at the start of the proof. Thus Proposition 8.11 can still be applied to K Z-(j ) and
Kl(,j ) if we later wish to continue with further such swaps between these sets. Proposition 8.11
guarantees that the set T, contains no terms with depth greater than n (the depth of x), and
has x as the unique a € T, having depth equal to n. Likewise for T,,. Thus when swapping
the sets T}, and T, we leave unaffected all terms in Ji(j ) and Ji(,j ) with depth at least n, apart
from the exchanging of x for y. This ensures that terms previously swapped but at a higher or
equal depth will remain unaffected by exchanging T, and Tj. The value of s(a) does not change
whether regarding a € [1, |S|] with respect to the original factorization S = Vi -...-V; or to the
one obtained after swapping 7T, and T}, and replacing V; and Vi by W; and Wy In particular,
the value of v-(s([1,]5]])) remains unchanged, ensuring that the value of « is unaffected when
replacing J; and Jy by K; and K;, and that r € [1, k] remains an index attaining the minimum
in the definition of o (note, the numerators in the definition of o depend on the U;, not the V;).
Swapping the elements  and y in this fashion leaves all elements from Xy, as well as any Jc(b)
with b # j, unaltered, and the sequences W; and W; remain nontrivial, as W; contains g,, and
W contains g,. Since, apart from x and y, only terms with depth less than n are affected by
the swap, it follows that the sets Z,,, corresponding to any type 7/ € Q, with depth at least
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n, still have the property that they index the v,(s(J.)), for z € I/, with the n,/ largest values
occurring over all v,/ (s(.J;)) with i € [1,4].

With these observations in mind, we can now describe how the zero-sums V; must be modified.
Begin with any type 7 € ), having maximal available depth. Construct the subset Z. for the
current factorization S = Vi -... -V, as described above. Then v, (S(UzeL J.)) = v (s(1y)). If
UzeL J, contains all elements from I, having type 7, then nothing need be done, we discard
7 from the list of available types from €2,, we select the next available type from €, with
maximal depth, and continue once more. On the other hand, if there is some x € I, with
type 7 not contained in (J,c7 J, then v-(s(U,cz J2)) > v-(s(I;)) ensures that there must be
some y € (J oz J. having type 7 with y ¢ I.. In this case, use Proposition 8.11 to define
the sequences T, and 7T, perform the swap of T, and T, described above, and redefine our
factorization Vj - ...+ V; by replacing Ji(j) and Ji(,j) by KZ-(j) and Ki(,j), where = € Ji(j) and
yeJ .(,j ), and correspondingly replacing V; and V;» by W; and W;,. To simplify notation, redefine

i
Vi, Vi, Ji(j ) and Ji(/j ) accordingly so as to reflect the new current state that now has x € |J vz, Iz
and y ¢ Uzel} J,. If we now have Uzel} J, containing all elements from I, having type 7, then
nothing need be done, we discard 7 from the list of available types in {2, and carry on as before. If
ez, Jz find

a new term y' ¢ (.7 J. with type 7 and swap 2’ and y' as before by use of Proposition 8.11.

this is not the case, we again find a new term 2’ € I,. with type 7 not contained in [ J

Since the depth of x and 2’ are the same, we will not swap z back out of | ez, J» when doing so,

nor indeed any other element from [ J. having type 7. Thus, iterating such a procedure, we

2€L,
will eventually obtain that [ J ez, J» contains every element of I, having type 7, in which case
we move on to the next available type 7/ with maximal available depth. We repeat the same for
procedure for 7 as we did for 7 (and, later, as we did for any support types previously discarded
before selecting 7/). We first construct the subset Z,s for the current state for S =V;«...-Vj,
and then swap elements into |J,.; , J. until it contains all elements from I, having type 7.
While doing so, since we always ﬁrTst choose support types with maximal available depth, we
are assured that any type 7" that has already been discarded had depth at least that of 7/, and
thus no element of type 7 will be moved when swapping at the later stage for 7/, ensuring that

prior work cannot be undone. Continue until all support types from {2, have been exhausted.

Once the process ends, we now have a new factorization Uy +...- Uy =5 =Wy ... W, where

Wi reflects the final state of V; after running the above process, such that U, = S(I,) | H;GI Wi,

where Z = Zo U, cq, Zr, with |Z| < [XoN I+ > n; < N, completing the proof. O
TEQS

With the aid of Theorem 8.13, it is now possible to establish that both the set of distances
A(Gp) and Catenary degree c(Gy) are finite, and that there can be no arbitrarily large jumps
in the elasticities py(Gp), which in turn implies that the Structure Theorem for Unions holds in

B(Gy).
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Theorem 8.14. Let A < R? be a full rank lattice, where d > 0, and let Gy C A be a subset with
pa+1(Go) < 00. Let N = max{2,t,(Go)}.

pk(Go) — pr—1(Go) < N < oo for all k > 2.

max A(Go) < pn(Go) — N < 00. In particular, A(Gy) is finite.
The Structure Theorem for Unions holds in B(Gy).

The catenary degree c(Gp) < pn(Go) < o0 is finite.

=

Proof. Removing elements from Gy that are contained in no atom does not affect the quantities
pr(Go) nor A(Gy), c(Go), tw(Go) or B(Gy). Thus we may w.l.o.g. assume every g € Gy is
contained in some atom, in which case Proposition 4.4 implies C(Gy) = R(Gy) is a subspace,
and A NR(Gy) is a full rank lattice in R(Gp). Thus we may w.l.o.g. assume C(Gg) = R?. Then,
in view of pg11(Go) < oo and Theorem 8.8, we have 0 ¢ C*(G§) and can apply Proposition 8.1
to conclude that there is a constant N, > 1 such that

p(Go) < Nk < oo forall k> 1.

Since 0 ¢ C*(GS) and C(Go) = R, it follows from Theorem 7.5 that Gy is finitary.
1. Apply Theorem 8.13 to Gy and let N = t,,(Go) € Z4 be the resulting constant. Let k > 2
and let Uy,..., U, Vi,...,Vp € A(Gyp) be atoms with

UlUk:V1Vg and g:pk(Go).

Then Theorem 8.13 implies that there are atoms Wh,..., Wy € A(Gy), where ¢ > ¢, and
r € [1,k] and Z C [1,¢] such that

Upeoo o Ug=Wi-...- W

and U, | [[5ez We with |Z] < N. Since £ = pi(Go), the definition of py(Go) ensures £ < /,
whence ¢/ = ¢'. By re-indexing, we may w.l.o.g assume r = k and Z = [1,m] with

m < N.

Since Uy, | H:G[l,m] W;, there exists a factorization Uy - W5 - ...« Wy = Wy - ...« W, with
W! e A(Gy) for all i € [2,m/]. Note m’ > 1. But now

U oo Ut = Whe oo oW Wt - - Wi
with W/, W; € A(Gp) for all i and j. Thus
pr-1(Go) > L —m+m' —1 > —m = pg(Go) —m > pr(Go) — N,

implying pr(Go) — pr—1(Go) < N = t,(Go), as desired.
2. To show A(Gy) is finite, it suffices to show max A(Gp) is finite. Apply Theorem 8.13 to
Go and let N > 2 be the resulting constant (if N = 1, replace it with N = 2). We will show
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that
(8.49) max A(Go) < pn(Go) — N.

For S € B(Gy), let L(S) C [1,|5]] be the set of lengths for S, which consists of all k£ € [1,]S]]
for which there exists a factorization S = Uy -...- Uy with U; € A(Gy) for all i. Then 6 € A(Gyp)
means there is some S € B(Gp) with 6 = ¢—Fk for two consecutive elements k, ¢ € L(S) with k < .
In other words, there must exist some S € B(Gy) and atoms Uy, ..., U, Vi,...,V; € A(Gp) such
that

Upeo.ooUpg=8S=Vi-...-V,
with & < £ and /—k = §, and there cannot exist a factorization Wy -...-W,. = S with W; € A(Gy)
and k < r < {. Note A(Go) = Usep(g,) A(L(S)), where A(L(S)) consists of all § for which
there exist consecutive elements k, £ € L(S) with £ < £ and £ — k = 6.

If (8.49) fails, then there must be some S € B(Gp) and k, £ € L(S) with k£ < ¢ consecutive
elements of L(S) and

(8.50) 0—Fk>pn(Go) — (N —1)> pn(Go) — (n—1) for all n € [1, N],

where the second inequality in (8.50) follows in view of iterated application of the basic inequality
pr+1(Go) > pr(Go) (see (2.9) in Section 2.4). Choose such a counter example with ¢ minimal.
Note k > 2, else ¢ = k, contradicting that £ —k > py(Go) — N +1 > 1 by (8.50). Thus (8.50)
ensures £ > pn(Go) — N+1+k>k+1>3. Let

(8.51) Uy«...:.U,=85=V-...-V,

be factorizations exhibiting that k, £ € L(S), where Uy,..., U, V1,...,V, € A(Gy). Apply
Theorem 8.13 to the factorization given in (8.51) with the roles of the U; and the V; swapped.
Then there are atoms W1,..., Wi € A(Gy), where k' > k, and r € [1,/] and Z C [1, k'] such
that

Wieo oo e Wy =Vi-...: W

with V,. | []% 7 W and
(8.52) m = |T| < N.

By re-indexing, we may w.l.o.g. assume r = ¢ and Z = [1,m].

The algorithm which constructs the sequences W; given in Theorem 8.13 proceeds by succes-
sively taking two zero-sums U; and Uy in the factorization Uj - ... Uy and replacing them with
a re-factorization of U; - Uy = W; - Wy into w > 2 atoms. We begin will all U; € A(Gp) being
atoms. If, at some point during the process of constructing the W;, we take two atoms and find
that their replacement zero-sum sequences W; and W, are not both themselves atoms, that is,
w > 3, then the first time that this occurs, we can re-factor S by replacing these two zero-sums
with a factorization of length w € [3, p2(Go)], to thereby find that S has a factorization of length
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E—2+wwithk <k—2+w<k—24 pa(Go) < ¢, where the last inequality follows from (8.50)
and N > 2. However, this contradicts that k < ¢ are consecutive elements of L(S). Therefore,
we instead conclude that we never need to re-factor the sequences W; - Wy when applying the
algorithm for Theorem 8.13, whence k' = k follows.

Since V; | Wy - ...« Wy, we have a factorization V, - W5 - ... - W/ = Wy ....- Wy, with
W! e A(Gy) for all i € [2,m']. Note

(8.53) 1 <m' < pm(Go).
But now

Whe oo Wy e Wingr oo W= 8-V =V vy,
showing that

where

S =5V eBGy) and K =k—m+m
Observe that any factorization of length ¢ for S’ gives a factorization of S of length ¢ + 1 by
concatenating the atom V; onto the end of the factorization of S’. Consequently, since k < £ are
consecutive elements of L(S), it follows that

(8.54) [k, 0 —2]NL(S") = 0.

In view of (8.53), (8.52) and (8.50), we have k' =k —m +m/' < k+ pp,(Go) —m < ¢ —1. Thus,
since k' — 1 € L(S"), we conclude from (8.54) that ¥ — 1 < k — 1. Hence, in view of (8.54)
again, let r € [k’ — 1,k — 1] be the maximal element of L(S’) less than ¢ — 1 € L(S’). Since
r, 0 —1¢eL(S) withr <k—1< /-1, the minimality of ¢ ensures that

pn(Go) =N >(—1)—r>l—-1)—(k—1)=L—k > py(Go) — N +1,

with the final inequality in view of (8.50), which is a contradiction. Thus (8.49) is now estab-
lished, and since pn(Go) < oo, we conclude that max A(Gp), and thus also A(Gy) itself, are
both finite, completing Item 2.

3. This follows from Items 1 and 2 and [46, Theorem 4.2].

4. Let N > 2 be a constant given by Theorem 8.13 applied to Gy. We will show that

c(Go) < pn(Go) < 0.
Let Uy,...,Ug, Vi,...,V; € A(Gp) be arbitrary atoms with
Ui-...-. U, =Vi-...- V.

By re-indexing the U; and V;, we may collect together all the atoms which occur in both factoriza-
tions, say let I C [1, k]N[1,¢] consist of all i such that U; = V;. Apply Theorem 8.13 to the factor-
ization [ [3c(y yp 7 Ui = [Tie(1,¢q\s Vi Then there exists a factorization [ [7e; g\ Wi = [ e s Ui
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with ¢/ > ¢ and W; € A(Gy) satisfying the conclusion of Theorem 8.13. Moreover the algorithm
from the proof of Theorem 8.13 constructs the W; by sequentially modifying pairs of atoms W;
and W; by replacing such pairs with a re-factorization into w € [2, p2(Go)] new atoms. Thus
each successive factorization in the algorithm constructing the W; differs from the prior one by
at most p2(Go) factors. Theorem 8.13 guarantees that there is some r € [1,k] \ I with U, a
subsequence of a product of at most N of the atoms W, say U, | [[t-; W; with |J| < N and
J C [1,0]\ 1. We may re-factor [[;.; W; into a product of at most px(Gp) atoms that includes
the atom U,. We thus obtain a factorization Uy - ... - U, = Vl’ e Vg',, that now has one more
shared factor among the U; and V; than the original one, and which can be constructed sequen-
tially with each new factorization differing from the prior one by at most pn(Go) > p2(Go) > 2

factors. Iterating this process at most k£ times thus transforms the factorization V; - ...V}
into the factorization Uj - .. .- Uy with each successive factorization differing by at most px(Go)
factors from the previous one, yielding the desired bound for the catenary degree. ]

Summary. We can now summarize our results regarding what we have shown regarding B(Gj)
under an assumption of finite elasticities. Let A < R% be a full rank lattice, where d > 0, and
let Go C A be a subset. There is little loss of generality to assume every element g € Gy occurs
in some atom (else we can pass to the subset of Gy having this property). Then Proposition 4.4
implies that C(Go) = R(Go) with A NR(Gp) < R(Gp) a full rank lattice. Hence, replacing R?
with R(Go), we can w.l.o.g. assume C(Gp) = R?, which is simply a normalization hypothesis to
avoid trivial degeneracies. Under these assumptions, we now summarize some of the key results.

1. There exists a minimal s € [1,d + 1] such that ps(Go) < oo implies pi(Gp) < oo for all
E>1.

Item 1 follows in view of Theorem 8.8, which also shows that
pi+1(Go) < oo is equivalent to p(Gp) < oo.

We remark that it would be interesting to know whether the estimate s < d 4 1 is tight or can
be improved; we have focussed primarily on its existence.

Corollary 8.9 ensures that p&™ (Go) < oo implies pg41(Go) < oo, meaning it is sufficient to
know no product of d 4+ 1 elementary atoms can be re-factored into an arbitrarily large number
of atoms. Theorem 8.8 characterizes when Item 1 occurs either in terms of a basic combinatorial
property of the atoms A(Gyp), or the geometric property 0 ¢ C*(G§), which involves R -linear
combinations of elements of Gg rather than Z -linear combinations. Assuming additionally that
pa+1(Go) < o0, so that the conclusion of Item 1 holds, we obtain the following properties for

B(Gg) and subset Gy C A.

2. Gy C R? is finitary (by Theorem 7.5). In particular, all the results of Section 7 are
available for studying the set Gy, including Theorems 7.13, 7.18, 7.22 and 7.25.
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3. Besides the three equivalent defining definitions of the subset Gf C Gy (given in Propo-
sition 7.1), we also have (by Corollary 8.7)

G5 = {g€Go: sup{v,(U): Uc A (Gy)} = o0}
= {g€Go: sup{vy(U): U € A(Gp)} = oo}.

4. There is a finite subset X C G such that A(Gp \ X) is finite, and thus also a finite
subset Y C Gy such that A(Gp \ Y) = 0 (by Proposition 7.24).
5. Go\ G§ C Gy is a Lambert subset, indeed, the unique maximal Lambert subset. (Corol-
laries 8.6 and 8.7)
6. The Weak Tame Degree (as defined in Theorem 8.13) is finite: t,,(Go) < oo, and we set
N = max{2,t,(Go)}.
7. The elasticities of Gy do not contain arbitrarily large gaps: pi(Go) — pr—1(Go) < N < o0
for all k£ > 2. In particular, px(Go) < Nk grows linearly. (Theorem 8.14.1)
8. max A(Gy) < pn(Go) — N < oo is finite. (Theorem 8.14.2)
9. The Set of Distances is finite: |A(Gp)| < co. (Theorem 8.14.2)
10. The Catenary Degree is finite: ¢(Go) < pn(Go) < oo. (Theorem 8.14.4)
11. The Structure Theorem for Unions holds for B(Gg). (Theorem 8.14.3)
12. A weak structure theorem holds for the atoms, effectively allowing simulation of globally
bounded finite support for the atoms U € A(Gp). (Theorem 8.12)

8.3. Subsets of Finitely Generated Abelian Groups. In this final subsection, we show
how our prior results regarding subsets Go C A < R? can be extended to cover (Transfer) Krull
Monoids H over a subset Gy C G, where G = Z? & G is a finitely generated abelian group with
torsion-free rank d > 0 and torsion subgroup Gr < G.

When G = Gr is a finite group, all factorization invariants we have encountered are trivially
finite. It is natural to suppose their finiteness, for subset of a more general finitely generated
abelian group G, is thus principally affected by the torsion-free portion of G, which naturally
embeds as a lattice Z? < R?. To this end, we have the following basic relation between A(Gy)
and A(7(Go)), where 7 : G — Z is the natural projection homomorphism with kernel G-

Proposition 8.15. Let G = Z¢@® G be a finitely generated abelian group with torsion subgroup
Gr < G, where d > 0, let 7 : G — Z% be the projection homomorphism with kerm = G, let
D(Gr) be the Davenport constant for Gr, let m = exp(Gr), and let Gy C G.
1. If U € A(Go) is an atom and ©(U) = Wy - ... W, is a factorization of w(U) with
W; € A(m(Gy)) for all i € [1,4], then £ < D(Gr).
2. If U € F(Go) with n(U) € A*™(n(Gy)), then U™ € B(Gy). Moreover, if UM =
Vie...-Vpis a factorization with Vi € A(Gy) for alli € [1,¢], then £ < m = exp(Gr).

Proof. 1. Factor U = Vy - ... Vp, with the V; € F(Gp) such that 7(V;) = W; for all i € [1,/].
Since U € A(Gy) is an atom, w(U) € B(mw(Gp)) is a zero-sum sequence. Since 7(V;) = W; €
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A(m(Gyp)), we have o(V;) € kerm = Gp for each ¢ € [1,¢]. If £ > D(Gr), then applying the
definition of D(G7) to the sequence H;e[l,f} o(V;) € F(Gr), we can find some nontrivial, proper
subset I C [1,/] such that H:G 1 Vi € F(Gy) is a nontrivial, proper zero-sum subsequence of U,
contradicting that U € A(Gp) is an atom, which completes Item 1.

2. Since 7(U) € A™(Gy) is an elementary atom, we have o(U) € kerm = G7p, whence
o(UM)Y = ma(U) = exp(Gr)o(U) = 0, ensuring U™ € B(Gy). If n(U) is the subsequence
consisting a single term equal to 0, then |U [m]\ = m, in which case ¢ < m is trivial. Therefore
we may instead assume 0 ¢ Supp(7(U)). As a result, since 7(U) € A®™(Gy) is an elementary
atom, it follows by Proposition 4.7 that X = Supp(7(U)) is a minimal positive basis, and w(U)
is the unique atom whose support is contained in X. Since each V; € A(Gp) with V; | U™
it follows that w(V;) € B(X). However, as already remarked, the unique atom with support
contained in X is 7(U), ensuring that each 7(V;) = m(U)™ for some m; > 1. But now

(@M = (UMY = 2 (V1) - ..o w (V) = w(@)M LU

4
implying ¢ < Y m; = m, with the inequality since m; > 1 for all 7, completing the proof. O
i=1
The next proposition gives a correspondence between finite elasticities in Gg C G and finite
elasticities in 7(Gp) C Z?. In particular, Theorem 8.8 also characterizes when P(d+1ym(Go) < 00
is finite by applying it to the set 7(Gg) C Z.

Proposition 8.16. Let G = Z%& Gr be a finitely generated abelian group with torsion subgroup
Gr < G, where d > 0, let m : G — Z% be the projection homomorphism with kerm = Gr, let
D(Gr) be the Davenport constant for Gr, let m = exp(Gr), and let Go C G.

L If pat1(m(Go)) < o0, then pr(Go) < prp(Gy)(T(Go)) < oo for all k > 1.

2. If piar1ym(Go) < 00, then pi(m(Go)) < oo for all k > 1.
In particular, pp(Go) < oo for all k > 1 if and only if pp(7(Go)) < oo for all k > 1. Moreover,
if p(a+1)ym(Go) < 00, then pr(Go) < oo for all k > 1.

Proof. We may w.l.o.g. discard terms from Gg contained in no atom, as such terms have no
bearing on py(Go) nor pi(m(Gop)) (as Gr has finite exponent), and thereby assume every g € Go
is contained in some atom. We may also w.l.o.g. assume (Gy) = G in view of (2.9), and may
embed Z¢ < RY, which is a full rank lattice in R%. Since (Go) = G, we have R(n(Gp)) = R
Since every g € Gy is contained in some atom, it follows that every m(g) € m(Gy) is also contained
in some atom, whence Proposition 4.4 implies C(7(Gp)) = R(7(Gop)) = R? with 7(Gg) C Z9.

1. Suppose pg+1(m(Gp)) < oo. Then Theorem 8.8 implies that

pr(m(Go)) < oo forall k> 1.
Consider an arbitrary factorization

Upeoo o Up=Vie...- V,
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with Uj, Vi € A(Gy) for all i and j. Re-factor each n(U;) = erl W into a product of

|I;| < D(Gr) atoms wi) e A(m(Go)) via Proposition 8.15.1. Then Hje[l,k} erlj Wi s
product of at most kD(Gr) atoms. As a result, since

H]G 1 k]Ha:GI a n(Ur) ... -7w(Uy) =7(V1) ... - 7(Vp)

with each 7(V;) € B(m(Gp)) nontrivial, it follows in view of (2.9) that £ < pyp(g,)(7(Go)) < 00
as desired.

2. Suppose p(q+1ym(Go) < oo but, by way of contradiction, that there is some k > 1 such that
pe(m(Go)) = oo. If pgy1(m(Go)) < oo, then Theorem 8.8 ensures that pi(7(Go)) < oo, contrary
to assumption. Therefore we can assume pgy1(7(Go)) = co. Thus Corollary 8.9 implies that
pS'™ (m(Go)) = co. Consequently, there is a sequence of factorizations

W(Ui’l)'...'W(Ui7d+1) :W(Vi,l)'---'ﬂ(w,&) for i = 1,2,...
such that

Uij, Vij € F(Go), 7(Ui;) € A™(n(Go)), and n(Vij) € A(n(Go)), foralliand j,

with

(8.55) Up+...'Upgp1=Vix-...- Viy, foreveryi>1, and ¢; — oo.

Since the U;; and V;; are zero-sum modulo Gr with m = exp(Gr), we have Ul[zn], Vl[;n]
B(Gy) for all i and j. Re-factor each UZ-[?] = H;el W) into a product of |I; ;| < m atoms

Wit e A(Go) via Proposition 8.15.2. Then each []7c; 441 Hzel” Wi is a product of at
most (d + 1)m atoms from A(Gy), for every ¢ > 1. In view of (8.55), we have

* * (i) — p7ml . prlml _yim] oy im]
Hje[l,dH]erh,ij” =Uir - Uigpn =Vin - Vi,
with V;[;-n] € B(Gop) a nontrivial zero-sum sequence for every ¢ > 1 (since 7(V;;) € A(m(Gyp))
with m = exp(Gr)). In consequence, since £; — oo, it follows via (2.9) that p(g41)m(Go) = oo,
contrary to assumption, which completes Item 2. ]

We next extend Proposition 8.1.

Corollary 8.17. Let H be a Transfer Krull Monoid over a subset Gy of a finitely generated
abelian group G = 74 @ G with torsion subgroup Gt < G, where d > 0. If P(d+1) exp(Gr) (H) <
00, then there is a constant N, > 1 such that pi(H) < N,k < oo for all k > 1.

Proof. Since pi(H) = pr(Go) for all k > 1 by definition of a Transfer Krull Monoid, it suffices to
prove the corollary when H = B(Gy), which we now assume. Let 7 : G — Z? be the projection
homomorphism with kernel G7. In view of (2.9), we may embed Z? < R? and w.l.o.g. assume
(Go) = G and that every g € G is contained in some atom, whence C(m(Gp)) = R? (as in
the proof of Proposition 8.16). Since p(qy1)exp(cyr)(Go) < oo, Proposition 8.16 implies that
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pr(m(Go)) < oo and pi(Go) < prp(Gr)(T(Go)) < oo for all k > 1. As a result, Theorem 8.8
implies that we can apply Proposition 8.1 to conclude there is a constant N, > 1 (namely D(Gr)
times the constant given by Proposition 8.1) such that pr(Go) < prp(G,)(T(Go)) < Npk < 0o
for all k > 1, as desired. O

We now extend Theorem 8.13 to show the weak tame degree t,,(H) (the minimal integer
N > 1 such that the conclusion of Main Theorem 8.18 holds) is finite when p(q1)exp(G,) (H) <
00. The definition is a variation on the w constant often used in conjunction with the tame
degree [60] [51]. The proof is a variation on that used to prove Theorem 8.13. We have opted
to first give a proof of the simpler Theorem 8.13, to first present a version of the algorithm that
avoids the delicate (and distracting) technicalities needed to get the algorithm to work in the
general setting as stated in Theorem 8.18.

Main Theorem 8.18. Let H be a Krull Monoid over a subset Go of a finitely generated abelian
group G = Z2@& G with torsion subgroup Gr < G, where d > 0. Suppose P(d+1) exp(Gp) (H) < 00.
Then there exists an integer N > 1 such that, given any atoms Uy,..., Ui, Vi,...,V, € A(H)
with
U - U=V .-V,

where k, £ > 1, then there exist atoms W1, ..., Wy € A(H), r € [1,k] and Z C [1,¢'] such that

Uy-...- U =Wy-...- Wy,
>0 and Uy | [],ex We with |Z| < N.
Proof. Let us first show that the theorem reduces to the case when H = B(Gy). To this end,
assume the theorem holds for B(Gg) with bound N > 1. We can w.l.o.g. assume H is reduced,
so we replace H by Hq = H/H*, and let ¢ : H — F(P) be a divisor homomorphism and
6 : H — B(Gp) the associated transfer homomorphism, with Go C G and || as defined in
Section 2 (above (2.7)), so 6(S) = [¢(S)] for S € H. Then O(Uy)-...-0(Ux) =0(Uy-...-Uy) =
OVi-...- V) =0(V1) ... 0(Vp) with all (U;), 6(V;) € A(Go). Applying the theorem to this
factorization, we find atoms W{',..., W/ € A(Go) with
(8.56) OUy ... -Up)=0Uy) ...« 0U) =W/ ... W,

and Z C [1,£] such that ¢ > ¢ and 0(U,) | [[5cz Wi with |Z| < N, for some r € [1,k]. For
i € [1,0], let W/ € F(P) be a sequence with [W/] = W/. Then using the definition of the
composition map ¢ in 6(U,) | [[5cz W, and (8.56), we find

(857) WAL W and  [p(@)]-...- [p(U)] = W] .. - [Wi).

Consequently, we can choose the pre-image sequences W/ € F(P) such that

w(Ur)\HxEIng and  @(Uy) ... Uy) =W -...- W).
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Since each W/ € F(P) with [W/] = W/ € A(Go) C B(Gy), for i € [1,¢], it follows from (2.7)
that W/ € ¢(H) for all i € [1,¢']. Thus there are W; € H with o(W;) = W/ for ¢ € [1,¢']. We
now have ¢(U,) | [15c7¢ (W) and

(p(Ul Uk) :go(Ul)go(Uk) :@(Wl)-...-(p(Wy) :tp(Wl-...‘Wg/).

As a result, since ¢ : H — ¢(H) is an isomorphism (by (2.7)), it follows that U; - ... Uy =
Wi -...- Wy with W; € H for all 4, and since ¢ is a divisor homomorphism, it follows from
oU) | TTheze(Ws) that U, | [[hczWe. Finally, since 6 is a transfer homomorphism with
O(W;) = [p(Wy)] = [W]] = W/ € A(Gy), it follows that W; € A(H) for all i, showing the
theorem holds for H. It remains to prove the theorem when H = B(Gy), which we now assume.

Let 7 : G — Z% and 77 : G — G7 be the projection homomorphisms with respective kernels
Gr and Z%. In view of (2.9), we may embed Z¢ < R? and w.l.o.g. assume (Go) = G and
that every g € Gy is contained in some atom, whence C(7(Gp)) = R? (by Proposition 4.4).
Since p(a+1)exp(Gr)(Go) < 00, Proposition 8.16 implies that pi(7(Go)) < oo and p(Go) <
PkD(Gr)(T(Go)) < oo for all k > 1. As a result, Theorem 8.8 implies that 0 ¢ C*(7(Go)®), while
Corollary 8.17 implies there is an integer N, > 1 such that

pr(Go) < Nyk o for all k > 1.

Since 0 ¢ C*(7(Go)®), it follows from Theorem 7.5 that 7(G) is finitary. In view of Proposition
7.26, there are only a finite number of minimal types. Let ¢1,...,0m € Tn(m(Go)) be the
distinct nontrivial minimal types for 7(Gp). For each j € [1,m], let

Zp, =20 U, Uzl

be the codomain of ¢; with s; < d and [Z,,| < d.
Consider Uy, ..., U, V1,...,V; € A(Gp) with

S=Uy-...- U=V ...V,
where k, £ > 1. Now
(8.58) £ < pr(Go) < Nk

Let S=g1-...- g5 be an indexing of the terms of S. Let 1 U... Uy = [1,[S|]=J1U...UJ,
be disjoint partitions such that

S(I;) =U; and S(J;)=V; forallie[l,k]andje]lld.
By Proposition 8.15.1, each 7(V;) for i € [1,/] factors into a product of
d; < D(Gr)
atoms modulo G, say

Vi= Hte[l,di]viﬂt with every 7(Vi:) € A(m(Go)).
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We thus have partitions J; = J; 1 U ... U J; 4, such that
S(Jit) =Vip forevery i€ [1,¢] and t € [1,d;].

Since 0 ¢ C*(7w(Gp)®), we can apply Theorem 8.12 to each atom 7 (V; ;) for i € [1,¢] and t € [1, d;].
Let Nr > 0 be the global bound from Theorem 8.12 (which we can assume is an integer) and let
= R~ [[/L l t ,fori € [1,¢] and t € [1,d;], be the resulting factorization given by Theorem

8.12, with W(Si(’t)) € F(n(Gy)) corresponding to the minimal type ¢;, so 0(77(51-(?)) € Cz(Zy,;).
We can then apply Proposition 8.11 to each W(SZ(Z;)). Let Ji(ﬁ) C [1,]S5]] be disjoint subsets with
SUY) =Ry and  S(JY)=5Y), forie[l,4, te(l,d]and je [1,m].

Moreover, for each i € [1,4], t € [1,d;], j € [1,m] and n € [1, 5], let Ji(ﬁ’n) C Ji(i) be the subset
of all x € Ji(ﬁ) with ¢;(z) € 79 at depth n. Then

Jit 1= U in =JOy U U Jz(jt’ for every i € [1,¢] and t € [1,d;].
j=0 7j=1n=1
Let
SJUY. 9= (Oumamrlo) v X} and
i=1t=1

Qo ={(j,z,a): je[l,m],z€ Z,,, a € Gr}.

Moreover, partition
O, =0 U...UQy
such that €, consists of all (j,z,a) € Q, with z € Zflj) at depth n. Apply Proposition 8.11 to
each 7T(S-(j)) (for ¢ € [1,4], t € [1,d;] and j € [1,m]) and fix a system of subsets T, C Ji(ﬁ), for
each = € Jl(i),
Since Theorem 8.12 implies |J | = |Ri:| < Ng for all i € [1,/] and t € [1,d;], since d; <
D(Gr) for all ¢ € [1, /], and since |Z¢j| < d for all j € [1,m], we have

such that the conclusions of Proposition 8.11 hold.

(8.59) | Xo| <4D(Gr)Ng  and  [Q] = |Gr| - Y _|Z,,| < md|Grl.
j=1
We view Q = Qo U Q. = Qo U QL U...USQ, as the set of support types for S =V ... V. A
support type T € €2, is said to be at depth n. Note, if 7 = (j, z,a) with j > 1, then the depth of
7 equals the depth of z € Z,,. For each x € [1,|S]], we have z € Jz‘(,]t) for some unique i € [1, /],
€ [1,d;] and j € [0, m], allowing us to define

s(z) = (0,7(9), 71 (92)) € Q2 when j =0, and

s(2) = (G, ¢3((92), 72 (9(S(T2)))) € Qo when j 2 1.
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Note Proposition 8.11 implies ¢;(7(g,)) = o(n(S)(1T%)) = W(J(S(Tx))>. For I C [1,|5]], s({) €
F(€) is a sequence of support types from 2. We associate the depth of s(z) (defined above) as
the depth of z € [1, |5]].

Let
OZ—H11D{|XOQIZ‘ +T§Q:Q<VT(S([17‘S]])) —l—l) t 1 e [Lk]}.

Technically, we exclude any terms 7 € €, in the sum defining a with v, (s([1,|S]])) = 0. Then

ka < Z|XOHI\+ZZ 1|S ))+k:]Q<>|

1= 1T€Q

k

EVT 1

= Xl + > ) - HS )+k\ﬂo!§|Xo|+(€+k)lﬂol
TEN1=1 T

(8.60) < ¢(NgD(Gr)+md|Gr|) + kmd|Gr| < kN,(NrD(Gr) + md|Gr|) + kmd|Gr],
with the first inequality in (8.60) in view of (8.59), and the second in view of (8.58). Thus
a< N := NP(NRD(GT) + md!GT\) + md|GT|,

which is a global bound independent of the U; and V.
Let r € [1, k] be an index attaining the minimum in the definition of a. Then |XoNI| < a <
N, ensuring that there is some subset Zy C [1, /] with

(8.61) XonL € |JJ” and || <[XoNL| < N.
i€Zp
Likewise, letting

" — vr(s(Ir)) O, (s(1)) .
’ |V (5([1,|S|]))/£-‘ < VT(S([L‘SH)) +1<i+1 f € Q,,

we have

(8.62) d n-<a—|XonL| <N - T
7€,

We interpret n, = 0 when v-(s([1, [S]])) =

We now describe how the Wi,..., Wy € B(Gp) can be constructed. The idea is as follows.
An index set I C [1, S]] indexes a sequence S(I) | S, but it also indexes a sequence s(I) € F(2),
obtained by replacing each indexed term in the sequence S(I) with its corresponding support
type from Q, so s(I) = [[%c;s(x). When I C [1, S]]\ Xo, we have s(I) € F(£,) with €, a fixed,
finite set independent of S. Let 7 € €. If we select a subset Z, C [1, /] with |Z,| = n, such that
the v,(s(Jz)), for € I, are the n, largest values occurring over all v (s(J;)) with i € [1,/],
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then the definition of n, ensures that

ve(s(U. ez, 72) ) 2 7o (v (5(01,181)) /€) = wr(s(2),

with the first inequality holding since the sum of the n, largest terms in a sum of ¢ non-negative
terms is always at least n, times the average value of all terms being summed. As a result,
s(I;) | [13ezs(Jz), where T = Zo U, cq, Zr, with |Z| < N in view of (8.62). However, since
the map s is not injective, this does not guarantee that the associated sequence U, = S(I,)
is a subsequence of the associated sequence []5.7V. = [[3c7 S(J.). We do, however, have
S(XoN L) | [[2ez, S(J2) = [1iez, Vo in view of (8.61). To deal with the terms from Q,, we
must use the sequences S(7) given by Proposition 8.11 to exchange terms between the V;.

If there are terms z € Ji(’i) and y € J9) with s(z) =s(y), i # 4 and j > 1, say with g, and

it

gy at depth n, then 7p (O’(S(Tx))) =77 (a(S(Ty))), while Proposition 8.11 implies that

m(0(S(T2))) = o (=(S)(T2)) = ¢5(m(92)) = #3(n(9y)) = o(m(S)(Ty)) = 7 ((S(T,))).
Combined with mp (a(S(Tx))) =TT (U(S(Ty))>, we conclude that
(3.63) o(S(T,)) = o(S(Ty)).
If we exchange these sets, defining
K9 =(UI\T)UT, and KY) = (J7)\T,) U,
and correspondingly define
Ki=(Ji\T,)UT, and Ky = (Jy\T,)UT,,

then the new sequences W; = S(K;) and W; = S(K;) will still be zero-sum, though we do not
guarantee that they remain atoms. However, since y € K; and z € K/, they are non-empty.
Consequently, if either W; or W;/ is not an atom, then we can re-factor them to write V; - V;y =
Wi« Wy =V/....-V/ as a product of w > 3 atoms. This leads to a factorization U - ... U =
Vi-.. .-W"/i[il} -Vikl] V...V into ¢/ = {—2+w > { atoms. In this case, we begin from scratch
using this factorization in place of the original one Uy +...- Uy = Vi-...- V. As V! <|S| < oo, we
cannot start from scratch endlessly, meaning eventually we will never encounter this problem,
allowing us to w.l.o.g. assume W; = S(K;) and Wy = S(K;/) are always atoms (where ¢ = ¢
may have increased in size from the original ¢ given in the hypotheses). Furthermore, we still
have o(m(S)(K)) = o(x(9)(J))) € C(Z,,) and o(n(S)(KF))) = o(x(S)(JP)) € C(Z,,)
by (8.63), with the inclusions originating from our application of Theorem 8.12 at the start
of the proof. Thus Proposition 8.11 can still be applied to Kl(]t) and K 1(,3 2, if we later wish to
continue with further such swaps between these sets (though we do not guarantee nor need that
m(S)(K) and () (K,

no terms with depth greater than g,, and has x as the unique a € T, with g, having depth

) remain atoms). Proposition 8.11 guarantees that the set 7} contains
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equal to that of x. Likewise for T},. Thus when swapping the sets T}, and T);, we leave unaffected
all terms in Jl-(i) and Ji(,{z, with depth at least n, apart from the exchanging of x for y. This
ensures that terms previously swapped but at a higher or equal depth will remain unaffected by
exchanging T, and 7).

As in the proof of Theorem 8.13, the sequences S(Kl(]t)) = s(Ji(i)) and S(KI(,JZ,) = s(Ji(,];z,)
remain unchanged, though this now requires a short argument. The value of s(z) for z € [1,|S]]
depends upon the sequence T,. After swapping T}, and Ty, the sets T}, need to be redefined via
Proposition 8.11. We must show that this can be done in such a way that o(S(T%))) = o(S(7%))
for all z, where T) is the new sequence associated to z after performing the swap. Unless
z € Ji(g) or z € Ji(,{z,, the values for T, can be left unaffected, so T, = T.. Let us consider
the case when z € Ji(i;). The case z € Ji(,];z,
T.NT, = (, then the value of T, can also be left unaffected. Otherwise, Proposition 8.11.2
implies that either z € T, or x € T,. If z € T,, the Proposition 8.11.1 implies that T, C T,

and we can again leave the value of T, unchanged, though note that 77 C K Z(,] 1)t’ while T, C Ji(,i)‘

will then follow by an analogous argument. If

In the remaining case x € T, but z ¢ T (so z # z), we have T, C T, by Proposition 8.11.1
with o(S(T3)) = o(S(T})) by (8.63). This allows us to define T/ = T, \ T, UT, C K, which
then satisfies 0(S(17%)) = 0(S(T%)) — o(S(Ty)) + 0(S(Ty)) = 0(S(T%)). The equivalent defining
conditions 1’ and 2" for Proposition 8.11 also hold for the newly defined set system 77. This
shows it is possible to adjust the sequences T, after swapping T, for T, in such a way that
the value s(z) remains unaffected. In particular, the value of v, (s([1,]S]])) remains unchanged,
ensuring that the value of « is unaffected when replacing J; and Jy by K; and K;, and that
r € [1, k] remains an index attaining the minimum in the definition of « (note, the numerators in
the definition of a depend on the U;, not the V}). Swapping the elements = and y in this fashion
)

leaves all elements from X, as well as any Jc(,bd with b # 7, unaltered, and the sequences W; and
W; remain nontrivial, as W; contains g,, and W; contains g,. Since, apart from z and y, only
terms with depth less than n are affected by the swap, it follows that the sets Z.., corresponding
to any type 7’ € Q with depth at least n, still have the property that they index the v, (s(J)),
for z € I/, with the n./ largest values occurring over all v,/ (s(J;)) with i € [1,7].

With these observations in mind, we can now describe how the zero-sums V; must be modified.
Begin with any type 7 € ), having maximal available depth. Construct the subset Z. for the
current factorization S = Vi -... -V, as described above. Then v, (S(UzeL J.)) = vr(s(1y)). If
UzeL J, contains all elements from I, having type 7, then nothing need be done, we discard
7 from the list of available types from €),, we select the next available type from ), with
maximal depth, and continue once more. On the other hand, if there is some x € I, with

type 7 not contained in (J,. J., then v, (s(J J.)) = v+(s(I;)) ensures that there must be

ZGIT 2
some y € UzEIT J. having type 7 with y ¢ I,. In this case, perform the swap of T} and T},
described above, and redefine our factorization Vi - ... -V} by replacing Ji(’i) and Ji(,]g, by Kl(jt)

and K Z(,Jz,, where x € Ji(i) and y € J 0 and correspondingly replacing V; and V;; by W; and

it
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W Also, adjust the values of the auxiliary sets T, as described above. To simplify notation,
redefine V;, Vj/, Ji(i), Z(,j 2, and T, accordingly so as to reflect the new current state that now has
€ U.ez, J-and y ¢ U,z J.. If we now have [, J. containing all elements from I,. having
type 7, then nothing need be done, we discard 7 from the list of available types in €2, and carry
on as before. If this is not the case, we again find a new term z’ € I, with type 7 not contained
in ,cz, /2, find a new term y' ¢ (.7, J. with type 7 and swap 2’ and y' as before by use
of Proposition 8.11. Since the depth of z and 2’ are the same, we will not swap z back out

of U .ez. J» when doing so, nor indeed any other element from U J. having type 7. Thus,

z EIT

iterating such a procedure, we will eventually obtain that [ J, contains every element of I,

2€Lr
having type 7, in which case we move on to the next available type 7/ with maximal available
depth. We repeat the same for procedure for 7" as we did for 7 (and, later, as we did for any
support types previously discarded before selecting 7). We first construct the subset Z,/ for
the current state for S = Vi -...-V, and then swap elements into J, 7 , J. until it contains
all elements from I, having type 7/. While doing so, since we always first Tchoose support types
with maximal available depth, we are assured that any type 7”7 that has already been discarded
had depth at least that of 7/, and thus no element of type 7" will be moved when swapping at
the later stage for 7/, ensuring that prior work cannot be undone. Continue until all support

types from €, have been exhausted. Once the process ends, we now have a new factorization

Uy«...-Uy=85=Wy-...- Wy, where W; reflects the final state of V; after running the above

process, such that U, | [[2cz Wi, where T = Zo U, cq, Zr, with |[Z| < [XoN L[+ 3 n, <N,
TEQ,

completing the proof. O

The following basic proposition shows that having finite elasticities implies a Krull Monoid is

always locally tame.

Proposition 8.19. Let H be a Krull Monoid with divisor homomorphism ¢ : H — F(P) and
let U € A(H). Then t(H,U) < pjyun) (H).

Proof. Let Uy,...,Up € A(H) with U | Uy - ... Uy and let I C [1,k] be a minimal subset with
U | [Licr Ui- Then o(U) | ([ Lic; Us) = [licr (Us). Each ¢(U;) is a nontrivial sequence as each
U; € A(H). Thus we trivially have o(U) | [[;c;¢(U;) for some J C I with |[J| < [p(U)|. By
definition of a divisor homomorphism, it follows that U | [[,c ; Ui, and now the minimality of
I ensures I = J with |I| = |J| < |o(U)|. Since U | [[;¢; Us, we have [[,c;, Ui =U -Va-...-V,
for some Vs,...,V, € A(H), and by definition of the elasticities and (2.9), we must have r <
pir)(H) < pipn(H). The result now follows. O

Having now established Theorem 8.18, we can immediately extend Theorem 8.14 to the more
general finitely generated group setting.
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Main Theorem 8.20. Let H be a Transfer Krull Monoid over a subset Gy of a finitely gen-

erated abelian group G = 74 ® Gp with torsion subgroup Gp < G, where d > 0. Suppose
Pd+1) exp(Gr) (H) < 00 and let N = max{2,t,(Go)}.

1. p(H) — pr—1(H) < N < 00 for all k > 2.

2. max A(H) < py(H) — N < c0. In particular, A(H) is finite.

3. The Structure Theorem for Unions holds in H.

4. If H is also a Krull Monoid, the catenary degree c(H) < pn(H) < oo is finite.

5. If H is also a Krull Monoid, then H 1is locally tame.

Proof. Since H is a Transfer Krull Monoid over Gy, we have pip(H) = pr(Go) and Up(H) =
Ur(Go) for all k > 1, and A(H) = A(Gp). Moreover, when H is a Krull Monoid, we have ¢(H) <
max{c(Gyp),2} (see Section 2). It thus suffices to prove the theorem when H = B(Gy), which
we now assume. By Corollary 8.17, there is a constant N, > 1 such that py(Go) < Nk < oo
for all £ > 1. Items 1-4 now follows by the identical arguments given in Theorem 8.14, simply
replacing the use of Theorem 8.13 with Theorem 8.18. Item 5 follows from Proposition 8.19 and
Item 1 (which inductively shows px(H) = pi(Go) < oo for all k). O

Consider an infinite abelian group G and let Gy C G be a subset such that there is some m > 0
so that every element g € G is the sum of at most m elements from Gy (e.g., this assumption
holds for integrally closed finitely generated algebras over perfect fields). Then A(Gy) is infinite
by [75, Theorem 1.1], so Main Theorem 8.20 further implies that p(q41)exp(ay)(Go) = 0o must
also be infinite.

We now extend the definition of G§ C Go.

Definition. Let G = Z@Gr be a finitely generated abelian group with torsion subgroup Gr < G,
where d > 0, and let 7 : G — Z% < R? be the projection homomorphism with kernel Gp. For
Go C G, we define

={g € Go: m(g) € 7(Go)°}.

The following extends Corollary 8.7

Proposition 8.21. Let G = Z¢@® G be a finitely generated abelian group with torsion subgroup
Gr < G, where d > 0, and let Go C G be a subset. Suppose p(i1)exp(cr)(Go) < 0o. Then

Gy = {g€Gy: sup{v,(U): Uec A™(Gy)} = o0}
= {g€Go: sup{vy(U): U € A(Gy)} = o}.

Proof. Since Gt has finite exponent, an element g € G is contained in an atom if and only
if 7(g) € m(Gop) is contained in an atom. Thus Corollary 4.5 and the definition of Gfj ensure
that removing elements from G contained in no atom does not affect G§, allowing us to w.l.o.g.
assume every g € Gg is contained in an atom. We may embed Z¢ < R?. Let 7 : G — Z¢
be the projection homomorphism with kernel G, and let m = exp(Gr). In view of (2.9), we
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may w.l.o.g. assume (Gp) = G. Since (Gy) = G and every g € Gy is contained in an atom,
Corollary 4.5 yields C(7(Gp)) = R%. Since P(d+1) exp(Gr)(Go) < oo, Proposition 8.16 implies
pa+1(m(Go)) < oo, whence Theorem 8.8 implies that 0 ¢ C*(7(Go)°), in turn implying that
7(Gy) is finitary (by Theorem 7.5).

Let g € G§ be arbitrary. Then 7(g) € 7(Go)°®, whence Corollary 8.7 implies that there
is a sequence of elementary atoms V; € A®™(w(Go)), for i = 1,2,..., with vy, (Vi) — oo.
Moreover, since 0 ¢ w(Go)® (by Proposition 7.1.2), we have w(g) # 0. For ¢ > 1, let U; €
F(Go) be a sequence with m(U;) = Vi, vy(Ui) = vy (Vi) and | Supp(U;)| = | Supp(V;)|. Thus
vg(Ui[m]) — oo. Since Vj is an elementary atom containing the nonzero element 7 (g), Proposition
4.7 implies that Supp(V;) is a minimal positive basis, in which case A(Y) = ) for any proper
subset Y C Supp(V;). Thus, since | Supp(U;)| = |Supp(V;)|, it follows that A(w(Y)) = 0 for
any proper subset Y C Supp(U;), in turn implying A(Y) = () as well. In view of Proposition
8.15.2, each Ui[m] factors into a product of at most m atoms. Thus, letting W; | Ui[m] be a
subsequence which is an atom with vy (W;) maximal, it follows that v,(W;) — oo in view of
vg(UZ-[m]) — 00. Moreover, since A(Y) = () for any proper subset Y C Supp(U;), it follows that
each W; € A®¥™(Gy) is an elementary atom with v,(W;) — oo, which establishes the inclusion
GS C {g € Go : sup{v,(U) : U € A*M(Gy)} = oo}. The inclusion {g € Gy : sup{v,(U) :
U € A9M(Gp)} C oo} C{g € Go: sup{vy(U): U € A(Go)} = oo} holds trivially in view of
Af™(Go) C A(Gy).

To establish the final reverse inclusion, let g € Gp be an element with sup{vy(U) : U €
A(Gp)} = oco. Let U; € A(Gy), for i = 1,2,..., be a sequence of atoms with v4(U;) — oo.
By Proposition 8.15.1, each 7(U;) factors as a product of at most D(Gr) atoms. Thus, letting
Vi | w(Ui) be an atom V; € A(m(Go)) with vy () (Vi) maximal, it follows that v ) (Vi) — oo in
view of vg4(U;) — oo. Hence m(g) € {z € m(Gy) : sup{vy(V): V € A(n(Gy))} = oo} = 1(Go)°,
with the equality in view of Corollary 8.7, which implies g € G§ by definition of G§. This
establishes the reverse inclusion {g € Go : sup{vy(U) : U € A(Gy)} = oo} C G, completing
the proof. O

Next, we extend Corollary 8.6.

Proposition 8.22. Let G = Z*@® G be a finitely generated abelian group with torsion subgroup
Gr < G, where d > 0, and let Go € G be a subset. Suppose p(it1)exp(ar)(Go) < 0o. Then
Go \ G§ C Gy is a Lambert subset with A(Gf) = 0.

Proof. In view of (2.9) and Corollary 4.5, we may w.l.o.g. assume (Go) = G and that every
g € Gy is contained in an atom. We may embed Z¢ < R?. Let 7 : G — Z% be the projection
homomorphism with kernel G, and let m = exp(Gr). As argued in Proposition 8.21, we have
C(m(Gop)) = R% and 0 ¢ C*(7(Gp)®) with 7(Gp) finitary. Note 7(GS) = 7(Gp)°® by definition of
G§. Thus Proposition 4.2 and 0 ¢ C*(7(Go)®) together imply A(7(G§)) = A(7m(Go)®) = 0, in
turn implying A(G§) = 0. By Corollary 8.6, m(Go) \ m(Go)® C 7(Gyp) is a Lambert subset, say
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with bound N > 1. By definition of Gf, we have 7(Go \ G§) = 7(Go) \ 7(Go)°. Let U € A(Gy)
be an arbitrary atom. Proposition 8.15.1 implies that #(U) = Wy - ... W, for some atoms
Wi, ..., Wy € A(m(Go)) with £ < D(Gr). Thus

¢ L
Vanas (U) D Va@onas)Wi) = Y Va(@opr(oye (Wi) < N < D(Gr)N,
=1 =1

with the second inequality in view of 7(Go)\7(Go)® C w(Gp) being a Lambert subset with bound
N > 1, which shows that Gp \ G§ C Gy is a Lambert subset with bound D(G7)N < oo. O

The following extends Proposition 7.24 to our current setting.

Proposition 8.23. Let G = Z%@® G be a finitely generated abelian group with torsion subgroup
Gt < G, where d > 0, and let Go € G be a subset. Suppose p(q41)exp(Gr)(Go) < 0o. Then there
are finite subsets X C G§ and Y C Gg such that A(Go \ X) is finite and A(Go \'Y') = 0.

Proof. In view of (2.9) and Corollary 4.5, we may w.l.o.g. assume (Go) = G and that every
g € Gy is contained in an atom. We may embed Z? < R?. Let 7 : G — Z% be the projection
homomorphism with kernel Gy. As argued in Proposition 8.21, we have C(7(Gp)) = R? and
0 ¢ C*(m(Go)®) with m(Gp) finitary. Thus Proposition 7.24 implies that there is a finite subset
X C 7(Go)® such that A(w(Gy) \ X) is finite. Hence, since ker 7 = Gy is finite, it follows that
X =7 4X)N Gy C Gy is finite with m(X) = X C 7(Go)®, ensuring X C G by definition of
GS. Tt follows that A(m(Go) \ X) = A(n(Go \ X)) is finite.

Consider an arbitrary atom U € A(Go \ X). Then Proposition 8.15.1 ensures that 7(U) =
Wi -...- W, for some atoms W1, ..., W, € A(n(Go\ X)) with £ < D(Gr). Since A(n(Gp\ X)) is
finite, there are at most |A(7m(Go \ X))|- £ < |A(7(Go \ X))| - D(Gr) < oo possibilities for =(U),
for our arbitrary atom U € A(Gq \ X). Thus, since kerm = Gr is finite, it follows that there
are only finitely many possibilities for U € A(Go \ X), meaning A(Gp \ X) is finite. Including
in X one element from each of the finite number of atoms from A(Gp \ X) then yields a subset
Y C Gy with A(Gp \ Y) = 0, completing the proof. O

We conclude with the extension of Theorem &8.8.

Main Theorem 8.24. Let H be a Transfer Krull Monoid over a subset Gg of a finitely generated
abelian group G = 74 @ G with torsion subgroup G < G, where d > 0. Then the following are

equivalent.
1. p(H) < 0.
2. p(H) < oo forall k> 1.
3. P(dt1)exp(Gr)(H) < 0.
4. There exists a subset X C Gy such that A(X) =0 and Go\ X C Gy is a Lambert subset.
5. A(GS) = 0.
6. 0 ¢ C*(n(Gp)®), where 7 : G — 74 < R? is the projection with kernel Gr.
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Proof. Since H is a Transfer Krull Monoid, we have p(H) = p(Go) and pp(H) = pr(Go) for
all £ > 1. It thus suffices to prove the theorem when H = B(Gy), which we now assume.
The implications 4. = 1. = 2. follows from proposition 8.2, while the implication 2. = 3.
is trivial. The implication 3. = 5. follows by Proposition 8.22. In view of Proposition 4.2,
Item 6 is equivalent to A(m(Go)°) = 0. By definition of Gf, we have n(G§) = m(Gp)°®. Since
Gr has finite exponent, it follows that A(Gf) = 0 if and only if A(7m(Go)®) = A(n(G})) = 0.
Thus Items 5 and 6 are equivalent. It remains to establish the implication 6. = 4. Suppose
0 ¢ C*(m(Gp)®). Then Theorem 8.8 implies that pgi1(m(Gp)) < oo, whence Proposition 8.16.1
implies that p(d+1)exp(GT)(G0) < 00, allowing us to apply Proposition 8.22, which shows that
Item 4 holds with X = Gf. 0

Summary. We can now summarize our results regarding what we have shown under an as-
sumption of finite elasticities. Let H be a Transfer Krull Monoid over a subset Gy of a finitely
generated abelian group G = Z?* @ G with torsion subgroup G < G, where d > 0. We may
embed Z¢ < R?. For example, H = B(Gy). Let 7 : G — Z¢ be the projection homomorphism
with kernel Gp. There is little loss of generality to assume every element g € Gg occurs in some
atom (else we can pass to the subset of Gy having this property) and that (Go) = G (else we
can replace G with (Gp)), which we now do. Note, since G has finite exponent, that g € Gy
is in an atom from A(Gy) if and only if 7(g) € m(Gp) is contained in an atom from A(7(Gy)).
Thus Proposition 4.4 implies that C(7(Go)) = R(Go) = R%. Under these assumptions, we now

summarize some of the key results.

1. There exists a minimal s € [1, (d+1) exp(Gr)] such that ps(H) < oo implies pi(H) < 0o
for all £ > 1. (Corollary 8.17)

As for the torsion-free case, it would be interesting to know if the estimate s < (d+1) exp(Gr) is
tight or can be improved. Main Theorem 8.24 characterizes when Item 1 occurs either in terms
of a basic combinatorial property of the atoms A(Gy), or the geometric property 0 ¢ C*(7(Gp)°).
It also shows that

P(d+1) exp(Gr) (H) < 00 is equivalent to p(H) < oo.
Assuming additionally that p(q41)exp(ar)(H) < 00, so that the conclusion of Item 1 holds, we
obtain the following properties.

2. 0 ¢ C(m(Go)®). In particular, 7(Go) € R? is finitary and all the results of Section 7
are available for studying the set 7(Gy), including Theorems 7.13, 7.18, 7.22 and 7.25.
(Main Theorem 8.24 and Theorem 7.5)

3. Besides the defining definition of the subset Gf C Gy (stated earlier in Section 8.3
combined with Proposition 7.1), we also have (by Proposition 8.21)

Gy = {g9€Go: sup{vy(U): U € A™(Gp)} = o0}
= {g€ Go: sup{vy,(U): U € A(Gp)} = oo}.
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4. There is a finite subset X C G such that A(Gp \ X) is finite, and thus also a finite
subset Y C Gy such that A(Go \Y) = (0. (Proposition 8.23).
5. Go \ G§ C Gy is a Lambert subset with A(Gf) = 0, indeed, Gy \ Gf C Gy is the unique
maximal Lambert subset. (Propositions 8.22 and 8.21)
6. If H is a Krull Monoid, the Weak Tame Degree (as defined in Main Theorem 8.18) is
finite: t,(H) < co. In particular, N := max{2,t,(Gp)} < oo is finite.
7. The elasticities of H do not contain arbitrarily large gaps: pip(H) — pr—1(H) < N < 00
for all k£ > 2. In particular, px(H) < Nk grows linearly. (Main Theorem 8.20.1)
8. max A(H) < py(H) — N < oo is finite. (Main Theorem 8.20.2)
9. The Set of Distances is finite: |[A(H)| < co. (Main Theorem 8.20.2)
10. If H is a Krull Monoid, the catenary degree is finite: c¢(H) < pny(H) < oco. (Main
Theorem 8.20.4)
11. If H is a Krull Monoid, then H is locally tame. (Main Theorem 8.20.5)
12. The Structure Theorem for Unions holds for H. (Main Theorem 8.20.3)

We remark that there are a few even stronger regularity properties of factorization that are

not

implied by the finiteness of the elasticities, including the finiteness of the monotone catenary

degree [53, Section 7], the finiteness of the (global) tame degree [55, Theorem 4.2], and that the
Structure Theorem for Sets of Lengths holds [53, Section 6].
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