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Abstract. We give tight lower bounds on the cardinality of the sumset of two finite, nonempty

subsets A, B ⊆ R2 in terms of the minimum number h1(A, B) of parallel lines covering each of A

and B. We show that, if h1(A, B) ≥ s and |A| ≥ |B| ≥ 2s2 − 3s + 2, then

|A + B| ≥ |A|+ (3− 2

s
)|B| − 2s + 1.

More precise estimations are given under different assumptions on |A| and |B|.
This extends the 2-dimensional case of the Freiman 2d–Theorem to distinct sets A and B, and, in

the symmetric case A = B, improves the best prior known bound for |A| = |B| (due to Stanchescu,

and which was cubic in s) to an exact value.

As part of the proof, we give general lower bounds for two dimensional subsets that improve

the 2-dimensional case of estimates of Green and Tao and of Gardner and Gronchi, related to the

Brunn-Minkowski Theorem.

1. Introduction

Given a pair of finite subsets A and B of an abelian group G, their Minkowski sum, or simply
sumset, is A + B = {a + b | a ∈ A, b ∈ B}. Furthermore, if G = Rd and H is a subspace,
then we let φH : Rd → Rd/H denote the natural projection modulo H, and we let hd−1(A,B)
be the minimal number s such that there exist 2s (not necessarily distinct) parallel hyperplanes,
H1, . . . ,Hs, H

′
1, . . . ,H

′
s, with A ⊆

⋃s
i=1Hi and B ⊆

⋃s
i=1H

′
i. Alternatively, hd−1(A,B) is the

minimal s such that there exists a (d− 1)–dimensional subspace H with |φH(A)|, |φH(B)| ≤ s.

It is the central goal of inverse additive theory to describe the structure of sumsets and their
summands. One of the most classical results is the Freiman 2d–Theorem [5] [1] [11] [15], which says
that a subset of Rd with small sumset must be contained in a small number of parallel hyperplanes.

Theorem A (Freiman 2d–Theorem). Let d ≥ 2 be an integer and let 0 < c < 2d. There exist
constants k = k(c, d) and s = s(c, d) such that if A ⊆ Rd is a finite, nonempty subset satisfying
|A| ≥ k and |A+A| < c|A|, then hd−1(A,A) < s.

From the pigeonhole principle, one then easily infers there must exist a hyperplane H such that
|H ∩A| ≥ 1

s−1 |A|, thus containing a significant fraction of the elements of A. In fact, this corollary
is sometimes given as the statement of the Freiman 2d–Theorem itself, in part because it can be
shown to easily imply the version given above, illustrating the close dual relationship between being
covered by a small number of hyperplanes and having a large intersection with a hyperplane.
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The Freiman 2d–Theorem was one of the main tools used in the original proof (as given by Bilu
[1] and Freiman [6] [5]) of Freiman’s Theorem (a result which shows that any subset A ⊆ Z with
|A+ A| ≤ C|A| must be a large subset of a multidimensional progression), which has become one
of the foundational centerpieces in inverse additive theory. However, like Freiman’s Theorem itself,
it suffers from lacking even asymptotically correct constants. Remedying such a drawback would
greatly magnify the applicability of these results, and in the case of Freiman’s Theorem, much effort
has been so invested culminating in the achievement by Chang [3] of values that are now almost
asymptotically correct.

With the Freiman 2d–Theorem, there has been less notable success in improving the constants.
When d = 2 (so that a hyperplane is just a line), independent proofs of the result were found by
Fishburn [4] and by Stanchescu [14], with the latter method yielding an optimal value for s(c, d)
(specifically, s = s(c, 2) is the ceiling of the smaller root defined by c|A| = 4|A| + 1 − 2(s + |A|

s )),
though the value for k(c, d) was still not asymptotically accurate (the constant obtained was cubic
in s rather than quadratic).

The main result of this paper is the following, which extends the 2-dimensional case of the
Freiman 2d–Theorem to distinct sets while at the same time giving exact values for the constants
(when ||A| − |B|| ≤ s).

Theorem 1.1. Let s ≥ 2 be an integer, and let A, B ⊆ R2 be finite subsets.

(i) If ||A| − |B|| ≤ s, |A|+ |B| ≥ 4s2 − 6s+ 3, and

|A+B| < (2− 1
s

)(|A|+ |B|)− 2s+ 1, (1)

then h1(A,B) < s.

(ii) If |A| ≥ |B|+ s, |B| ≥ 2s2 − 7
2s+ 3

2 , and

|A+B| < |A|+ (3− 2
s

)|B| − s, (2)

then h1(A,B) < s.

A slightly less precise but immediate corollary is the following.

Corollary 1.2. Let s ≥ 2 be an integer. If A, B ⊆ R2 are finite subsets with |A| ≥ |B| ≥ 2s2−3s+2
and h1(A,B) ≥ s, then

|A+B| ≥ |A|+ (3− 2
s

)|B| − 2s+ 1.

The following example shows that, for s ≥ 3, the constant in Theorem 1.1(i) is best possible: let
T be a right isosceles triangle in the integer lattice whose equal length sides each cover x = 2s− 2
lattice points; then |T | = (s− 1)(2s− 1) and |2T | = 2(s− 1)(4s− 5) < 4|T |+ 1− 2s− 2 |T |s , but T
is covered by no fewer than 2s− 2 > s− 1 parallel lines. The same example shows that, even when
|A|+ |B| < 4s2 − 6s+ 3 and h1(A,B) ≥ s, the lower bound on |A+B| implied by Theorem 1.1 (i)
is quite accurate. Indeed, when x ≥ s, we have |T | = x(x+1)

2 ≥ s(s+1)
2 , h1(T, T ) ≥ s and

|2T | = x(2x− 1) = 4|T |+ 3
2
− 3

√
1
4

+ 2|T |.



PROPERTIES OF TWO DIMENSIONAL SETS WITH SMALL SUMSET 3

On the other hand, for |A|+ |B| < 4s2 − 6s+ 3 and h1(A,B) ≥ s, one can always choose s0 < s so

that the hypothesis of Theorem 1.1 hold. Let t0 = 1
2

√
1
4 + |A|+ |B|− 1

4 , and let s0 = dt0e = t0 + z,
with 0 ≤ z < 1. Note that |A|+ |B| = 4(t0 +1)2−6(t0 +1)+2 > 4s20−6s0 +2. When |A|+ |B| ≥ 14,
by applying Theorem 1.1 with s0, the resulting bound (as a function of z) is minimized for z = 0.
Consequently, we obtain the estimate

|A+B| ≥ 2|A|+ 2|B|+ 1
2
− 3

√
1
4

+ |A|+ |B|

when 14 ≤ |A|+ |B| ≤ 4s2 + 2s, h1(A,B) ≥ s, and either ||A| − |B|| ≤ s0 or else ||A| − |B|| ≤ d s2e
and s(s+ 1) ≤ |A|+ |B|. This shows that the resulting bound for |A+B| using s0 is surprisingly
accurate for |A|+ |B| ≥ s(s+ 1). However, once |A|+ |B| < s(s+ 1), the lower bound for |A+B|
assuming h1(A,B) ≥ s should begin to become much larger.

The proof of Theorem 1.1 will be given in Section 5, along with the proof of the dual formulation
bounding |A + B| when A and B are assumed to contain no s collinear points. Concerning the
case s = 2, a result of Ruzsa [13], generalizing to distinct sets yet another result of Freiman
[5, Eq. 1.14.1] [15], shows that if A, B ⊆ Rd with |A| ≥ |B| and A + B d-dimensional, then
|A+B| ≥ |A|+ d|B| − d(d+1)

2 .

However, as the Freiman 2d–Theorem indicates, the cardinality of A and B modulo appropriate
subspaces also plays an important role contributing to the cardinality of A+B. Section 2 is devoted
to proving Theorem 1.3 below, which gives a general lower bound for |A+B| based upon |φH(A)|
and |φH(B)|, with H = Rx1 an arbitrary one-dimensional subspace. It will be a key ingredient in
the proof of Theorem 1.1. We remark that the symmetric case (when A = B) was first proved by
Freiman [5, Eq. 1.15.4].

Theorem 1.3. Let A, B ⊆ R2 be finite, nonempty subsets, let ` = Rx1 be a line, let m be the
number of lines parallel to ` which intersect A, and let n be the number of lines parallel to ` that
intersect B. Then

|A+B| ≥ (
|A|
m

+
|B|
n
− 1)(m+ n− 1). (3)

Furthermore, the following bounds are implied by (3).

(i) If m ≥ n and |A| ≤ |B|+m, then

|A+B| ≥ (2− 1
m

)(|A|+ |B|)− 2m+ 1.

(ii) If |A| ≥ |B|+m, then

|A+B| ≥ |A|+ (3− 2
m

)|B| −m.

(iii) If 1 < m < |A|, let l be an integer such that l(l−1)
m(m−1) ≤

|B|
|A|−m ≤

l(l+1)
m(m−1) , and if m = 1, let

l = 1. Then
|A+B| ≥ |A|+ |B|+ l − 1

m
|A|+ m− 1

l
|B| − (m+ l − 1).

(iv) In general,

|A+B| ≥ |A|+ |B|+ 2

√
(m− 1)(

|A|
m
− 1)|B| − (

|A|
m

+m) + 1.
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Note l = b
√

1
4 + (m−1)|B|

|A|/m−1 + 1
2c satisfies the hypotheses of Theorem 1.3(iii) for m < |A|. We

remark that Theorem 1.3(iv), along with the compression techniques of Section 2, easily implies (a
diagonal compression along x1− x2 should also be used when A is contained in two lines, y1 + Rx1

and y2 + Rx2, each containing |A|+1
2 points of A) the 2-dimensional case of a discrete analog of

the Brunn-Minkowski Theorem given by Gardner and Gronchi [7, Theorem 6.6, roles of A and B

reversed].

Also, (3) improves the 2-dimensional case of an estimate of Green and Tao [8, Theorem 2.1],
with the two bounds equal only when A is a rectangle. In Section 2.2, we briefly exhibit how the
discrete methods can be adapted to the continuous case by giving a simple proof of a generalization
of the Brunn-Minkowski Theorem, for 2 dimensions, related to Bonneson’s generalization of the
Brunn-Minkowski Theorem (see eq. (39) in [7]).

The lower bounds for |A+B| from Theorem 1.1(ii) and Theorem 1.3(ii) are estimates based on
min{|A|, |B|}, much like nearly all other existing estimates for distinct sumsets; however, if |A| is
much larger than |B|, such bounds can be weak. The bounds in Theorem 1.3(iii) and Theorem
1.3(iv) are more accurate since they take into account the relative size of |A| and |B|. It would
be desirable to have a similar refinement to Theorem 1.1, i.e., a lower bound for |A+B| based off
the parameter s ≤ h1(A,B) and the relative size of |A| and |B|. One possibility would be if the
bound in Theorem 1.3(iii) held with the globally defined parameter s ≤ h1(A,B) in place of m, for
|A| and |B| suitably large with respect to s. This is achieved by Theorem 1.1(i) for the extremal
case when |A| and |B| are very close in size. Theorem 1.4 below accomplishes the same aim for the
other extremal case, when |A| is much larger than |B|. It is proved in Section 6.

Note that the coefficient of |B| in the bound below is much larger than the value of 3− 2
s obtained

from Theorem 1.1(ii). Moreover, the bound on |B| required to apply Theorem 1.4(b) is much smaller
than the corresponding requirement for Theorem 1.1, being linear in s rather than quadratic. In
fact, Theorem 1.4(a) shows that, by only increasing slightly the requirement of |A| to be much
larger than |B|—from |A| ≥ 1

2s(s− 1)|B|+ s to |A| > 1
8(2s− 1)2|B| − 1

4(2s− 1) + (s−1)2

2(|B|−2)—one can
eliminate all need for |A| and |B| to be sufficiently large with respect to s.

Theorem 1.4. Let s be a positive integer, and let A, B ⊆ R2 be finite, nonempty subsets with
h1(A,B) ≥ s and |A| ≥ 1

2s(s− 1)|B|+ s. If either

(a) |A| > 1
8(2s− 1)2|B| − 1

4(2s− 1) + (s−1)2

2(|B|−2) , or

(b) |B| ≥ 2s+4
3 , then

|A+B| ≥ |A|+ s(|B| − 1). (4)

We remark that the bound |A| ≥ 1
2s(s − 1)|B| + s is not in general sufficient to guarantee

|A + B| ≥ |A| + s(|B| − 1), and thus the slight increase in the requirement for |A| given by (a) is
necessary. For instance, let s = 34, and let A′ and B be geometrically similar right isosceles triangles
whose equal length sides each cover 82 and 3 lattice points, respectively. Suppose A′ lies in the
positive upper plane with one its equal length sides along the horizontal axis. Let A be obtained
from A′ by deleting the 3 points in A′ farthest away from the horizontal axis. Then |B| = 6,
|A| = 3400 = 1

2s(s− 1)|B|+ s, h1(A,B) = 80 > 34, and |A+B| = 3567 < 3570 = |A|+ s(|B| − 1).
As a second example, let A = [0, a − 1] × [0, s + 1] and B = [0, b − 1] × {0, 1} be two rectangles
in the integer lattice. We have |A| = a(s + 2), |B| = 2b and |A + B| = (a + b − 1)(s + 3) =
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|A|+s(|B|−1)+a−b(s−3)−3. By taking b = (s+3)/6 and a = (s(s−1)b+s+1)/(s+2) = (s2+3)/6
(with s ≡ 3 (mod 6)), we have |A| = 1

2s(s−1)|B|+s+1, |B| = (s+3)/3 and |A+B| < |A|+s(|B|−1).
Furthermore, h1(A,B) ≥ h1(A,A) ≥ min{s+ 2, (s2 + 3)/6} ≥ s for s ≥ 9.

We conclude the introduction with two special cases of Freiman’s Theorem for which exact
constants are known. The first is folklore [11] [15], while the second is a generalization by Lev and
Smeliansky [10] of the Freiman (3k − 4)–Theorem [5, Theorem 1.9] [11] [15].

Theorem B. If A and B are finite and nonempty subsets of a torsion-free abelian group, then

|A+B| ≥ |A|+ |B| − 1, (5)

with equality possible only when A and B are arithmetic progressions with common difference or
when min{|A|, |B|} = 1.

Theorem C. Let A, B ⊆ Z be finite nonempty subsets with 0 = minA = minB, maxA ≥ maxB
and gcd(A) = 1. Let δ = 1 if maxA = maxB, and let δ = 0 otherwise. If

|A+B| = |A|+ |B|+ r ≤ |A|+ 2|B| − 3− δ,

then maxA ≤ |A|+ r.

2. Lower Bound Estimates via Compression

2.1. Discrete Sets. LetX = (x1, x2, . . . , xd) be an ordered basis for Rd, and letXi = 〈x1, . . . , xi〉
for i = 0, . . . , d. Let A ⊆ Rd be a finite subset. The linear compression of A with respect to xi ∈ X,
denoted Ci(A) = CX,i(A), is the set obtained by compressing and shifting A along each line Rxi+a,
where a ∈ Rd, until the resulting set Ci(A)∩(Rxi+a) is an arithmetic progression with difference xi
whose first term is contained in the hyperplane H = 〈x1, . . . , xi−1, xi+1, . . . , xd〉. More concretely,
we define the set Ci(A) piecewise by its intersections with the lines (Rxi + a), a ∈ Rd, by letting
Ci(A) ∩ (Rxi + a) be the subset of Rxi + a satisfying

φH(Ci(A) ∩ (Rxi + a)) = {0, xi, 2xi, . . . , (r − 1)xi},

where r = |A ∩ (Rxi + a)| and the right hand side is considered empty if r = 0. We let

CX(A) = Cd(Cd−1 . . . (C1(A)))

be the fully compressed subset obtained by iteratively compressing A in all d dimensions. Observe
that

|φXi(CX(A))| = |φXi(A)|, (6)

for i = 0, . . . , d.

Compression techniques in the study of sumsets have been used by various authors, including
Freiman [5], Kleitman [9], Bollobás and Leader [2], and Green and Tao [8]. The reason for intro-
ducing the notion of compression is that it gives a useful lower bound for the sumset of an arbitrary
pair of finite subsets A, B ⊆ Rd. Namely, letting H be as above and letting Ct denote C ∩ (Rxi+ t)
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below, we have in view of Theorem B that

|A+B| =
∑
t∈H
|(A+B)t|

≥
∑
t∈H

max{|As +Bt−s| : As 6= ∅, Bt−s 6= ∅}

≥
∑
t∈H

max{|As|+ |Bt−s| − 1 : As 6= ∅, Bt−s 6= ∅}

= |Ci(A) + Ci(B)|, (7)

and consequently (by iterative application of (7)),

|A+B| ≥ |CX(A) + CX(B)|. (8)

We now restrict our attention to the case d = 2, which is the object of study for this paper. Let
m = |φX1(A)|, n = |φX1(B)|, Ai = CX(A)∩ (Rx1 + (i−1)x2) and Bi = CX(B)∩ (Rx1 + (i−1)x2).
Note that |A1| ≥ |A2| ≥ . . . ≥ |Am| and |B1| ≥ |B2| ≥ . . . ≥ |Bn|. If |Ai| = ai and |Bj | = bj , then

|CX(A) + CX(B)| =
m+n∑
l=2

max
i
{ai + bl−i | 1 ≤ i ≤ m, 1 ≤ l − i ≤ n} − (m+ n− 1). (9)

Consequently, the following lemma provides a lower bound for |A+ B| based upon the number of
parallel lines that cover A and B, which will imply (3) in Theorem 1.3.

Lemma 2.1. If a1, . . . , am, b1, . . . , bn ∈ R, then

1
m+ n− 1

m+n∑
i=2

max
j
{aj + bi−j : 1 ≤ j ≤ m, 1 ≤ i− j ≤ n} ≥ 1

m

m∑
i=1

ai +
1
n

n∑
i=1

bi. (10)

Proof. The proof is by induction on m + n. The result clearly holds if either m = 1 or n = 1.
Assume that m, n ≥ 2. Let a = (a1, . . . , am) and b = (b1, . . . , bn). For a vector x = (x1, x2, . . . , xk),

we denote by x = 1
k

k∑
i=1
xi. Also, if y = (y1, . . . , yl), we denote by

u(x, y) =
k+l∑
i=2

max
j
{xj + yi−j : 1 ≤ j ≤ k, 1 ≤ i− j ≤ l}.

Thus we want to prove

u(a, b) ≥ (m+ n− 1)(ā+ b̄).

Let a′ = (a2, . . . , am) and b′ = (b2, . . . , bn). We may assume that ā − ā′ ≤ b̄ − b̄′. We clearly have
u(a, b) ≥ u(a′, b) + a1 + b1. Thus by the induction hypothesis,

u(a, b) ≥ (m+ n− 2)(ā′ + b̄) + a1 + b1

= (m+ n− 2)(ā′ + b̄) +mā− (m− 1)ā′ + nb̄− (n− 1)b̄′

= (m+ n− 1)(ā+ b̄) + (n− 1)(ā′ − ā) + (n− 1)(b̄− b̄′)
≥ (m+ n− 1)(ā+ b̄),

as claimed. �
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Note that taking ai = 1
m

m∑
k=1

ak and bj = 1
n

n∑
k=1

bk for all i and j shows that equality can hold in

(10). More generally, equality holds whenever a1, . . . , am and b1, . . . , bn are arithmetic progressions
of common difference. We now prove Theorem 1.3.

Proof. of Theorem 1.3. The bound in (3) follows from Lemma 2.1, (9), (8) and (6). Consider the
bound given by (3) as a discrete function in the variable n. If m = |A|, then maximizing n will
minimize (3). Otherwise, it is a routine discrete calculus minimization question to determine that

l = b
√

1
4 + (m−1)|B|

|A|/m−1 + 1
2c is the value of n which minimizes (3), and that l − 1 also minimizes the

bound when
√

1
4 + (m−1)|B|

|A|/m−1 + 1
2 ∈ Z. Rearranging the expression for l yields (iii). If m ≥ n and

|A| ≤ |B|+m, then l ≥ m ≥ n follows, whence the minimum of (3) occurs instead at the boundary
value n = m, yielding (i). If |A| ≥ |B|+m, then (3) implies that

|A+B| ≥ |A|+ |B|+ n− 1
m

(|B|+m) +
m− 1
n
|B| − (m+ n− 1).

Considering the left hand side as a discrete function in n, it is another routine discrete calculus
computation to determine n = m minimizes the bound. This yields (ii). Note that when |B| =
|A| + m the bounds in (ii) and (i) are equal. Finally, considering the bound given by (3) as a

continuous function in n, it follows that n =
√

(m−1)|B|
|A|/m−1 minimizes the bound in (3) when |A| > m.

This yields (iv) except in the case |A| = m, in which case the trivial bound |A+ B| ≥ |B| implies
(iv) instead. �

2.2. Measurable Sets. Let µd be the Lebesgue measure on the space Rd, d ≥ 1, and let
{x1, . . . , xd} be the d standard unit coordinate vectors for Rd. Let φi : R2 → R denote the
canonical projection onto the i-th coordinate, i = 1, 2. In this subsection, we briefly show how the
results of the previous section are related to sumset volume estimates, such as the Brunn-Minkowski
Theorem [15, 7]. In what follows, we make implicit use of the basic analytic theory regarding the
Lebesgue measure (see e.g. [12]).

Theorem D (Brunn-Minkowski Theorem). If A, B ⊆ Rd and A + B are nonempty, measurable
subsets, then

µd(A+B)1/d ≥ µd(A)1/d + µd(B)1/d. (11)

In 1929, Bonneson gave the following generalization of the Brunn-Minkowksi Theorem (eq. (12)
can be shown to imply (11)) [7, eq. (39)].

Theorem E (Bonneson’s Generalization). If A, B ⊆ Rd are compact and H ⊆ Rd is a hyperplane,
then

µd(A+B) ≥
(
M1/(d−1) +N1/(d−1)

)d−1
(
µd(A)
M

+
µd(B)
N

)
, (12)

where M = sup{µd−1((x+H) ∩A) | x ∈ Rd} and N = sup{µd−1((x+H) ∩B) | x ∈ Rd}.

Using either the compression techniques outlined in this section or related Steiner Symmetrization
arguments, one can easily derive that the above bound (12) holds when M = µd−1(ϕ(A)) and
N = µd−1(ϕ(B)), where ϕ : Rd → H is any projection onto a hyperplane H. The goal of this
section is to give a simple proof of the 2-dimensional case in this variation (though we do not
include the details here, the ideas used in Lemma 3.1 can also be adapted to show this variation
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implies the original Bonneson version), illustrating how the discrete compression methods can be
adapted to handle measurable sets.

For simplicity, we state the theorem below only for compact subsets; the compression techniques
outlined in the proof of Theorem 2.2 can be made to work when A and B are merely measurable
sets, but much extra care must then be taken to deal with issues of measurability, which might
obscure the otherwise simple nature of the proof.

Theorem 2.2. If A, B ⊆ R2 are compact, then

µ2(A+B) ≥
(

µ2(A)
µ1(φ1(A))

+
µ2(B)

µ1(φ1(B))

)
(µ1(φ1(A)) + µ1(φ1(B))). (13)

Proof. Note that the case when µ1(φ1(A)) = 0 is somewhat degenerate, being either trivial or
meaningless, and so we assume µ1(φ1(A)) > 0 and likewise µ1(φ1(B)) > 0.

For a subset X ⊆ R2 and i ∈ {1, 2}, let fX,i : φ3−i(X) → [0,∞] be defined as fX,i(φ3−i(x)) =
µ1(X ∩ (Rxi + x)) if X ∩ (Rxi + x) is measurable and otherwise fX,i(φ3−i(x)) = 0. We define the
linear compression Ci(X), for i = 1, 2, by its intersections with the lines (Rxi + a), a ∈ R2, by
letting Ci(X) ∩ (Rxi + a) be the subset of Rxi + a defined by

φi(Ci(X) ∩ (Rxi + a)) = [0, fX,i(φ3−i(a))],

if X ∩ (Rxi + a) is nonempty, and letting Ci(X) ∩ (Rxi + a) be empty otherwise.

Since A is compact, we have A =
⋂∞
j=1 Sj , with S1 ⊇ S2 ⊇ . . . and each Sj a finite union of

cubes (a cartesian product of closed intervals). Since A is compact and thus bounded, the lower
continuity of µ1 implies Ck(

⋂∞
j=1 Sj) =

⋂∞
j=1 Ck(Sj), for k = 1, 2. Note that Ck(Sj), for k = 1, 2,

is still a finite union of cubes. Consequently, Ck(A) is a compact set. We call C(A) = C1(C2(A))
the compression of A. Clearly, we have

µ1(φ1(A)) = µ1(φ1(C2(A))) = µ1(φ1(C(A)). (14)

Likewise define C(B) and note that the corresponding equalities in (14) hold for C(B) as well.

Let Sz = C2(A) ∩ (Rx1 + z) be an x1–section. Observe that if φ2(z) ≤ φ2(z′), then Sz′ ⊆ Sz
and thus µ1(Sz′) ≤ µ1(Sz). Consequently, C(A) consists precisely in the area between the graph
of the monotonic decreasing L+–function fC2(A),1 : [0,M ]→ [0, µ1(φ1(A))] and the x2-axis, where
M = sup{fA,2(x) | x ∈ φ1(A)}. As both µ1(φ1(A)) and M are finite, C(A) is Riemann integrable.
The same is true for C(B), from which it is then easily observed that their sumset C(A) + C(B)
also consists of the area between the graph of a monotonic decreasing L+–function and the x2-axis.
Now by Fubini’s Theorem, we have

µ2(C(A)) =
∫∫

χC1(C2(A))dx1dx2 =
∫∫

χC2(A)dx1dx2 (15)

=
∫∫

χC2(A)dx2dx1 =
∫∫

χAdx2dx1 = µ2(A),

where χT denotes the characteristic function of the set T . Likewise,

µ2(C(B)) = µ2(B). (16)
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Letting Xz denote in (17) below the x2-section (Rx2 + z) ∩X of X ⊆ R2, we find that

µ1((A+B)z) = µ1(
⋃

x+y=z

(Ax +By)) ≥ sup{µ1(Ax +By) | x+ y = z}

≥ sup{µ1(Ax) + µ1(By) | x+ y = z} = µ1((C2(A) + C2(B))z), (17)

where the second inequality follows from the inequality µ1(X + Y ) ≥ µ1(X) + µ1(Y ) (which is
the case d = 1 in the Brunn-Minkowski Theorem). Using Fubini’s Theorem and (17) (for the first
inequality; the second one follows by an analogous argument), we infer

µ2(A+B) =
∫∫

χA+Bdx2dx1 ≥
∫∫

χC2(A)+C2(B)dx2dx1

=
∫∫

χC2(A)+C2(B)dx1dx2 ≥
∫∫

χC1(C2(A))+C1(C2(B))dx1dx2

= µ2(C(A) + C(B)). (18)

In view of (18), (15), (16) and (14), we see that it suffices to prove the theorem for A = C(A)
and B = C(B). Since these are Riemann integrable, and thus can be approximated by rectangular
strips of fixed height log2n(µ1(φ2(A))) and log2n(µ1(φ2(B))) when n→∞, it thus suffices to prove
the theorem for unions of 2n rectangular strips of equal height, n ∈ Z+. We proceed by induction.
If n = 1, so that both A and B are themselves rectangles of width µ1(φ1(A)) and µ1(φ1(B))
and height µ2(A)

µ1(φ1(A)) and µ2(B)
µ1(φ1(B)) , respectively, then (13) follows trivially. So we assume n > 1.

Translate A and B so that the x2-axis passes through the midpoints of φ1(A) and φ1(B), and let
A+ ⊆ A and B+ ⊆ B be those points with nonnegative x1-coordinate, and let A− ⊆ A and B− ⊆ B
be those with non-positive x1-coordinate. Observing that µ2(A+B) ≥ µ2(A++B+)+µ2(A−+B−)
and applying the induction hypothesis to each of A+ + B+ and A− + B− yields (13), completing
the proof. �

3. An Inductive Argument

In this section, we prove the key lemma for an inductive argument analogous to one by Stanchescu
[14, Lemma 2.2], which will be used in the proof of Theorem 1.1.

Recall that h1(A,B) denotes the minimal positive integer s such that there exist 2s (not neces-
sarily distinct) parallel lines `1, . . . , `s, `′1, . . . , `

′
s with A ⊆

⋃s
i=1 `i and B ⊆

⋃s
i=1 `

′
i.

The inductive argument is collected in Lemma 3.1 below and roughly says that if h1(A,B) is
large enough, we can remove a small number of points from A and B while decreasing substantially
the cardinality of their sumset without increasing ||A| − |B|| unduly.

Lemma 3.1. Let s ≥ 3 be an integer, and let A, B ⊆ R2 be finite subsets, with |A| ≥ |B| ≥ s, such
that there are no s collinear points in either A or B. Then either:

(a) h1(A,B) ≤ 2s− 3, or

(b) there exist a, b ∈ R2, a line `, a nonempty subset A0 ⊆ A and a subset B0 ⊆ B, such that
A0 ⊆ a+ `, B0 ⊆ b+ `,

|B0| ≤ |A0| ≤ s− 1,

and
|A′ +B′| ≤ |A+B| − 2(|A0|+ |B0|), (19)
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where A′ = A \A0 and B′ = B \B0.

Proof. Let Conv(X) denote the boundary of the convex hull of X. Note, since |A| ≥ |B| ≥ s and
since neither A nor B contains s collinear points, that both A and B must be 2-dimensional.

Throughout the proof we assume that (b) is false and proceed to show that (a) holds. The four
claims below show that our assumption on (b) not holding leads to geometric structure for A and
B (see Figure 1 for an illustration of this, and other soon to be established, information).

Claim 1. If f and f ′ are two consecutive edges of Conv(A) incident at the vertex a0, with a1, a
′
1 ∈

Conv(A)∩A the closest elements to a0 in each of the edges f and f ′, respectively, then the sumset
A+B is contained in a translate of the lattice generated by the two vectors a1 − a0 and a′1 − a0.

Proof. We use an argument by Ruzsa [13]. Let b0 be a vertex of Conv(B) such that A∗ = A \ {a0}
and B∗ = (B \ {b0}) + (a0 − b0) are both contained in the same open half plane determined by
some line through a0. We may w.l.o.g. assume that a0 = b0 = (0, 0) and that both A∗ and B∗ are
contained in the open half plane of points with positive first coordinate. Let x ∈ A+B, x 6= (0, 0),
and consider all the expressions of x written as a sum of elements taken from (A + B) \ {(0, 0)}.
Since A and B are finite sets, and since all points in A∗ and B∗ have positive first coordinate,
it follows that the number of summands in any such expression is bounded. Take one expression
x = x1 + x2 + · · · + xk with a maximum number of summands. If xi ∈ A∗ + B∗ for some i, then
xi can be split into two summands, one in A∗ and one in B∗, contradicting the maximality of k.
Therefore x can be written as a sum of elements in C = (A+B) \ ((A∗ +B∗) ∪ {(0, 0)}).

Observe that if |C| ≥ 3, then (b) holds with A0 = {(0, 0)} = B0. Hence |C| ≤ 2 and all elements
in A+B are contained in the lattice generated by the two elements of C. Let e and e′ be the two
edges incident with b0. Note we may assume the convex hull of the two rays parallel to e and e′

with base point b0 = (0, 0) is contained in the convex hull of two rays parallel to f and f ′ with base
point a0 = (0, 0), since otherwise by removing a0 from A we lose all the points in either a0 +(B∩e)
or a0 + (B ∩ e′), yielding (b). However, in this case, it is easily seen that {a1, a

′
1} ⊆ C, whence

|C| = 2 implies C = {a1, a
′
1}, completing the claim. �

Note that Claim 1 implies that A and B are also contained in a translate of the lattice generated
by a1 − a0 and a′1 − a0, though the particular translate may vary from A to B to A+B.

Claim 2. For each side e of Conv(B), there is a side f of Conv(A), parallel to e, such that both
A− f + e and B are contained in the same half plane defined by e. Moreover, |B ∩ e| ≤ |A ∩ f |.

Proof. Let ` be the line parallel to e that intersects A and for which A − ` + e and B are both
contained in the same half plane defined by e. Let f = `∩Conv(A) and let Af = A∩ `. In view of
Theorem B, we see that, by removing the elements of Af , we lose |Af+Be| ≥ |Af |+|Be|−1 elements
from A + B, where Be = B ∩ e. Since (b) does not hold, it follows that |Af | + |Be| − 1 < 2|Af |,
whence 2 ≤ |Be| ≤ |Af |. In particular, f is an edge of the Conv(A). �

Let e and e′ be two consecutive edges of Conv(B), and let f and f ′ be the corresponding parallel
edges in Conv(A) as given by Claim 2. Denote the elements in Be := B∩e by b0, b1, . . . , bt, ordered
as they occur in the edge e, and the ones in Af := A ∩ f by a0, a1, . . . , ar, ordered in the same
direction as those of Be. Likewise define b′0 = b0, b

′
1, . . . , b

′
t′ and a′0, a

′
1, . . . , a

′
r′ for the points in
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Be′ := B ∩ e′ and Af ′ := A∩ f ′. Note a0 = a′0 need not hold, though as we will soon see (Claim 4),
this cannot fail by much.

Claim 3. With the notation above, b0 − b1 = a0 − a1.

Proof. Let f ′′ 6= f be the edge adjacent to a0 and let a′′ 6= a1 be the element of Conv(A) ∩ A
adjacent to a0. If the claim is false, then, by removing a0 from Af and b0 from Be, we lose from
A+B the distinct elements a0 + b0, a0 + b1, a1 + b0 and either b0 + a′′ or a0 + b′1, yielding (b). �

Claim 4. With the notation above, either: (i) f and f ′ are also consecutive, or (ii) they are
separated by a single edge g of Conv(A) and A ∩ g contains exactly two points.

Proof. Traverse the convex hull of A, beginning at a0 and in the direction not given by f . Let
a0, c1, c2, . . . , ck, a

′
0 be the sequence of points on Conv(A) encountered until the first point a′0 of f ′

is reached. If the claim is false, then k ≥ 1. Hence, by removing a0 from A and b0 from B, we lose
from A+B the elements a0 + b0, b0 + a1, b0 + ci for i = 1, . . . , k, and b0 + a′0, yielding (b). �

By an appropriate affine transformation, we may assume that b0 = (0, 0), b1 = (1, 0) and
b′1 = (0, 1) and that both A and B are contained in the positive first quadrant. We denote by
π1 : R2 → R the projection onto the first coordinate. Let Ai = A∩{y = i} and let Bi = B∩{y = i}.
We have

|A0 +B0| < 2|A0|, (20)

|A0 +B0|+ |(A0 +B1) ∪ (A1 +B0)| < 2(|A0|+ |B0|), (21)

since otherwise deletion of A0 or A0 ∪B0 yields (b) (in view of Claim 2).

It follows from (20) and Theorem B that

|B0| ≤ |A0| and π1(bt) ≤ π1(ar)− π1(a0). (22)

Moreover, both inequalities are strict unless (possibly) A0 is an arithmetic progression: the former
follows in view of Theorem B; equality in the latter would imply A0 +B0 = (A0 + b0)∪ (A0 + bt) =
A0 ∪ (A0 + Bt) while Claims 1 and 3 imply −a0 + A0 is contained in the integer lattice, and then
A0 + b1 = A0 + (1, 0) ⊆ A0 ∪ (A0 + bt), from which one inductively finds that (x, 0) ∈ A0 for
π1(a0) ≤ x ≤ π1(a0) + π1(bt) = π1(ar), yielding the latter.

We proceed in two cases according to Claim 4 (i) and (ii).

rdrd rd r r
a0 = b0

a′1 = b′1

a1 = b1 ar−1 ar = a′′0

a′′1r
e′, f ′

e, f
@

@
@

@
@@f
′′

@
@drd rd r
r

r r
b0 a1

a′0 = b′1

a′1

a0 = b1 ar−1 ar = a′′0

a′′1r
e′, f ′

e, f
@

@
@

@
@@f
′′

Figure 1. A Schematic Illustration of Cases 1 and 2.



12 DAVID GRYNKIEWICZ AND ORIOL SERRA

Case 1 : Claim 4(i) holds for the pair f and f ′. In this case, a0 = a′0 and w.l.o.g. a0 = b0 = (0, 0).
By Claim 3, it follows that

b0 − b1 = a0 − a1 and b0 − b′1 = a0 − a′1.

Thus a1 = b1 = (1, 0) and a′1 = b′1 = (0, 1). By Claim 1, it follows, in view of 0 ∈ A∩B, that A, B,
and A+B are contained in the integer lattice. Moreover, in view of Claim 3 and Claim 1 applied
to ar, it follows that

bt − bt−1 = ar − ar−1 = a1 − a0 = (1, 0) and a′′1 ∈ A1, (23)

where a′′1 is the next element of A∩Conv(A) on the edge f ′′ incident to f with endpoint ar. Figure
1 shows a picture of the situation.

Let e′′ 6= e denote the edge of Conv(B) incident to bt. As a consequence of Claim 2, the angle
between e and e′′ is at most the angle between f and f ′′. Consequently, it follows in view of (22)
that A ∪B is contained in the region defined by the lines y = 0, x = 0 and the line defined by f ′′.

We proceed to verify that
π1(a′′1) ≤ π1(ar) + 1. (24)

Suppose (24) is false. Then π1(a′′1) ≥ π1(ar) + 1, along with Theorem B and (21), implies that
|A0 + B0| = |A0| + |B0| − 1 and |(A0 + B1) ∪ (A1 + B0)| = |A0 + b′1| + |a′′1 + B0|. It follows from
the former and Theorem B that A0 and B0 are arithmetic progressions with the same difference
(which must then be (1, 0)), and by the second and (24) not holding that the point ar + (1, 1) is
not in A+ B. Combining these two facts, we see that, by removing ar from A and bt from B, we
lose the elements ar + bt, ar + bt − (1, 0), a′′1 + bt and ar + (0, 1) from the sumset, yielding (b), a
contradiction. So (24) is established.

The above argument also shows that, if equality holds in (24), then A0 is an arithmetic progres-
sion. Suppose that this is the case. We may apply the analogous arguments to the set A∩{x = 0}.
If this set is also an arithmetic progression, then A ∪ B is contained in the region defined by the
lines y = 0, x = 0, y = x− ar and y = x+ a′r′ . Then, since each line, including f and f ′, contains
at most s− 1 points of A, it follows that A ∪ B can be covered by the 2s− 3 lines with slope one
passing through the points of A lying on either coordinate axis, yielding (a) as claimed.

Therefore we may assume without loss of generality that A0 is not an arithmetic progression.
Thus the inequalities in (22) and (24) are strict. If π1(ar) ≤ 2s− 4, then A∪B is covered (in view
of the second paragraph of Case 1 and the strict inequality in (24)) by the 2s − 3 vertical lines
x = i, for 0 ≤ i ≤ 2s − 4, and (a) holds. Therefore we may assume that π1(ar) ≥ 2s − 3, whence
π1(ar) ≥ |A0|+ |B0| − 1.

Consequently, by Theorem C applied to A0 and B0 with δ = 0 (since the second inequality in
(22) is strict), we get

|A0 +B0| ≥ |A0|+ 2|B0| − 2, (25)

which, combined with (21), Theorem B and the fact that A0 is not an arithmetic progression, yields

|B1| = 1 and |(B0 +A1) \ (A0 +B1)| ≤ 1. (26)

As a result, B1 = {b′1} and
π1(a′′1) ≤ π1(ar)− π1(bt−1), (27)

with equality possible only if a′′1 + bt is a unique expression element in A+B.
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Let b be the intersection of e′′ with the line y = 1. Recalling that the angle between e and e′′ is
at most the angle between f and f ′′ (see the second paragraph of Case 1), we find that (27) and
(23) yield

π1(bt)− π1(b) ≥ π1(ar)− π1(a′′1) ≥ π1(bt−1) = π1(bt)− 1. (28)

Consequently, π1(b) ≤ 1.

If π1(b) = 0, then it follows, by the strict inequality in (22), that |B| = |B0|+ 1 ≤ |A0| ≤ s− 1,
a contradiction. Therefore π1(b) > 0, which is only possible if equality holds in (27), else the
estimate from (28) improves by 1. Thus a′′1 + bt is a unique expression element, so that if e′′ and
f ′′ were parallel, then by removing ar from A and bt from B we would lose the elements ar + bt,
ar + bt−1 = ar−1 + bt, a′′1 + bt and ar + b′′1, where b′′1 is the next element from B on the edge e′′

after bt, yielding (b). So we may assume e′′ and f ′′ are not parallel, whence the estimate in (28)
becomes strict, yielding 0 < φ1(b) < 1. Thus it follows that |B0| = 2, since otherwise we again get
|B| ≤ |B0|+ 1 ≤ |A0| ≤ s− 1, a contradiction. Hence, since |A0 +B0| ≥ |A0|+ |B0| = |A0|+ 2 (by
Theorem B and the fact that A0 is not an arithmetic progression) and since |(A0 \ar) + (B0 \ bt)| =
|A0 \ ar| (in view of |B0 \ bt| = 1), it follows that removing ar from A0 and bt from B0 deletes at
least three points from A+B contained in A0 +B0 as well as the unique expression element a′′1 + bt
in A+B, yielding (b). This completes the proof of Case 1.

Case 2: Claim 4(ii) holds for the pair f and f ′. This case is slightly simpler than Case A, and
we use very similar arguments. Recall that g is the line defined by a0 and a′0, that b0 = (0, 0),
b1 = (1, 0), b′1 = (0, 1), and that both A and B are contained in the positive first quadrant.
We may also assume f is contained in the horizontal axis and f ′ is contained in the vertical axis;
furthermore, by the same arguments used to establish (23), we have a0 = (1/d, 0), a1 = (1/d+1, 0),
a′0 = (0, 1/d′) and a′1 = (0, 1/d′ + 1), for some d, d′ ∈ R+, and a′′1 ∈ A1/d′ , where f ′′ and a′′1 are as
there were defined in Case 1. From Claim 1, applied both to f and g and to g and f ′, we conclude
that d, d′ ∈ Z+ and that A is contained both in the lattice (1/d, 0) + 〈(1, 0), (1/d,−1/d′)〉 and the
lattice (1/d, 0) + 〈(0, 1), (1/d,−1/d′)〉. Thus

(−1/d, 1/d′ + 1) = a′1 − (1/d, 0) ∈ A− (1/d, 0) ⊆ 〈(1, 0), (1/d,−1/d′)〉

implies d|d′, while

(1, 0) = a1 − (1/d, 0) ∈ A− (1/d, 0) ⊆ 〈(0, 1), (1/d,−1/d′)〉

implies d′|d. Hence d = d′ and A+B is contained within the lattice (1/d, 0) + 〈(1, 0), (1/d,−1/d)〉.

Since A+B is contained within the lattice (1/d, 0) + 〈(1, 0), (1/d,−1/d)〉, by removing b0 from
B and a0 and a′0 from A, we lose all the elements of A + B contained within the two lines with
slope −1 passing through a0 and a1, i.e., all the elements from

(b0 + {a0, a
′
0}) ∪ (b0 + {a1, a

′
1}) ∪ ({a0, a

′
0}+ {b1, b′1}) =

{(0, 1/d), (1/d, 0), (1 + 1/d, 0), (0, 1 + 1/d), (1, 1/d), (1/d, 1)}.

If d > 1, then the above 6 elements are distinct, and (b) follows. Therefore we may assume d = 1.
As a result, b0 = (0, 0), a0 = b1 = (1, 0), a1 = (2, 0), a′0 = b′1 = (0, 1), a′1 = (0, 2), and A, B and
A+B are contained in the integer lattice. The right side of Figure 1 illustrates this case.

As a result, if π1(a′′1) ≥ π1(ar) + 1, then (21) and Theorem B would imply

|A0|+ |B0| ≥ |(A0 +B1) ∪ (A1 +B0)| ≥ |b′1 +A0|+ |a′′1 +B0|+ |{a′0 + b0}| = |A0|+ |B0|+ 1,
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a contradiction. Therefore
π1(a′′1) ≤ π1(ar). (29)

As in Case 1, we have from (22) and Claim 2 that A ∪ B is contained in the region defined by
the lines x = 0, y = 0 and the line defined by f ′′. Thus, if π1(ar) ≤ 2s− 4, then it follows in view
of (29) that A ∪ B is contained in the 2s − 3 parallel lines x = i, 0 ≤ i ≤ 2s − 4, yielding (a).
Therefore we may assume π1(ar) ≥ 2s− 3. Hence, since 2s− 3 ≥ s > |A0| for s ≥ 3, it follows that
A0 is not in arithmetic progression, whence the two inequalities in (22) are strict. By the same
arguments used in Case 1, the relation (25) holds—if π1(bt) = π1(ar)− 1, so that the diameters of
A0 and B0 are equal, then Theorem C with δ = 1 should instead be applied with the roles of A0

and B0 reversed and noting that |A0| > |B0| holds in view of the strict inequality in (22).

Now (21) and (25) imply |(A0 + B1) ∪ (A1 + B0)| ≤ |A0| + 1. Consequently, since {a′1 + b0} ∪
(b′1 +A0) ⊆ (A0 +B1) ∪ (A1 +B0) with |{a′1 + b0} ∪ (b′1 +A0)| = |A0|+ 1, we conclude that

(A0 +B1) ∪ (A1 +B0) = {a′1 + b0} ∪ (b′1 +A0),

whence
π1(a′′1) + π1(bt) ≤ π1(ar). (30)

Let b be the intersection of the edge e′′ with the line y = 1, where e′′ is as defined in Case 1. As
we have seen before, Claim 2 implies that the angle between e and e′′ is at most the angle between
f and f ′′. Thus (30) implies

π1(bt)− π1(b) ≥ π1(ar)− π1(a′′1) ≥ π1(bt),

implying π1(b) = 0. Hence |B| ≤ |B0 ∪ {b′1}| ≤ |A0| ≤ s − 1 (in view of of the strict inequality
|B0| < |A0| from (22)), a contradiction. This completes the proof. �

4. A Lemma for Small cases

The following lemma will allow us to improve, in a very particular case, the bound given in
Theorem 1.3 (i) by one, which will be a crucial improvement needed in the proof of Theorem 1.1
for the extremal case |A|+ |B| ≤ 4s2 − 5s− 1.

Lemma 4.1. Let X = (x1, x2) be a basis for R2, let s ≥ 2 be an integer, let A, B ⊆ R2 be finite,
nonempty subsets with ||A| − |B|| ≤ s and 4s2 − 6s + 3 ≤ |A| + |B| ≤ 4s2 − 5s − 1. Suppose that
|φX1(A)| ≤ |φX1(B)| = 2s− 2, where X1 = Rx1, and that some line parallel to Rx1 intersects A in
at least 2s− 2 points. Then

|A+B| ≥ 2|A|+ 2|B| − 6s+ 7. (31)

Proof. We may w.l.o.g. assume CX(A) = A and CX(B) = B. Let m = |φX1(A)| and n = |φX1(B)|.
Let Ai = A∩ (Zx1 +(i−1)x2), Bj = (Zx1 +(j−1)x2), |Ai| = ai and |Bi| = bi, for i = 1, . . . ,m and
j = 1, . . . , n. By hypothesis, we have a1 ≥ 2s− 2 and m ≤ n = 2s− 2. Assume by contradiction

|A+B| ≤ 2|A|+ 2|B| − 6s+ 6. (32)

Suppose m < n = 2s − 2. Then, since ||A| − |B|| ≤ s ≤ 2s − 2, from the proof of Theorem 1.3
we know that (3) is minimized for the boundary value m = n− 1. Hence

|A+B| ≥ |A|+ |B| − (n+ n− 1− 1) +
n− 1
n− 1

|A|+ n− 2
n
|B| = 2|A|+ 2|B| − 4s+ 6− 2

2s− 2
|B|,
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which together with (32) implies |B| ≥ s(2s−2). Consequently, |A|+|B| ≥ 2|B|−s ≥ 2s(2s−2)−s =
4s2 − 5s, contradicting our hypotheses. So we may assume m = n = 2s− 2.

For j = 1, . . . , s− 1 consider the following lower estimations of |A+B|:

|A+B| ≥ gj(A,B) =
j−1∑
i=1

(ai + b1 − 1) +
2s−2−j∑
i=1

(aj + bi − 1)

+
2s−2∑
i=j

(ai + b2s−j−1 − 1) +
2s−2∑
i=2s−j

(a2s−2 + bi − 1)

= |A|+ |B|
+(j − 1)(a2s−2 + b1) + (2s− 2− j)(aj + b2s−j−1)− (4s− 5), (33)

|A+B| ≥ g(A,B) =
2s−3∑
i=1

(ai + bi + ai+1 + bi − 2) + (a2s−2 + b2s−2 − 1)

= 2|A|+ 2|B| − a1 − b2s−2 − (4s− 5). (34)

By using (32) and g1(A,B), it follows that |A| + |B| ≥ (2s − 3)(a1 + b2s−2) + 2s − 1. Thus
|A| + |B| ≤ 4s2 − 5s − 1 implies that a1 + b2s−2 ≤ 2s − 1. However, by using g(A,B) instead, it
follows that a1 + b2s−2 ≥ 2s− 1. Consequently,

a1 + b2s−2 = 2s− 1. (35)

Repeating these arguments with g1(B,A) and g(B,A), we likewise conclude

b1 + a2s−2 = 2s− 1. (36)

If aj + b2s−j−1 ≥ 2s, then, in view of (36), (32) and (33), it follows that

|A|+ |B| ≥ j(2s− 1) + (2s− 2− j)(2s) = 4s2 − 4s− j ≥ 4s2 − 5s+ 1,

contradicting that |A|+ |B| ≤ 4s2 − 5s− 1. Therefore we may assume

aj + b2s−j−1 ≤ 2s− 1, (37)

for all j = 1, . . . , s − 1. Repeating this argument with gj(B,A) and g(B,A) instead, we likewise
conclude

bj + a2s−j−1 ≤ 2s− 1, (38)

for all j = 1, . . . , s− 1. However, summing (37) and (38) over j = 1, . . . , s− 1 yields

|A|+ |B| ≤ 2(s− 1)(2s− 1) = 4s2 − 6s+ 2,

contradicting our hypotheses, and completing the proof. �

5. Proof of Theorem 1.1

The proof of Theorem 1.1 is by induction on s and it uses the following version, which is essentially
equivalent to Theorem 1.1.
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Theorem 5.1. Let s ≥ 3 be an integer, and let A, B ⊆ R2 be finite subsets such that there are no
s collinear points in either A or B.

(i) If ||A| − |B|| ≤ s and |A|+ |B| ≥ (s− 1)(4s− 6) + 1, then

|A+B| ≥ 2|A|+ 2|B| − 6s+ 7.

(ii) If |A| ≥ |B|+ s and |B| ≥ 1
2(s− 1)(4s− 7), then

|A+B| ≥ |A|+ 3|B| − 5s+ 7.

We first show that part (ii), in both Theorems 5.1 and 1.1, is a very simple consequence of the
corresponding part (i).

Lemma 5.2. Let s ≥ 2 be a positive integer. (a) If s ≥ 3 and Theorem 5.1(i) holds for s, then
Theorem 5.1(ii) holds for s. (b) If Theorem 1.1(i) holds for s, then Theorem 1.1(ii) holds for s.

Proof. We first prove (a). Observe that |(A \ x) +B| < |A+B| for any vertex x in the convex hull
of A. Thus, by iteratively deleting vertices from the convex hull, we can obtain a subset A′ ⊆ A

with |A′| = |B|+ s and
|A′ +B| ≤ |A+B| − |A \A′|. (39)

Since |B| ≥ 1
2(s−1)(4s−7), it follows that |A′|+ |B| = 2|B|+ s ≥ (s−1)(4s−6) + 1, whence we

can apply Theorem 5.1(i) to A′ +B. Thus |A′ +B| ≥ 2|A′|+ 2|B| − 6s+ 7 = |A′|+ 3|B| − 5s+ 7,
whence the theorem follows in view of (39).

Next we prove (b). Suppose by contradiction that h1(A,B) ≥ s. As in the previous part,
observe that |(A \ x) +B| < |A+B| for any vertex x in the convex hull of A. Thus by iteratively
deleting vertices from the convex hull we can obtain a sequence of subsets A0 = A ⊇ A1 ⊇ . . . ⊇
A|A|−|B|−s = Ak, with |Ai| = |A| − i and

|Ai +B| ≤ |A+B| − |A \Ai| < |Ai|+ 3|B| − s− 2|B|
s
, (40)

where the last inequality follows from (2).

Since |Ai| = |Ai−1| − 1 and Ai ⊆ Ai−1, it follows that h1(Ai, B) ≥ h1(Ai−1, B) − 1 for all i.
Consequently, if h(Ak, B) < s, then it would follow in view of h(A,B) ≥ s that h(Aj , B) = s for
some j, whence Theorem 1.3(i)(ii) would contradict (40) for i = j (note the bound in Theorem
1.3(i) implies that in Theorem 1.3(ii) in view of |Aj | ≥ |Ak| = |B|+ s). Therefore we may assume
h(Ak, B) ≥ s.

Since |B| ≥ 2s2− 7
2s+ 3

2 , it follow that |Ak|+ |B| = 2|B|+ s ≥ 4s2− 6s+ 3. Hence we can apply
Theorem 1.1(i) to Ak +B, whence h1(Ak, B) ≥ s implies

|Ak +B| ≥ 2|Ak|+ 2|B| − 2s+ 1− |Ak|+ |B|
s

= |Ak|+ 3|B| − s− 2|B|
s
,

contradicting (40) for i = k, and completing the proof. �

We will prove Theorems 5.1 and 1.1 simultaneously using an inductive argument on s: the case
s−1 of Theorem 1.1 will be used to prove the case s of Theorem 5.1, while the case s of Theorem 5.1
will be used to prove the case s of Theorem 1.1 (except for the case s = 2, where a trivial argument
will be used instead). Thus both Theorems 5.1 and 1.1 follow immediately from the following
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two lemmas. This also shows that Theorem 5.1 and Theorem 1.1 are in some sense equivalent
statements.

Lemma 5.3. Let s ≥ 3 be a positive integer. Suppose that the statement in Theorem 1.1 holds for
s− 1. Then Theorem 5.1 holds for s.

Proof. In view of Lemma 5.2, it suffices to show part (i) holds, so suppose on the contrary that
Theorem 5.1(i) is false for s. Let A, B ⊆ R2 be a counterexample with |A|+ |B| minimum. Thus
||A| − |B|| ≤ s, |A|+ |B| ≥ (s− 1)(4s− 6) + 1 and

|A+B| < 2|A|+ 2|B| − 6s+ 7. (41)

We may assume |A| ≥ |B|.

Since neither A nor B contains s collinear points, and since |A| + |B| ≥ (s − 1)(4s − 6) + 1, it
follows from the pigeonhole principle that h1(A,B) > 2s − 3. By Lemma 3.1 (in view of (41)),
there is a nonempty subset A0 ⊆ A and B0 ⊆ B with |B0| ≤ |A0| ≤ s− 1 and

|A′ +B′| ≤ |A+B| − 2(|A0|+ |B0|) < 2|A′|+ 2|B′| − 6s+ 7, (42)

where A′ = A \ A0 and B′ = B \ B0. Furthermore, ||A′| − |B′|| = ||A| − |B| − (|A0| − |B0|)| ≤ s.
Therefore, by the minimality of |A|+ |B|, we have

|A′|+ |B′| ≤ (s− 1)(4s− 6).

As a result,

|A|+ |B| ≤ |A′|+ (s− 1) + |B′|+ (s− 1) ≤ (s− 1)(4s− 6) + 2(s− 1) = 4(s− 1)2. (43)

If |A| < |B|+ s, then, since h1(A,B) > 2s− 3 ≥ s− 1 and since

|A|+ |B| ≥ (s− 1)(4s− 6) + 1 > (s− 1)(4s− 9) + 3 = 4(s− 1)2 − 5(s− 1) + 3,

it follows, in view of (41) and the case s− 1 of Theorem 1.1(i), that

2|A|+ 2|B| − 2(s− 1) + 1− |A|+ |B|
s− 1

≤ |A+B| ≤ 2|A|+ 2|B| − 6s+ 6.

Hence |A|+ |B| ≥ (4s−3)(s−1) > 4(s−1)2, contradicting (43). On the other hand, if |A| = |B|+s,
then, since h1(A,B) > 2s− 3 ≥ s− 1 and since

2|B|+ s = |A|+ |B| ≥ (s− 1)(4s− 6) + 1 = 4s2 − 10s+ 7

≥ 4s2 − 14s+ 14 = 4(s− 1)2 − 7(s− 1) + 3 + s,

it follows, in view of (41) and the case s− 1 of Theorem 1.1(ii), that

2|A|+ 2|B|− 2s+ 1− |A|+ |B| − s
s− 1

= |A|+ 3|B|− (s− 1)− 2|B|
s− 1

≤ |A+B| ≤ 2|A|+ 2|B|− 6s+ 6.

Hence |A|+ |B| ≥ (4s− 5)(s− 1) + s = 4s2− 8s+ 5 > 4(s− 1)2, contradicting (43), and completing
the proof. �

Lemma 5.4. Let s ≥ 2 be a positive integer. If s ≥ 3, suppose that the statement of Theorem 5.1
holds for s. Then Theorem 1.1 holds for s.
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Proof. In view of Lemma 5.2, it suffices to show part (i) holds. Let A, B ⊆ R2 verify the hypothesis
of Theorem 1.1(i) for s, and assume by contradiction that h1(A,B) ≥ s.

Suppose neither A nor B contain s collinear points. Thus |A| + |B| ≥ 3 implies that s ≥ 3.
Hence, in view of Theorem 5.1(i) and (1), it follows that

2|A|+ 2|B| − 6s+ 7 ≤ |A+B| < 2|A|+ 2|B| − 2s+ 1− |A|+ |B|
s

.

Thus |A|+ |B| < 4s2 − 6s, contradicting that |A|+ |B| ≥ 4s2 − 6s+ 3. So we may assume w.l.o.g.
that A contains at least s collinear points on the line Zx1 + a1. Let X = (x1, x2) be an ordered
basis for R2

Since h1(A,B) ≥ s, so that max{|φX1(A)|, |φX1(B)|} ≥ s, it follows in view of (6) that

max{|φX1(CX(A))|, |φX1(CX(B))|} ≥ s.

Hence, sinceA contains s collinear points on a line parallel to Zx1, it follows that h1(CX(A),CX(B)) ≥
s. Consequently, we conclude from (8) that it suffices to prove the theorem on compressed sets,
and w.l.o.g. we assume A = CX(A) and B = CX(B). Let |φX1(A)| = m and |φX1(B)| = n. Let
Ai = A ∩ (Zx1 + (i − 1)x2), 1 ≤ i ≤ m, and Bi = B ∩ (Zx1 + (i − 1)x2), 1 ≤ i ≤ n. Note, since
both A and B are compressed, that |A1| ≥ |A2| ≥ . . . ≥ |Am| and |B1| ≥ |B2| ≥ . . . ≥ |Bn|. Since
A contains s collinear points along a line parallel to Zx1, it follows that |A1| ≥ s.

By our assumption to the contrary, we have max{m, n} ≥ s. Thus it follows, from Theorem
1.3(i) (applied with the line Zx1) and (1), that

max{m, n} ≥
⌊
|A|+ |B|

2s

⌋
+ 1. (44)

Since max{|A1|, |B1|} ≥ s, it follows, from Theorem 1.3(i) (applied with the line Zx2) and (1), that

max{|A1|, |B1|} ≥
⌊
|A|+ |B|

2s

⌋
+ 1. (45)

Let k = |A|+ |B|, and let

x =
⌊
|A|+ |B|

2s

⌋
+ 1 =

|A|+ |B| − α
2s

+ 1,

so that k = |A|+ |B| ≡ α mod 2s, with 0 ≤ α ≤ 2s− 1. With this notation, (1) yields

|A+B| ≤ 2(k − s− x+ 1)− δ, (46)

where δ = 0 if α < s and otherwise δ = 1.

We proceed to show that

|A+B| < k − (2x− 2) +
x− 2
x
|A|+ |B|. (47)

Suppose (47) does not hold. In this case, if δ = 0, then α ≤ s − 1 whence from (46) we conclude
that

|A| ≥ sx = s(
|A|+ |B| − α

2s
+ 1) ≥ s(2|A| − s− α

2s
+ 1) ≥ s(2|A| − 2s+ 1

2s
+ 1) > |A|,

a contradiction. On the other hand, if δ = 1, then from (46) we instead conclude that

2|A| ≥ (2s+ 1)x ≥ (2s+ 1)
|A|+ |B|+ 1

2s
≥ (2s+ 1)

2|A| − s+ 1
2s

,
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whence
|A| ≤ s2 − s

2
− 1

2
. (48)

However, since 2|A| + s ≥ |A| + |B| ≥ 4s2 − 6s + 3, it follows that |A| ≥ d2s2 − 7
2s + 3

2e, which
contradicts (48). Thus we conclude that (47) holds.

For each r ∈ {1, . . . , n}, we have the estimate

|A+B| ≥ |A1 +
r−1⋃
i=1

Bi|+ |A+Br|+ |Am +
n⋃

i=r+1

Bi|

=
r−1∑
i=1

|Bi|+ (r − 1)(|A1| − 1) + |A|+m(|Br| − 1) +
n∑

i=r+1

|Bi|+ (n− r)(|Am| − 1)

≥ |A|+ |B| − 1 + (|A1| − 1)(r − 1) + (m− 1)(|Br| − 1). (49)

Averaging this estimate over all r, we obtain

|A+B| ≥ |A|+ |B| − 1 + (|A1| − 1)(
n+ 1

2
− 1) + (m− 1)(

|B|
n
− 1). (50)

In view of (44) and (45), we have max{m, n} ≥ x and max{|A1|, |B1|} ≥ x. We consider two
cases according to whether these maxima are achieved in the same set or in different sets.

Case A: Either min{m, |B1|} ≥ x or min{n, |A1|} ≥ x. By symmetry we may assume that the
latter holds. We have the estimate

|A+B| ≥ |A1 + (B \Bn)|+ |A+Bn|
= |B| − |Bn|+ (n− 1)(|A1| − 1) + |A|+m(|Bn| − 1)

≥ |A|+ |B| − 1 + (n− 1)(|A1| − 1)

≥ |A|+ |B| − 1 + (x− 1)2. (51)

In view of (46) and (51), it follows that

k ≥ x2 + 2s− 2 + δ =
k2 − 2αk + α2

4s2
+
k − α
s

+ 2s− 1 + δ.

Hence,
k2 − 2(2s2 − 2s+ α)k + (8s3 − 4s2 + 4δs2 − 4αs+ α2) ≤ 0.

Thus, since α− δ ≤ 2s− 2, it follows that

k ≤ 2s2 − 2s+ α+ 2s
√
s2 − 4s+ 2 + α− δ < 4s2 − 4s+ α.

Since |A|+ |B| ≡ α mod 2s, the above bound implies that

|A|+ |B| = k ≤ 4s2 − 6s+ α ≤ 4s2 − 4s− 1. (52)

Hence, since k ≥ 4s2 − 6s+ 3, it follows that k = 4s2 − 6s+ α, with α ≥ 3 and x = 2s− 2.

Suppose max{m,n} = x. If α < s, then Lemma 4.1 contradicts (46). Therefore α ≥ s and δ = 1.
Hence Theorem 1.3(i) and (46) imply that

2k − 2x− 2s+ 1 ≥ 2k − 2x+ 1−
⌊
k

x

⌋
= 2k − 2x+ 1− (2s− 1), (53)

a contradiction. So we may assume max{m,n} > x.
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Suppose n ≥ x+ 1. Hence (51) now implies that |A+B| ≥ |A|+ |B| − 1 +x(x− 1), which, when
combined with (46) and x = 2s − 2, yields k ≥ 4s2 − 4s − 1 + δ, contradicting (52). So we can
assume n = x and m > x. By this same argument, we also conclude that |A1| = x.

If |B1| ≥ x, then interchanging the roles of A and B and repeating the above argument completes
the proof. Therefore |B1| ≤ x− 1. Since |A1| = x, we can apply (3) with the line Zx2 to obtain

|A+B| ≥
(
|A|
x

+
|B|
|B1|

− 1
)

(x+ |B1| − 1) = k − (x+ |B1| − 1) +
|B1| − 1

x
|A|+ x− 1

|B1|
|B|.

Considering this bound as a function of |B1|, it follows by the same calculation used in the proof of
Theorem 1.3, and in view of |B1| < x and ||A| − |B|| ≤ s ≤ 2s− 2 = x, that it is minimized when
|B1| = x− 1, contradicting (47), and completing the case.

Case B: Either min{m, |A1|} ≥ x or min{n, |B1|} ≥ x. By symmetry we may assume that the
former holds. Note that we can assume |B1| < x and n < x, else the previous case completes the
proof.

If m = x, then, in view of n ≤ x− 1 and ||A|− |B|| ≤ s ≤ x = m, it follows that the bound given
by (3), considered as a function of n, is minimized for the boundary value n = x− 1, contradicting
(47). Therefore we may assume m > x. Applying the same arguments with the roles of x1 and x2

swapped, we also conclude that |A1| > x. Thus (50) implies that

|A+B| ≥ |A|+ |B| − 1 +
1
2
x(n+ 1 +

2|B|
n

)− 2x ≥ k − 1 + x(
√

2|B|+ 1
2

)− 2x.

Hence in view of (46), it follows that

x(
√

2|B|+ 1
2

) ≤ k − δ − 2s+ 3, (54)

and consequently,

(
k − 2s+ 1

2s
+ 1)(

√
2|B|+ 1

2
) ≤ k − 2s+ 3.

Thus
√

2|B|+ 1
2 < 2s, implying that |B| ≤ 2s2 − s, whence |A|+ |B| ≤ 4s2 − s. As a result,

x =


2s, 4s2 − 2s ≤ k ≤ 4s2 − s
2s− 1, 4s2 − 4s ≤ k ≤ 4s2 − 2s− 1
2s− 2, 4s2 − 6s+ 3 ≤ k ≤ 4s2 − 4s− 1.

(55)

There are three cases based on the value of x.

If x = 2s, then (55) implies that k − δ ≤ 4s2 − s− 1, whence (54) implies

k ≤ 2|B|+ s ≤ (2s− 2 +
1
s

)2 + s ≤ 4s2 − 7s+ 8,

contradicting that k ≥ 4s2 − 2s.

If x = 2s− 1, then (55) implies that k − δ ≤ 4s2 − 2s− 2, whence (54) implies that

k ≤ 2|B|+ s ≤ b(2s− 3
2

)2 + sc ≤ 4s2 − 5s+ 2.

Hence k ≥ 4s2 − 4s implies that s = 2, whence the above inequality becomes k ≤ 4s2 − 5s+ 2 = 8.
Thus (54) then implies that k ≤ 2|B|+ s ≤ (7

3 −
1
2)2 + 2 ≤ 6, contradicting that k ≥ 4s2 − 4s = 8.
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Finally, if x = 2s− 2, then (55) implies that k − δ ≤ 4s2 − 4s− 2, whence (54) implies

k ≤ 2|B|+ s ≤ b(2s− 3
2
− 1

2s− 2
)2 + sc ≤ 4s2 − 5s.

However, k ≤ 4s2−5s and (54) imply that k ≤ 2|B|+s ≤ (2s−2)2 +s = 4s2−7s+4, contradicting
that k ≥ 4s2 − 6s+ 3, and completing the proof. �

6. Proof of Theorem 1.4

Finally, we conclude with the proof of Theorem 1.4.

Proof. of Theorem 1.4. If s = 1, then the result follows from Theorem B. If s = 2, then |A| > |B|,
and the result follows from [15, Corollary 5.16 with n = |A|, t = |A| − |B| ≥ 1, d = 2]. So we may
assume s ≥ 3. If |B| = 1, the result is trivial. So |B| ≥ 2. By hypothesis,

|A| ≥ 1
2
s(s− 1)|B|+ s. (56)

Let X = (x1, x2) be an arbitrary ordered basis for R2, where Rx1 = Z1 and Rx2 = Z2. Let
m = |φZ1(A)| and n = |φZ1(B)|. Note max{m, n} ≥ s by hypothesis.

Suppose m < s. Then n ≥ s > m with |B| < |A|, whence Theorem 1.3(i) implies that

|A+B| ≥ 2|A|+ 2|B| − 2n+ 1− |A|+ |B|
n

. (57)

Note (56) and s ≥ 3 imply |A| ≥ 3|B|+ s so that 2 ≤ s ≤ n ≤ |B| ≤ |A|+|B|4 . As a result, (57) and
(56) yield

|A+B| ≥ 2|A|+ 2|B| − 3− |A|+ |B|
2

≥ |A|+
1
2s(s− 1)|B|+ s

2
+

3
2
|B| − 3

= |A|+ (
1
4
s2 − 1

4
s+

3
2

)|B|+ s

2
− 3 ≥ |A|+ (

1
4
s2 − 1

4
s+

3
2

)|B| − s ≥ |A|+ s|B| − s,

as desired. So we may assume |φZ1(A)| = m ≥ s. Moreover, if m = s, then (4) follows in view of
Theorem 1.3(iii) and (56). Therefore |φZ1(A)| = m > s. Since X was arbitrary, this means that
|φZ(A)| > s for any one-dimensional subspace Z. In particular, by letting Z be a line such that
|φZ(B)| < |B| (recall |B| ≥ 2), we conclude that |A+B| ≥ |A|+ |φZ(A)| ≥ |A|+ s. Thus we may
assume |B| ≥ 3, else the proof is complete.

If n = 1, then (4) follows from (3) and m > s. Therefore, as X is arbitrary, it follows that n ≥ 2
and that |φZ(B)| ≥ 2 for any one-dimensional subspace Z.

Now assume to the contrary that (4) is false. We will throughout the course of the proof find
that the following bound holds for varying values of n′ ≥ 1:

|A|+ |B| −m− n′ + 1 +
n′ − 1
m
|A|+ m− 1

n′
|B| ≤ |A+B| ≤ |A|+ s|B| − s− 1. (58)

Inequality (3) shows that the lower bound above holds with n′ = n. Rearranging the terms in (58),
we obtain

(
|B|
n′
− 1)m2 − (s|B| − |B|+ |B|

n′
+ n′ − s− 2)m+ (n′ − 1)|A| ≤ 0. (59)
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Applying the estimate (56) yields

(
|B|
n′
− 1)m2 − (s|B| − |B|+ |B|

n′
+ n′ − s− 2)m+ (n′ − 1)(

1
2
s(s− 1)|B|+ s) ≤ 0. (60)

When |B| > n′, the discriminant of the above quadratic in m must be nonnegative, i.e.,

(s|B| − |B|+M − s− 2)2 − 2(|B|+ 1−M)(s2|B| − s|B|+ 2s) ≥ 0, (61)

where M := |B|
n′ + n′. Collecting terms, we obtain

M2 + (2s2|B|+ 2s− 2|B| − 4)M + 4 + 4|B| − 4s2|B|+ |B|2 − s2|B|2 − 4s|B|+ s2 ≥ 0. (62)

Noting that (2s2|B|+2s−2|B|−4) ≥ 0, we conclude that (62) must hold for the maximum allowed
value for M .

Claim 1. (58) cannot hold with n′ = 2; consequently, |φZ(B)| ≥ 3 for any one-dimensional
subspace Z.

Proof. We know that (58) holds with n′ = n. Thus we need only prove the first part of the claim.
Suppose to the contrary that (58) holds with n′ = 2. Thus considering (59) as a quadratic in m,
we conclude that the discriminant is nonnegative, i.e., that

|A| ≤
(s|B| − |B|2 − s)

2

2|B| − 4
=

(2s− 1)2|B| − 4(2s− 1)s|B|+ 4s2

8|B| − 16
(63)

=
1
8

(2s− 1)2|B| − 1
4

(2s− 1) +
(s− 1)2

2|B| − 4
, (64)

which contradicts the hypothesis of (a). Thus we may assume the hypothesis of (b) holds. From
(60), we have

(|B| − 2)m2 − (2s|B| − |B| − 2s)m+ s(s− 1)|B|+ 2s ≤ 0. (65)

Considering (65) as a quadratic in m, we see that its minimum occurs for

m =
(2s− 1)|B| − 2s

2|B| − 4
= s− 1

2
+

s− 1
|B| − 2

.

However, the hypothesis |B| ≥ 2s+4
3 of (b) implies that s− 1

2 + s−1
|B|−2 ≤ s+ 1. Consequently, since

m ≥ s+ 1, we conclude that (65) is minimized for the boundary value m = s+ 1, whence

0 ≥ (|B| − 2)(s+ 1)2 − (2s|B| − |B| − 2s)(s+ 1) + s(s− 1)|B|+ 2s = 2|B| − 2,

contradicting that |B| ≥ 3, and completing the claim. �

Claim 2. If (58) holds with n′ = 3, then |B| ≤ 6; consequently, if |B| ≥ 7, then |φZ(B)| ≥ 4 for
any one-dimensional subspace Z.

Proof. As in the previous claim, we need only prove the first part. Assuming (58) holds with n′ = 3,
so that M = |B|

3 + 3, it follows in view of (62) and s ≥ 3 that

0 ≤ −s2|B|2 − 10s|B|+ 6s2|B|+ 4
3
|B|2 − 4|B|+ 3 + 18s+ 3s2 (66)

≤ −s2|B|2 + 6s2|B|+ 4
3
|B|2 + 3ss = −(

23
27

+
4
27

)s2|B|2 + 6s2|B|+ 4
3
|B|2 + 3s2

≤ −23
27
s2|B|2 + 6s2|B|+ 3s2,
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which implies |B| ≤ 7. However, it can be individually checked that (66) cannot hold for |B| = 7,
completing the claim. �

Claim 3. If (58) holds with n′ = 4, then |B| ≤ 8; consequently, if |B| ≥ 9, then |φZ(B)| ≥ 5 for
any one-dimensional subspace Z.

Proof. Assuming (58) holds with n′ = 4, so that M = |B|
4 + 4, it follows in view of (62) and s ≥ 3

that

0 ≤ −s2|B|2 − 7s|B|+ 8s2|B|+ 9
8
|B|2 − 6|B|+ 8 + 16s+ 2s2 (67)

< −s2|B|2 + 8s2|B|+ 9
8
|B|2 + 2s2 = −(

7
8

+
1
8

)s2|B|2 + 8s2|B|+ 9
8
|B|2 + 2s2

≤ −7
8
s2|B|2 + 8s2|B|+ 2s2

which implies |B| ≤ 9. However, it can be individually verified that (67) cannot hold for |B| = 9,
completing the claim. �

Claim 4. If |B| ≥ 7 and Z is any one-dimensional subspace, then

|φZ(A)| >
s|B|

4
, when s ≥ 4 (68)

|φZ(A)| >
s|B|

5
, when s = 3. (69)

Proof. Suppose to the contrary that

m ≤ s|B|
4
, when s ≥ 4 (70)

m ≤ s|B|
5
, when s = 3. (71)

Note (70) and (71) each implies m < |A|. Let l :=
√

m(m−1)|B|
|A|−m .

If s ≥ 4, then (56) and (70) imply

l ≤

√
m2|B|

1
2s(s− 1)|B|+ s−m

<

√
s2|B|3/16

1
2s(s− 1)|B| − s|B|

4

=
|B|
4

√
s2

1
2s

2 − 3
4s
≤
√

5
5
|B|. (72)

If s = 3, then (56) and (71) imply

l ≤

√
m2|B|

1
2s(s− 1)|B|+ s−m

<

√
9
25 |B|3

3|B| − 3
5 |B|

≤
√

15
10
|B|. (73)

From the proof of Theorem 1.3, we know that l minimizes (3), and thus that (58) holds with
n′ = l. If l ≤ 3, then (3) will be minimized for either n′ = 1, n′ = 2 or n′ = 3, whence Claims 1
and 2 imply |B| ≤ 6. Note that 1

3 < max{
√

5
5 ,
√

15
10 }. Hence if s ≥ 4, then (72) implies that

M =
|B|
l

+ l ≤ 5√
5

+
√

5
5
|B| < 9

20
|B|+ 9

4
, (74)

while if s = 3, then (73) implies that

M =
|B|
l

+ l ≤ 10√
15

+
√

15
10
|B| < 2

5
|B|+ 13

5
. (75)
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Combining (74) and (62) and applying the estimate s ≥ 4, we obtain

0 ≤ − 1
10
s2|B|2 − 31

10
s|B|+ 1

2
s2|B|+ 121

400
|B|2 − 11

40
|B|+ 1

16
+

9
2
s+ s2 (76)

≤ − 1
10
s2|B|2 +

1
2
s2|B|+ 121

400
|B|2 + s2 ≤ −(

19
240

+
1
48

)s2|B|2 +
1
2
s2|B|+ 1

3
|B|2 + s2

≤ − 19
240

s2|B|2 +
1
2
s2|B|+ s2,

which implies |B| ≤ 7. However, individually checking the case |B| = 7 in (76) shows that in fact
|B| ≤ 6. Combining (75) and (62) and assuming s = 3, we obtain

−36|B|2 + 12|B|+ 624 ≥ 0,

which implies |B| ≤ 4, completing the claim. �

Claim 5. There are s collinear points in A.

Proof. Suppose instead that A contains no s collinear points. Then it follows from the pigeonhole
principle and (56) that

|φZ(A)| > 1
2
s|B|+ 1, (77)

for any one-dimensional subspace Z. Consequently, if B has at least 3 collinear points contained
in a line parallel to (say) Z, then Theorem B implies

|A+B| ≥ |A|+ 2|φZ(A)| > |A|+ 2(
1
2
s|B|+ 1) = |A|+ s|B|+ 2,

as desired. Therefore we may assume B contains no 3 collinear points.

Suppose h1(B,B) < |B| − 1. Then, since B contains no 3 collinear points, it follows that
there exists a pair of parallel lines each containing 2 points of B. Hence, by an appropriate
affine transformation, we may w.l.o.g assume (0, 0), (1, 0), (0, 1), (x, 1) ∈ B, for some x > 0. Let
x1 = (1, 0) and x2 = (0, 1). Let A1 ⊆ A be the subset obtained by choosing for each element
of φZ1(A) the element of A with largest x1-coordinate. Let A2 ⊆ A be likewise defined using Z2

instead of Z1. Note A1 + (1, 0) contains |φZ1(A)| points in A+B disjoint from A.

Let z+Rx1 be an arbitrary line parallel to Rx1, and let a1, . . . , ar be the elements of A2∩(z+Rx1).
Moreover, if A1 ∩ (z + (0, 1) + Rx1) is nonempty, then there is a unique element y ∈ A1 ∩ (z +
(0, 1) + Rx1), and so let as, . . . , ar be those elements of A2 ∩ (z + Rx1) with φZ1(ai) ≥ φZ1(y) + 1.
If A1 ∩ (z+ (0, 1) + Rx1) is empty, let s = r+ 1. Note that for each ai, i < s, the element ai + (0, 1)
is an element of A+B contained in neither A nor A1 + (1, 0), while for each ai, i ≥ s, the element
ai+(x, 1) is an element of A+B contained in nether A nor A1 +(1, 0) (since x > 0). Consequently,
since z is arbitrary and since A1 + (1, 0) contains |φZ1(A)| points from A+ B disjoint from A, we
conclude that

|A+B| ≥ |A+ {(0, 0), (1, 0), (0, 1), (x, 1)}| ≥ |A|+ |φZ1(A)|+ |φZ2(A)| ≥ |A|+ s|B|+ 2,

where the latter inequality follows by (77) applied both with Z = Rx1 and Z = Rx2. Thus (4)
holds, as desired, and so we may assume h1(B,B) = |B| − 1.

Choose x1 such that |φZ1(B)| < |B|, and let A′ = CX(A), B′ = CX(B), Ai = A′∩(Zx1+(i−1)x2)
and Bj = B′ ∩ (Zx1 + (j − 1)x2), for i = 1, . . . ,m and j = 1, . . . , n. Note, since h1(B,B) = |B| − 1
and |φZ1(B)| < |B|, that n = |B| − 1, |B1| = 2, and |Bi| = 1 for i > 1. Since A contains no s
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collinear points, we have |Ai| ≤ s−1 for all i. Observe, for j = 1, . . . ,m, that we have the following
estimate:

|A+B| ≥
j−1∑
i=1

|Ai +B1|+
|B|−1∑
i=1

|Aj +Bi|+
m∑

i=j+1

|Ai +Bn| =

|A|+ (|B| − 2)|Aj |+ |B|+ (j − 1)|B1|+ (m− j)|Bn| − (m+ |B| − 2) = |A|+ (|B| − 2)|Aj |+ j.

Thus, assuming (4) is false, we conclude that

|Aj | ≤
s(|B| − 1)− j − 1

|B| − 2
= s+

s− j − 1
|B| − 2

, (78)

for j = 1, . . . ,m. Consequently, for j such that s+ (k− 1)(|B| − 2) ≤ j ≤ s+ k(|B| − 2)− 1, where
k = 1, 2, . . ., we infer that

|Aj | ≤ s− k. (79)

Note that

|Aj | ≤ s− 1 (80)

for j = 1, . . . , s − 1, as remarked earlier. Summing (79) and (80) over all possible j, we conclude
that

|A| ≤ (s− 1)2 + (|B| − 2)
s−1∑
k=1

(s− k) = (s− 1)2 + (|B| − 2)
s(s− 1)

2
=

1
2
s(s− 1)|B| − s+ 1,

contradicting (56), and completing the claim. �

In view of Claim 5, choose x1 so that there are s points on some line parallel to Zx1. Let
A′ = CX(A) and B′ = CX(B). Since |φZ1(A)| ≥ s and since A contains s collinear points on a
line parallel to Zx1, it follows that h1(A′, B′) ≥ h1(A′, A′) ≥ s, whence A′ and B′ also satisfy the
hypotheses of the theorem. Furthermore, if |A′+B′| ≥ |A′|+s(|B′|−1) = |A|+s(|B|−1), then the
proof is complete in view of (8). Thus we can w.l.o.g. assume A = A′ and B = B′ are compressed
subsets.

Let Ai = A∩ (Zx1 + (i− 1)x2) and Bj = B ∩ (Zx1 + (j− 1)x2) for i = 1, . . . ,m and j = 1, . . . , n.
By the same estimate used for (51), we have

|A+B| ≥ |A|+ |B|+ (n− 1)(|A1| − 1) +m(|Bn| − 1)− |Bn|
≥ |A|+ |B| − 1 + (n− 1)(|A1| − 1). (81)

If |B| ≥ 9, then Claims 1, 2 and 3 imply n ≥ 5, whence Claim 4 and (81) imply that

|A+B| ≥ |A|+ |B| − 1 + 4(
s|B|+ 1

4
− 1) = |A|+ (s+ 1)|B| − 4,

if s ≥ 4, and that

|A+B| ≥ |A|+ |B| − 1 + 4(
3|B|+ 1

5
− 1) = |A|+ 17

5
|B| − 21

5
> |A|+ 3|B| − 1,

if s = 3. In both cases (4) follows, as desired. So we may assume |B| ≤ 8. In view of Claim 1
applied with Z = Zx1 and Z = Zx2, we infer that |B| ≥ 5.
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Using the estimate from (50) (with the roles of A and B reversed), we obtain

|A|+ |B| − 1 + (|B1| − 1)
m− 1

2
+ (n− 1)(

|A|
m
− 1) ≤ |A+B| ≤ |A|+ s|B| − s− 1.

Multiplying by m, applying (56), and rearranging terms yields

|B1| − 1
2

·m2 − (s|B| − |B|+ |B1| − 3
2

+ n− s)m+ (n− 1)(
1
2
s(s− 1)|B|+ s) ≤ 0.

Consequently, the discriminant of the above quadratic in m must be nonnegative, implying

(s|B| − |B|+ |B1| − 3
2

+ n− s)2 − (|B1| − 1)(n− 1)(s(s− 1)|B|+ 2s) ≥ 0 (82)

If |B| = 5, then from Claim 1, applied with Z = Zx1 and Z = Zx2, we conclude n = |B1| = 3.
Thus (82) implies 4s2+4s−4 ≤ 0, contradicting s ≥ 3. If |B| = 7, then from Claims 1 and 2, applied
with Z = Zx1 and Z = Zx2, we conclude n = |B1| = 4. Thus (82) implies 27s2 − 15s − 25

4 ≤ 0,
contradicting s ≥ 3. If |B| = 8, then from Claims 1 and 2, applied with Z = Zx1 and Z = Zx2,
we conclude n ≥ 4 and |B1| ≥ 4. Thus (82) implies 23s2 − 5s − 49

4 ≤ 0, contradicting s ≥ 3.
Consequently, it remains only to handle the case |B| = 6.

In view of Claim 1 and by swapping the roles of x1 and x2 if necessary, we may assume n = 3.
Hence (3) implies that (58) holds with n′ = 3. Thus considering (59) as a quadratic in m, we
conclude that the discriminant is nonnegative, i.e., that

|A| ≤ (5s− 3)2

8
=

1
8

(2s− 1)2|B| − 1
4

(2s− 1) +
(s− 1)2

2(|B| − 2)
. (83)

This completes the proof in case (a) holds. From (61), we have

0 ≤ (5s− 3)2 − 24s2 + 16s = s2 − 14s+ 9, (84)

which implies s ≥ 14. Thus |B| ≥ 2s+4
3 ≥ 32

3 > 6, contradicting the hypothesis of (b), and
completing the proof. �
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