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Abstract. For a sequence S of terms from an abelian group G of length |S|, let Σn(S) denote

the set of all elements that can be represented as the sum of terms in some n-term subsequence

of S. When the subsum set is very small, |Σn(S)| ≤ |S| − n + 1, it is known that the terms of

S can be partitioned into n nonempty sets A1, . . . , An ⊆ G such that Σn(S) = A1 + . . . + An.

Moreover, if the upper bound is strict, then |Ai \ Z| ≤ 1 for all i, where Z =
⋂n
i=1(Ai + H)

and H = {g ∈ G : g + Σn(S) = Σn(S)} is the stabilizer of Σn(S). This allows structural

results for sumsets to be used to study the subsum set Σn(S) and is one of the two main

ways to derive the natural subsum analog of Kneser’s Theorem for sumsets. In this paper,

we show that such a partitioning can be achieved with sets Ai of as near equal a size as

possible, so b |S|
n
c ≤ |Ai| ≤ d |S|n e for all i, apart from one highly structured counterexample

when |Σn(S)| = |S| − n + 1 with n = 2. The added information of knowing the sets Ai

are of near equal size can be of use when applying the aforementioned partitioning result, or

when applying sumset results to study Σn(S) (e.g., [20]). We also give an extension increasing

the flexibility of the aforementioned partitioning result and prove some stronger results when

n ≥ 1
2
|S| is very large.

1. Introduction

Basic Notation. Let G be an abelian group. Following standard conventions in Combinatorial

Number Theory (see [37] [22] [21]), by a sequence S of terms from G, we mean a finite, unordered

string of elements

S = g1 · . . . · g`

with gi ∈ G the terms of the sequence S, each term separated via the boldsymbol · (differentiating

it from multiplication in circumstances where both operations are in use). Formally, a sequence

is considered as an element of the free abelian monoid F(G) with basis G and operation ·, giving

a standardized system of notation for sequences. Given an element g ∈ G, we let vg(S) ≥ 0

denote the number of occurrences of the term g in S and let g[n] represent the sequence consisting

of the element g repeated n times, so that any sequence S ∈ F(G) has the form

S =
∏
g∈G

•
g[vg(S)].

We let T | S denote that T is a subsequence of S, so vg(T ) ≤ vg(S) for all g ∈ G, and in such

case use T [−1] · S or S · T [−1] to denote the sequence obtained by removing from S the terms
1
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in T , so vg(T
[−1] · S) = vg(S)− vg(T ). The support of the sequence S is the set of all elements

occurring in S:

Supp(S) = {g ∈ G : vg(S) > 0}.

For a subset X ⊆ G, let SX | S denote the subsequence of S consisting of all terms from X, so

SX =
∏
g∈X

•
g[vg(S)].

Then |S| = ` is the length of the sequence,

h(S) = max{vg(S) : g ∈ G}

is the maximum multiplicity of a term in S, σ(S) = g1 + . . .+ gn is the sum of S, and

Σn(S) = {σ(T ) : T | S, |T | = n} ⊆ G

is the set of n-term subsums of S, for n ≥ 0.

All intervals are discrete, so [m,n] = {x ∈ Z : m ≤ x ≤ n}. Given subsets A1, . . . , An ⊆ G,

their sumset is defined as

A1 + . . .+An = {a1 + . . .+ an : ai ∈ Ai}.

The stabilizer of a set A ⊆ G is the subgroup H(A) = {g ∈ G : g + A = A} ≤ G, which is the

largest subgroup H such that A is a union of H-cosets. If H(A) is trivial, then A is aperiodic, and

otherwise A is periodic. We say that A is H-periodic if A is a union of H-cosets, equivalently, if

H ≤ H(A). For x ∈ G and A, B ⊆ G, we let rA+B(x) = |(A−x)∩B| = |{(a, b) ∈ A×B : a+b =

x}| denote the number of representations for x as an element of A + B, and call x ∈ A + B a

unique expression element when rA+B(x) = 1. For H ≤ G, we let φH : G → G/H denote the

natural homomorphism.

Background. The study of sequence subsums is a classical topic in Combinatorial Number

Theory. Often, it is desired that either 0 ∈ Σn(A), or |Σn(S)| is large, or Σn(S) = G, and

either conditions that guarantee the appropriate outcome, or the structure of sequences failing

to satisfy the desired outcome, are sought. The Erdős-Ginzburg-Ziv Theorem [37] [45] [10] and

Davenport Constant [37] [22] [43] are two such examples of very well-studied problems along

these lines. A selection of other examples may be found here [1] [16] [24] [47] [48] [49].

One effective tool for studying Σn(S), e.g., employed in the original proof of the Erdős-

Ginzburg-Ziv Theorem [10], is via setpartitions. Consider a sequence A = A1 · . . . · An whose

terms Ai are nonempty (and finite) subsets of G. We call such a sequence a setpartition over G.

Note the setpartition A naturally partitions the terms in its underlying sequence

S(A) :=
∏
i∈[1,n]

•∏
g∈Ai

•
g
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into n nonempty sets. It is then rather immediate that
n∑
i=1
Ai ⊆ Σn(S) when S(A) | S, which

allows sumset results to be used for studying Σn(S). This becomes even more effective if we

know there is some setpartition A = A1 · . . . · An with S(A) | S such that equality holds,
n∑
i=1
Ai = Σn(S), for this means the subsums Σn(A) can be represented as an ordinary sumset,

and sumset results directly applied. The more structure that is known for the Ai, the easier

and more effective it is to apply the corresponding sumset results. While this cannot hold for

a general sequence, we have the striking fact that this is always possible so long as |Σn(S)| is

sufficiently small [37, Theorem 14.1] [26].

Theorem A (Partition Theorem). Let G be an abelian group, let n ≥ 1, let S ∈ F(G) be a

sequence of terms from G, and suppose S′ | S is a subsequence with h(S′) ≤ n ≤ |S′|. Then

there exists a setpartition A = A1 · . . . ·An with S(A) | S and |S(A)| = |S′| such that either

1. |Σn(S)| ≥ |
n∑
i=1
Ai| ≥ |S′| − n+ 1, or

2. Σn(S) =
n∑
i=1
Ai, Supp(S(A)[−1]·S) ⊆ Z and |Ai\Z| ≤ 1 for all i, where Z =

⋂n
i=1(Ai+H)

and H = H(Σn(S)).

Theorem A ensures that Σn(S) =
n∑
i=1
Ai, for some setpartition A = A1 · . . . ·An with S(A) | S

and |S(A)| = |S′|, provided |Σn(S)| ≤ |S′|−n+1, with additional structural information holding

when the upper bound is strict. Worth noting, Theorem A can always be applied (so long as

|S| ≥ n) with S′ taken to be the maximal subsequence of S with h(S′) ≤ n. In case Theorem A.2

holds, this allows us to apply Kneser’s Theorem [42] [37] [45] [22] to derive yet more information

regarding Σn(S), which is often incorporated into the statement of Theorem A itself (e.g. [37,

Theorem 14.1] [38]).

Theorem B (Kneser’s Theorem). Let G be an abelian group, let A1, . . . , An ⊆ G be finite,

nonempty subsets, and let H = H(
n∑
i=1
Ai). Then

|
n∑
i=1

Ai| ≥
( n∑
i=1

|φH(Ai)| − n+ 1
)
|H| =

n∑
i=1

|Ai +H| − (n− 1)|H|.

Kneser’s Theorem is the fundamental lower bound for sumsets in an abelian group. Combining

it with Theorem A (applied modulo H) yields the analogous result for sequence subsums [38].

Theorem C (Subsum Kneser’s Theorem). Let G be an abelian group, let n ≥ 1, let S ∈ F(G)

be a sequence of terms from G with |S| ≥ n, and let H = H(Σn(S)). Then

|Σn(S)| ≥
(
|φH(S′)| − n+ 1

)
|H|,

where S′ | S is a maximum length subsequence with h(φH(S′)) ≤ n.
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Note |φH(S′)| =
∑

g∈G/H
max{n, vg(φH(S))}. The Subsum Kneser’s Theorem can alternatively

be derived as a special case of the DeVos-Goddyn-Mohar Theorem [9] [37]. Theorem C, and the

more general Theorem A, have found numerous use in problems regarding sequence subsums

[5] [15] [18] [19] [23] [25] [27] [28] [29] [30] [31] [32] [33] [34] [36], extending, complementing or

resolving questions of established interest [2] [3] [4] [6] [7] [8] [10] [11] [12] [13] [14] [17] [39] [40]

[41] [44] [46] [50].

In this paper, we will further strengthen Theorem A. Theorem 1.1 applies to the more general

object X + Σn(S) rather than Σn(S) (which is the case X = {0}), showing that Theorem A

holds even if a fixed portion is “frozen” in the set X. For instance, if X ⊆ Σm(T ), then

X + Σn(S) ⊆ Σm+n(T · S), and we obtain the conclusion of Theorem A under the restriction

of only being able to repartition the terms from S. Theorem 1.1 also shows that, apart from

one highly structured counter-example characterized in Theorem 1.1.3, the resulting setpartition

A = A1 · . . . · An can be chosen such that the sizes of the sets Ai are as near equal as possible,

i.e., with ||Ai| − |Aj || ≤ 1 for all i, j ∈ [1, n] (equivalently, b |S(A)|
n c ≤ |Ai| ≤ d

|S(A)|
n e for all

i). We call such a setpartition equitable. While such improvements are not needed for every

application of Theorem A, they can simplify technical issues related to the use of Theorem A,

sometimes in an essential fashion. For example, the results of this paper (Sections 2 and 3) are

needed to prove the main result in the forthcoming paper [20] dealing with refined properties of

product-one sequences over a dihedral group.

Theorem 1.1. Let G be an abelian group, let n ≥ 1, let X ⊆ G be a finite, nonempty set, let

L ≤ H(X), let S ∈ F(G) be a sequence of terms from G, and suppose S′ | S is a subsequence with

h(φL(S′)) ≤ n ≤ |S′|. Then there is a setpartition A = A1 · . . . ·An with S(A) | S, |S(A)| = |S′|
and |φL(Ai)| = |Ai| for all i ∈ [1, n] such that

1. |X + Σn(S)| ≥ |X +
n∑
i=1
Ai| ≥ (|S′| − n)|L|+ |X| and A is equitable, or

2. X + Σn(S) = X +
n∑
i=1
Ai, A is equitable, Supp(S(A)[−1] ·S) ⊆ Z and |Ai \Z| ≤ 1 for all

i, where Z =
⋂n
i=1(Ai +H) and H = H(X + Σn(S)), or

3. n = 2, X \ (β + L) and (A1 + L) ∩ (A2 + L) are K-periodic, Supp(S(A)[−1] · S) ⊆
(A1 + L) ∩ (A2 + L),

(
(A1 + L) ∪ (A2 + L)

)
\
(
(A1 + L) ∩ (A2 + L)

)
is a K-coset,

H(X + Σn(S)) = H(X +
n∑
i=1
Ai) = H(X) = L, and |X + Σn(S)| = (|S′| − n)|L|+ |X|, for

some β ∈ X and K ≤ G with L ≤ K and K/L ∼= (Z/2Z)2.

In Section 3, we will also derive some additional strengthenings of Theorem 1.1 in the case

n ≥ 1
2 |S
′| is very large. In particular, we will achieve the same strengthened conclusions recently

guaranteed in [38] under a different n is large assumption (Theorem 3.2). This, in turn, will

allow us to derive additional information for S, in particular, when |S| = 2n with |Σn(S)| ≤ n+1

and h(S) ≤ n (Theorem 3.3).
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2. Partitioning Results for General n

In this section, we will make heavy use of the arguments used to prove [37, Theorem 14.1]

and the following easy consequence of Kneser’s Theorem (see [37, Theorem 5.1]).

Theorem D. Let G be an abelian group, and let A, B ⊆ G be finite, nonempty subsets. If

|A+B| < |A|+ |B| − 1, then A+ (B \ {x}) = A+B for all x ∈ B.

We will also need the following observation, that follows by a routine induction on n.

Lemma 2.1. Let G be an abelian group and let A1, . . . , An ⊆ G be finite, nonempty subsets.

Suppose |
j∑
i=1
Ai| ≥ |

j−1∑
i=1
Ai|+ |Aj | − 1 for all j ∈ [2, n]. Then |

n∑
i=1
Ai| ≥

n∑
i=1
|Ai| − n+ 1. Moreover,

if |
n∑
i=1
Ai| =

n∑
i=1
|Ai| − n+ 1, then |

j∑
i=1
Ai| = |

j−1∑
i=1
Ai|+ |Aj | − 1 for all j ∈ [2, n].

Let G be an abelian group, let X ⊆ G be a nonempty subset and let S ∈ F(G) be a sequence.

A setpartition A = A1 · . . . · An with S(A) | S will be called maximal relative to X if any

setpartition B = B1 · . . . · Bn with S(B) | S, |S(B)| = |S(A)| and X +
n∑
i=1
Ai ⊆ X +

n∑
i=1
Bi has

X +
n∑
i=1
Ai = X +

n∑
i=1
Bi. We simply say A is maximal relative to X if this is the case with

S = S(A).

Lemma 2.2. Let G be an abelian group, let n ≥ 1, let X ⊆ G be a finite, nonempty subset, let

S ∈ F(G) be a sequence, let A = A1 · . . . ·An be a setpartition with S(A) | S maximal relative to

X, and let H = H(X +
n∑
i=1
Ai). Suppose

(1) |X +

n∑
i=1

Ai| < |X|+
n∑
i=1

|Ai| − n.

Then there exists a setpartition B = B1 · . . . ·Bn with S(B) | S, |S(B)| = |S(A)| and X+
n∑
i=1
Bi =

X+
n∑
i=1
Ai such that Supp(S(B)[−1] ·S) ⊆ Z and |(y+H)∩Bi| ≤ 1 for all y ∈ G\Z and i ∈ [1, n],

where Z =
⋂n
i=1(Bi +H).

Proof. In view of (1) and Kneser’s Theorem, we conclude that H is nontrivial. Consider an

arbitrary setpartition B = B1 · . . . · Bn with S(B) | S, |S(B)| = |S(A)| and X +
n∑
i=1
Ai ⊆

X +
n∑
i=1
Bi. Then X +

n∑
i=1
Bi = X +

n∑
i=1
Ai since S(A) | S with A maximal relative to X. Let

Z =
⋂n
i=1(Bi + H). In view of (1) and Lemma 2.1, there must be some j ∈ [1, n] such that
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|X +
j∑
i=1
Bi| < |X +

j−1∑
i=1
Bi|+ |Bj | − 1, in which case Theorem D implies

(2) X +

j−1∑
i=1

Bi + (Bj \ {x}) = X +

j∑
i=1

Bi for all x ∈ Bj .

Since |X +
j∑
i=1
Bi| < |X +

j−1∑
i=1
Bi|+ |Bj | − 1, Kneser’s Theorem implies that |(x+H ′) ∩Bj | ≥ 2

for every x ∈ Bj , where H ′ = H(X +
j∑
i=1
Bi) ≤ H. In particular,

(3) |(x+H) ∩Bj | ≥ 2 for all x ∈ Bj .

Now further restrict B by assuming
n∑
i=1
|φH(Bi)| is maximal (subject to the defining condition

for B). Then we must have Bj ⊆ Z, where j ∈ [1, n] is the index defined above. Indeed, if this

fails, then there is some x ∈ Bj \ Z, and thus also some k ∈ [1, n] with φH(x) /∈ φH(Bk) by

definition of Z. We can then remove x from Bj and place it in Bk to yield a new setpartition

B′ = B′1 · . . . · B′n, where B′j = Bj \ {x}, B′k = Bk ∪ {x} and B′i = Bi for i 6= j, k. In view of

(2), we have X +
n∑
i=1
Ai = X +

n∑
i=1
Bi ⊆ X +

n∑
i=1
B′i, while in view of (3) and φH(x) /∈ φH(Bk), we

have
n∑
i=1
|φH(B′i)| =

n∑
i=1
|φH(Bi)| + 1, and now B′ contradicts the maximality of

n∑
i=1
|φH(Bi)| for

B. Therefore

(4) Bj ⊆ Z.

Claim A. |(y +H) ∩Bi| ≤ 1 for all y ∈ G \ Z and i ∈ [1, n].

Proof. Assume by contradiction there is some k ∈ [1, n] and y ∈ Bk \Z with |(y+H)∩Bk| ≥ 2.

Let C = C1·. . .·Cn be a setpartition with S(C) = S(B), X+
n∑
i=1
Ci = X+

n∑
i=1
Ai, and Ci\Z = Bi\Z

and φH(Ci) = φH(Bi) for all i, such that |Ck| is maximal. Since φH(Ci) = φH(Bi) for all i, we

still have
n∑
i=1
|φH(Ci)| maximal, while Z =

⋂n
i=1(Bi + H) =

⋂n
i=1(Ci + H). Thus, let j′ ∈ [1, n]

be an index so that Cj′ satisfies (2), (3) and (4) for C (in place of Bj).

Suppose Cj′ ⊆ Ck. Since y /∈ Z but Cj′ ⊆ Z (by (4)), we actually have Cj′ ⊆ Ck \ {y}, in

which case

(5) Cj′ + Ck ⊆ (Cj′ ∪ {y}) + (Ck \ {y}).

In such case, we can define a new setpartition C′ = C ′1 · . . . · C ′n by removing y from Ck and

placing it in Cj′ , so C ′k = Ck \ {y}, C ′j′ = Cj′ ∪ {y} and C ′i = Ci for i 6= k, j′. Note y ∈

Bk \ Z = Ck \ Z. In view of (5), we have X +
n∑
i=1
Ai = X +

n∑
i=1
Ci ⊆ X +

n∑
i=1
C ′i, while in view of

|(y +H) ∩ Ck| = |(y +H) ∩ Bk| ≥ 2 (as y /∈ Z and Ck \ Z = Bk \ Z) and φH(y) /∈ φH(Cj′) (as
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y /∈ Z and Cj′ ⊆ Z by (4)), we have
n∑
i=1
|φH(C ′i)| =

n∑
i=1
|φH(Ci)|+ 1 =

n∑
i=1
|φH(Bi)|+ 1, so that C′

contradicts the maximality of
n∑
i=1
|φH(Bi)| for B. So we instead conclude that Cj′ * Ck. Thus,

in view (4), it follows that there is some x ∈ Cj′ ⊆ Z with x /∈ Ck.
In this case, we define a new setpartition C′ = C ′1 · . . . · C ′n by removing x from Cj′ and

placing it in Ck, so C ′j′ = Cj′ \ {x}, C ′k = Ck ∪ {x} and C ′i = Ci for i 6= j′, k. In view of

(2), we have X +
n∑
i=1
Ai = X +

n∑
i=1
Ci ⊆ X +

n∑
i=1
C ′i, while in view of (3) and x ∈ Z, we have

φH(C ′i) = φH(Ci) = φH(Bi) and C ′i \ Z = Ci \ Z = Bi \ Z for all i. Thus, since |C ′k| = |Ck|+ 1,

we see that C′ contradicts the maximality of |Ck| for C, completing the claim. �

In view of Claim A, we see that the lemma holds with the setpartition B unless there is some

y ∈ Supp(S(B)[−1] ·S) with y /∈ Z. However, if this were the case, then φH(y) /∈ φH(Bj) in view

of (4). Define a new setpartition B′ = B′1 · . . . · B′n by removing any term x ∈ Bj from Bj and

placing y into Bj instead, so B′j = Bj \ {x} ∪ {y} and B′i = Bi for i 6= j. In view of (2), we

have X +
n∑
i=1
Ai = X +

n∑
i=1
Bi ⊆ X +

n∑
i=1
B′i, while in view of (3) and φH(y) /∈ φH(Bj), we have

n∑
i=1
|φH(B′i)| =

n∑
i=1
|φH(Bi)| + 1, in which case B′ contradicts the maximality of

n∑
i=1
|φH(Bi)| for

B, completing the proof. �

Lemma 2.3. Let G be an abelian group, let n ≥ 1, let X ⊆ G be a finite, nonempty subset, let

A = A1 · . . . ·An be a setpartition over G maximal relative to X, let H = H(X +
n∑
i=1
Ai) and let

Z =
⋂n
i=1(Ai +H). Suppose |(y +H) ∩Ai| ≤ 1 for all y ∈ G \ Z and i ∈ [1, n], and

(6) |X +

n∑
i=1

Ai| < |X|+
n∑
i=1

|Ai| − n+ (|H| − 1).

Then there exists a setpartition B = B1 · . . . ·Bn with S(B) = S(A), X +
n∑
i=1
Bi = X +

n∑
i=1
Ai and

Z ⊆
⋂n
i=1(Bi +H) such that |Bi \ Z| ≤ 1 for all i.

Proof. In view of (6) and Kneser’s Theorem, we conclude that H is nontrivial. Consider a

setpartition B = B1 · . . . ·Bn with

S(B) = S(A), X +
n∑
i=1

Bi = X +
n∑
i=1

Ai, Z =
n⋂
i=1

(Ai +H) ⊆
n⋂
i=1

(Bi +H) and(7)

|(y +H) ∩Bi| ≤ 1 for all y ∈ G \ Z and i ∈ [1, n].

Since A satisfies these conditions, it follows that such a setpartition B exists. Let e =
n∑
i=1
|Bi\Z| ≥

0. Let Ie ⊆ [1, n] be all those indices i ∈ [1, n] with Bi \ Z nonempty, and let IZ ⊆ [1, n] be all
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those indices i ∈ [1, n] with Bi ⊆ Z. By re-indexing the Bi, we can w.l.o.g. assume IZ = [1,m]

and Ie = [m+ 1, n].

Suppose |X +
j∑
i=1
Bi| ≥ |X +

j−1∑
i=1
Bi| + |Bj | − 1 for all j ∈ [1,m]. Then Lemma 2.1 implies

|X +
m∑
i=1
Bi| ≥ |X|+

m∑
i=1
|Bi| −m. Kneser’s Theorem implies

|
(
X +

m∑
i=1

Bi

)
+

n∑
i=m+1

Bi| ≥ |X +

m∑
i=1

Bi|+
n∑

i=m+1

|Bi +H| − (n−m)|H|(8)

≥ |X +

m∑
i=1

Bi|+
n∑

i=m+1

|Bi|+ e(|H| − 1)− (n−m)|H|,

with the second inequality in view of the final condition in (7). Combined with the previous

estimate for |X +
m∑
i=1
Bi|, we find

(9) |X +

n∑
i=1

Bi| ≥ |X|+
n∑
i=1

|Bi| − n|H|+ (m+ e)(|H| − 1).

Note that e ≥ |Ie| = n −m. If equality holds, then |Bi \ Z| ≤ 1 follows for all i, completing

the proof. Therefore we can instead assume e ≥ n − m + 1, which combined with (9) yields

|X +
n∑
i=1
Ai| = |X +

n∑
i=1
Bi| ≥ |X| +

n∑
i=1
|Bi| − n + (|H| − 1) = |X| +

n∑
i=1
|Ai| − n + (|H| − 1),

contrary to hypothesis. So we may instead assume there is some j ∈ [1,m] with |X +
j∑
i=1
Bi| <

|X+
j−1∑
i=1
Bi|+|Bj |−1. In particular, this argument shows that IZ is nonempty for any setpartition

satisfying (7), and Theorem D ensures that

(10) X +

j−1∑
i=1

Bi + (Bj \ {x}) = X +

j∑
i=1

Bi for all x ∈ Bj .

In particular, |Bj | ≥ 2. Let K = H(X +
j∑
i=1
Bi) ≤ H. If |(y + H) ∩ Bj | = 1 for some y ∈ G,

then |(y + K) ∩ Bj | = 1 as well, whence Kneser’s Theorem implies |
(
X +

j−1∑
i=1
Bi

)
+ Bj | ≥

|X +
j−1∑
i=1
Bi|+ |Bj +K| − |K| ≥ |X +

j−1∑
i=1
Bi|+ |Bj | − 1, contrary to the definition of j. Therefore

we instead conclude that

(11) |(y +H) ∩Bj | ≥ 2 for all y ∈ Bj .

Now assume our setpartition B satisfying (7) is chosen such that

M1. |Ie| is maximal (subject to (7)),
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M2.
∑
i∈Ie
|Bi| is maximal (subject to (7) and M1).

If |Bi \Z| = 1 for every i ∈ Ie = [m+ 1, n], then the setpartition B satisfies the conditions of the

lemma. Therefore we may assume there is some k ∈ Ie = [m+1, n] with distinct y1, y2 ∈ Bk \Z.

Since j ∈ [1,m] = IZ , we have Bj ⊆ Z. Thus y1, y2 /∈ Bj .
Suppose Bs ⊆ Bk for some s ∈ IZ . Then Bs ⊆ Bk\{y1} and Bs+Bk ⊆ (Bs∪{y1})+(Bk\{y1}),

the former as y1 /∈ Z but Bs ⊆ Z as s ∈ IZ . In such case, define a new setpartition B′ =

B′1 · . . . · B′n by setting B′s = Bs ∪ {y1}, B′k = Bk \ {y1} and B′i = Bi for i 6= s, k. Then

Bs+Bk ⊆ (Bs∪{y1})+(Bk \{y1}) = B′s+B′k ensures that X+
n∑
i=1
Ai = X+

n∑
i=1
Bi ⊆ X+

n∑
i=1
B′i,

and equality must hold as A is maximal relative to X. By definition, S(B′) = S(B) = S(A).

Since Bs ⊆ Z, we have still have |(y +H) ∩ B′i| ≤ 1 for all i and y ∈ G \ Z, while Z ⊆
⋂n
i=1B

′
i

follows since y1 /∈ Z. Thus B′ satisfies (7). Since y1 /∈ Z and y2 ∈ B′k \Z, we see Ie∪{j} ⊆ [1, n]

is the subset of indices i ∈ [1, n] for which B′i \ Z is nonempty, meaning B′ contradicts the

maximality condition M1 for B. So we instead assume Bs 6⊆ Bk for all s ∈ IZ . In particular,

Bj 6⊆ Bk, meaning there is some x ∈ Bj \Bk.
In this case, define a new setpartition B′ = B′1 ·. . .·B′n by setting B′j = Bj \{x}, B′k = Bk∪{x}

and B′i = Bi for i 6= j, k. In view of (10), we have X +
n∑
i=1
Ai = X +

n∑
i=1
Bi ⊆ X +

n∑
i=1
B′i, and

equality must hold as A is maximal relative to X. By definition, S(B′) = S(B) = S(A). Since

x ∈ Bj ⊆ Z, we have still have |(y + H) ∩ B′i| ≤ 1 for all i and y ∈ G \ Z, while Z ⊆
⋂n
i=1B

′
i

follows in view of (11). Thus B′ satisfies (7). Since x ∈ Bj ⊆ Z, we see Ie ⊆ [1, n] is still the

subset of indices i ∈ [1, n] for which B′i \Z is nonempty, meaning B′ satisfies M1. However, since

|B′k| = |Bk|+ 1, k ∈ Ie and j /∈ Ie, the maximality of
∑
i∈Ie
|Bi| for B is contradicted by B′. �

Lemma 2.4. Let G be an abelian group, let n ≥ 0, let X ⊆ G be a finite, nonempty subset, let

S ∈ F(G) be a sequence, and let A = A1 · . . . ·An be a setpartition with S(A) | S, Supp(S(A)[−1] ·
S) ⊆ Z, and |Ai \ Z| ≤ 1 for all i, where Z = Z +H ⊆

⋂n
i=1(Ai +H) and H ≤ H(X +

n∑
i=1
Ai).

Then the following hold.

1. X + Σn(S) = X +
n∑
i=1
Ai.

2. If Z = g + H for some g ∈ G, then X + Σ`(S) = X +
n∑
i=1
Ai + (` − n)g for any

` ∈ [n, n+ |S(A)[−1] · S|].

Proof. 1. Note X +
n∑
i=1
Ai ⊆ X + Σn(S) holds trivially. Let T | S with |T | = n be arbitrary.

Since X +
n∑
i=1
Ai is H-periodic by hypothesis, to establish the reverse inclusion, it suffices to

show σ(φH(T )) ∈
n∑
i=1
φH(Ai). Write T = x1 · . . . · xs · ys+1 · . . . · yn, with the xi the terms of

T with xi ∈ G \ Z, and the yi the terms of T with yi ∈ Z. In view of Supp(S(A)[−1] · S) ⊆ Z
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and |Ai \ Z| ≤ 1 for all i, we can re-index the Ai so that xi ∈ Ai for i ∈ [1, s]. But now, since

yj ∈ Z = Z + H ⊆
⋂n
i=1(Ai + H) ⊆ Aj + H for all j ≥ s + 1, it follows that σ(φH(T )) =

φH(x1) + . . .+ φH(xs) + φH(ys+1) + . . .+ φH(yn) ∈
n∑
i=1
φH(Ai), completing Item 1.

2. By translating all terms of S appropriately by −g, we can w.l.o.g. assume g = 0, whence

H ⊆
⋂n
i=1(Ai + H). In particular, H ∩ Ai 6= ∅ and |Ai \ H| ≤ 1 for all i. Since X +

n∑
i=1
Ai is

H-periodic with S(A) | S, Supp(S(A)[−1] · S) ⊆ g + H = H and n ≤ ` ≤ n + |S(A)[−1] · S|, we

trivially have X +
n∑
i=1
Ai = X +

n∑
i=1
Ai + (`−n)g ⊆ X + Σ`(S). To show the reverse inclusion, let

T = g1·. . .·g` be an arbitrary `-term subsequence of S. Since Supp(S(A)[−1]·S) ⊆ g+H = H and

|Ai \H| ≤ 1 and for all i, there are at most n non-zero terms in φH(T ), and by re-indexing, we

can w.l.o.g. assume φH(gi) = 0 for i > n. Then, since H ∩Ai 6= ∅, Supp(S(A)[−1] · S) ⊆ H and

|Ai \H| ≤ 1 for all i, it follows that φH(g1) + . . .+φH(g`) = φH(g1) + . . .+φH(gn) ∈
n∑
i=1
φH(Ai).

Hence, since X +
n∑
i=1
Ai is H-periodic, we conclude that X + σ(T ) = X + g1 + . . . + g` ⊆

X +
n∑
i=1
Ai. Since T was an arbitrary `-term subsequence of S, this establishes the reverse

inclusion X + Σ`(S) ⊆ X +
n∑
i=1
Ai. �

Let G be an abelian group and A ⊆ G a subset. We say A is quasi-periodic if there is a

subset A∅ ⊆ A such that A \ A∅ is nonempty and periodic with A∅ contained in a H(A \ A∅)-
coset. If H ≤ G is a nontrivial subgroup, then an H-quasi-periodic decomposition is a partition

A = (A \ A∅) ∪ A∅ with A∅ a subset of an H-coset and A \ A∅ H-periodic (or empty). It is

reduced if A∅ is not quasi-periodic. As is easily derived,

(12) H(A) = H(A∅) ≤ H when ∅ 6= A∅ ⊂ A∅ +H.

If A∅ is quasi-periodic, as exhibited by A′∅ ⊆ A∅, then A = (A \A′∅) ∪A
′
∅ is a quasi-periodic de-

composition with A′∅ ⊂ A∅. Every finite set A ⊆ G has a reduced quasi-periodic decomposition,

and this decomposition is unique unless A∪{α} is periodic for some α /∈ A (see [35, Proposition

2.1]). The Kemperman Structure Theorem [37, Theorem 9.1] implies that, if A, B ⊆ G are

finite, nonempty subsets with |A+B| = |A|+ |B|−1 and either A+B aperiodic or containing a

unique expression element, then there are H-quasi-periodic decompositions A = (A \ A∅) ∪ A∅,
B = (B \ B∅) ∪ B∅ and A + B =

(
(A + B) \ (A∅ + B∅)

)
∪ (A∅ + B∅) with the pair (A∅, B∅)

satisfying one of four possible structural types (I)–(IV), each with explicitly defined restrictions

on where, and how many, unique expression elements there are. We will make use of this theory,

referencing the details regarding Kemperman’s Critical Pair Theory rather than repeating the

rather lengthy statements and details here.
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Lemma 2.5. Let G be an abelian group, let H ≤ G be a subgroup with |H| ≥ 3, and let Y ⊆ G
be a finite subset such that Y \ {y0} is H-periodic (or empty) for some y0 ∈ Y .

1. Y is aperiodic with Y = (Y \{y0})∪{y0} its unique reduced quasi-periodic decomposition.

2. If there is a K-quasi-periodic decomposition Y = Y1 ∪ Y0, then y0 ∈ Y0 and Y0 \ {y0} is

H-periodic. Moreover, if |Y0| ≥ 2, then H ≤ K.

3. If A, B ⊆ G with A + B = Y and |A + B| = |A| + |B| − 1, then there are a0 ∈ A and

b0 ∈ B such that A \ {a0} and B \ {b0} are H-periodic with a0 + b0 = y0.

Proof. We may w.l.o.g. assume H = H(Y \ {y0}). We may also assume Y \ {y0} is nonempty,

else Items 1–3 all hold trivially. Item 1 follows from [35, Proposition 2.1] and [35, Comment c.6].

2. Suppose Y = Y1 ∪ Y0 is a K-quasi-periodic decomposition and let Y0 = (Y0 \ Y∅) ∪ Y∅ be

a reduced quasi-periodic decomposition of Y0. Then (Y \ Y∅) ∪ Y∅ is a reduced quasi-periodic

decomposition of Y with either H(Y \ Y∅) = H(Y0 \ Y∅) ≤ 〈Y0 − Y0〉 ≤ K or Y0 = Y∅ (by (12)).

Hence Item 1 ensures that Y∅ = {y0} with H = H(Y \ {y0}) = H(Y \ Y∅) ≤ K if |Y0| ≥ 2. If

Y0 = {y0} = Y∅, then Y1 = Y \ {y0} = Y \ Y∅ is H-periodic. Otherwise, H ≤ K ensures Y1 is

H-periodic, while Y \ Y∅ = Y \ {y0} is H-periodic by hypothesis. In either case, Y1 and Y \ Y∅
are both H-periodic, and it follows that (Y \ Y∅) \ Y1 = Y0 \ Y∅ = Y0 \ {y0} is also H-periodic.

Item 2 now follows.

3. Suppose A + B = Y and |A + B| = |A| + |B| − 1. Since Y = A + B is aperiodic by

Item 1, we can directly apply the Kemperman Structure Theorem [35, Proposition 2.1] to A+B

yielding associated K-quasi-periodic decompositions A = (A \A∅)∪A∅, B = (B \B∅)∪B∅ and

Y = (Y \ (A∅ + B∅)) ∪ (A∅ + B∅). If the pair (A∅, B∅) has type (IV), then Y ∪ {β} is periodic

for some β ∈ G \ Y . In such case, any reduced quasi-periodic decomposition Y = Y1 ∪ Y0 must

have |Y0| ≥ 2 or |H(Y1)| = 2 (cf. [35, Proposition 2.1]), contrary to Item 1. If the pair (A∅, B∅)

has type (III), then Y is periodic, contrary to Item 1. If the pair (A∅, B∅) has type (II), then

either Y ∪ {β} is periodic for some β ∈ G, yielding the same contradiction as before, or else

Y = (Y \(A∅+B∅))∪(A∅+B∅) is a reduced quasi-periodic decomposition of Y (by [35, Comment

c.3]) with |A∅ + B∅| ≥ 3, again contrary to Item 1. We are left to conclude that (A∅, B∅) has

type (I), so w.l.o.g. |A∅| = 1, say with A∅ = {a0}. Hence A+B = Y is a union of a0 +B with

a K-periodic set. In particular, (Y \ (a0 +B∅))∪ (a0 +B∅) is a K-quasi-periodic decomposition

of Y . If |B∅| ≥ 2, then Item 2 yields H ≤ K with y0 ∈ a0 +B0 and (a0 +B∅) \ {y0} H-periodic.

Letting b0 = y0 − a0 ∈ B0, Item 3 follows. Therefore instead assume |B∅| = 1, say B∅ = {b0}.
Moreover, in view of [35, Proposition 2.2], we can assume a0 + b0 ∈ A + B is the only unique

expression element.

In this case
(

(A+B) \ {a0 + b0}
)
∪{a0 + b0} is a reduced K-quasi-periodic decomposition, in

which case Item 1 implies a0+b0 = y0 and (A+B)\{a0+b0} = Y \{y0}. Since (y0+H)∩(A+B) =

(y0+H)∩Y = {y0} with y0 = a0+b0, we must have (a0+H)∩A = {a0} and (b0+H)∩B = {b0}. If

|A0| = |B0| = 1, then Item 3 follows trivially. Therefore we can instead w.l.o.g. assume |A0| ≥ 2.

Since a0 + b0 = y0 ∈ A+B = Y is the only unique expression, we have (A\{a0})+B = Y \{y0}
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with H((A \ {a0}) +B) = H(Y \ {y0}) = H. Kneser’s Theorem now implies

(13) |A|+ |B| − 2 = |(A \ {a0}) +B| ≥ |(A \ {a0}) +H|+ |B+H| − |H| ≥ |A \ {a0}|+ |B| − 1,

with the latter inequality in view of (b0 +H) ∩B = {b0}. Thus we must have equality in (13).

In particular, equality holding in the second inequality in (13) forces (A \ {a0}) +H = A \ {a0}
and (B \{b0})+H = B \{b0}, i.e., A\{a0} and B \{b0} are H-periodic, completing Item 3. �

Lemma 2.6. Let G be an abelian group and let A, B ⊆ G be finite, nonempty subsets with

H = H(A+B) = H(B). Then |(A∪{x}) +B| ≥ |(A∪{x}) +H|+ |B+H| − |H| for any x ∈ G.

Proof. By hypothesis, φH(A) + φH(B) is aperiodic. Thus (φH(A)∪ {φH(x)}) + φH(B) is either

still aperiodic, in which case Kneser’s Theorem implies |φH(A∪{x})+φH(B)| ≥ |φH(A∪{x})|+
|φH(B)|−1, or else it is periodic, and thus strictly contains the aperiodic subset φH(A)+φH(B).

In such case, applying Kneser’ Theorem to φH(A) + φH(B) yields |φH(A ∪ {x}) + φH(B)| ≥
|φH(A)|+|φH(B)| ≥ |φH(A∪{x})|+|φH(B)|−1. In either case, since (A∪{x})+B is H-periodic

in view of H = H(B), the desired conclusion follows by multiplying the inequality by |H|.
�

Lemma 2.7. Let G be an abelian group, let n ≥ 1, let X ⊆ G be a finite, nonempty subset,

let S ∈ F(G) be a sequence, and let A = A1 · . . . · An be a setpartition with S(A) = S and

|X +
n∑
i=1
Ai| ≥ min{|S| − n+ |X|, |X + Σn(S)|}. Then one of the following holds.

1. n = 2, X \ {β} and A1 ∩ A2 are K-periodic, (A1 ∪ A2) \ (A1 ∩ A2) is a K-coset,

X+ Σn(S) = X+A1 +A2 is aperiodic and |X+ Σn(S)| = |S|−n+ |X|, for some β ∈ X
and K ≤ G with K ∼= (Z/2Z)2.

2. There exists an equitable setpartition B = B1 · . . . ·Bn with S(B) = S and |X+
n∑
i=1
Bi| ≥

min{|S|−n+|X|, |X+Σn(S)|}. Moreover, if |X+Σn(S)| ≤ |S|−n+|X| and |Ai\Z| ≤ 1

for all i, where H = H(X +
n∑
i=1
Ai) and Z =

⋂n
i=1(Ai + H), then Z =

⋂n
i=1(Bi + H),

X +
n∑
i=1
Bi = X +

n∑
i=1
Ai = X + Σn(S) and |Bi \ Z| ≤ 1 for all i.

Proof. If |S| =
n∑
i=1
|Ai| ≤ n+ 1 or n = 1, then A is trivially equitable, and Item 2 follows taking

B to be A. Therefore we may assume |S| ≥ n+ 2 and n ≥ 2. In particular, G is nontrivial. Let

A = A1 · . . . ·An be an arbitrary setpartition with S(A) = S and

(14) |X +

n∑
i=1

Ai| ≥ min{|X|+
n∑
i=1

|Ai| − n, |X + Σn(S)|}.

Note A exists by hypothesis. If, for the original setpartition A, we have |X+Σn(S)| ≤ |S|−n+|X|
and |Ai \ Z| ≤ 1 for all i, where H = H(X +

n∑
i=1
Ai) and Z =

⋂n
i=1(Ai + H), then fix the set
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Z ⊆ G and only consider setpartitions A also satisfying

(15) Z ⊆
n⋂
i=1

(Ai +H) and |Ai \ Z| ≤ 1 for all i,

for the fixed set Z. Otherwise, simply let Z = H = G. In either case, let e =
n∑
i=1
|Ai \ Z|.

Note |X + Σn(S)| ≤ |S| −n+ |X| = |X|+
n∑
i=1
|Ai| −n and |Ai \Z| ≤ 1 for all i combined with

(14) imply X +
n∑
i=1
Ai = X + Σn(S), combined with

n∑
i=1
|Ai| = |S| ≥ n+ 2 imply Z is nonempty,

and combined with the definition of e imply e ≤ n. Moreover, if e = n, then the n terms from

the sets Ai \ Z for i = 1, . . . , n cannot all be equal modulo H, else they would be included in

the set Z by definition. What this means is that an arbitrary setpartition A satisfying (14)

and (15) must have X +
n∑
i=1
Ai = X + Σn(S) and Z =

⋂n
i=1(Ai + H), so that the quantities

H = H(X +
n∑
i=1
Ai) = H(X + Σn(S)) and Z =

⋂n
i=1(Ai +H) remain invariant as we range over

all setpartitions satisfying (14) and (15). This is also trivially the case when Z = H = G. Now

choose a setpartition A with S(A) = S satisfying (14) and (15) that is as equitable as possible,

meaning one such that

(16)
n∑
i=1

|Ai|2 is minimal.

Assume by contradiction that A is not equitable, so

m := min
i∈[1,n]

{|Ai|} ≤ max
i∈[1,n]

{|Ai|} − 2.

Note this ensures that H is nontrivial, lest |Ai| ∈ {|Z|, |Z|+ 1} for all i. Let Im ⊆ [1, n] be the

subset of indices i ∈ [1, n] with |Ai| = m, let Im+1 ⊆ [1, n] be the subset of indices i ∈ [1, n]

with |Ai| = m + 1, let Im+2 ⊆ [1, n] be the subset of indices i ∈ [1, n] with |Ai| ≥ m + 2, let

IZ ⊆ [1, n] be all indices i ∈ [1, n] with Ai ⊆ Z, let Ie ⊆ [1, n] be all indices i ∈ [1, n] with Ai \Z
nonempty, and let

JZ = (Im ∪ Im+1) ∩ IZ and Je = (Im ∪ Im+1) ∩ Ie.

Since A is not equitable, Im+2 and Im are nonempty. Consider k ∈ Im+2 and s ∈ Im. Since

k ∈ Im+2 and |Ak \ Z| ≤ 1, we have |Ak ∩ Z| ≥ |Ak| − 1 ≥ m + 1. Let α1, . . . , αr ∈ Ak ∩ Z be

those elements contained in Z with (αi +H) ∩Ak = {αi}, and let Z1 = {α1, . . . , αr}+H ⊆ Z.

Then |Ak ∩ (Z \Z1)| = |Ak ∩Z| − r ≥ |Ak| − 1− r ≥ m+ 1− r. Since s ∈ Im and Z ⊆ As +H,

it follows that |(Z \ Z1) ∩ As| ≤ |As ∩ Z| − r ≤ |As| − r = m− r, in which case the pigeonhole

principle guarantees there is some y ∈ (Ak \As)∩Z with |(y+H)∩Ak| ≥ 2. Consequently, the

indices k and s and element y in the hypothesis of the following claim always exist. Moreover,
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if k ∈ Im+2 ∩ IZ , then we get the improved estimate |Ak ∩Z| = |Ak| ≥ m+ 2, in which case the

above argument yields at least two elements y, y′ ∈ Ak satisfying the hypotheses of Claim A.

Claim A. As * Ak and X +
n∑
i=1
i 6=k

Ai + (Ak \ {y}) 6= X +
n∑
i=1
Ai for any k ∈ Im+2, s ∈ Im and

y ∈ (Ak \As) ∩ Z with |(y +H) ∩Ak| ≥ 2.

Proof. If X+
n∑
i=1
i 6=k

Ai+(Ak \{y}) = X+
n∑
i=1
Ai, then we can remove y from Ak and place it in As to

yield a new setpartition B = B1 ·. . .·Bn, where Bk = Ak\{y}, Bs = As∪{y}, and Bi = Ai for all

i 6= k, s, such that S(B) = S, X+
n∑
i=1
Ai ⊆ X+

n∑
i=1
Bi, Z ⊆

⋂n
i=1(Bi+H) (since |(y+H)∩Ak| ≥ 2),

and |Bi \ Z| = |Ai \ Z| ≤ 1 for all i (since y ∈ Z). Thus B satisfies (14) and (15). However,

since |Ak| ≥ |As| + 2, it follows that |Ak|2 + |As|2 > |Bk|2 + |Bs|2, so that B contradicts the

minimality of (16) for A. Therefore we instead conclude that X+
n∑
i=1
i 6=k

Ai+(Ak\{y}) 6= X+
n∑
i=1
Ai.

If As ⊆ Ak, then let y ∈ (Ak \ As) ∩ Z be any element with |(y + H) ∩ Ak| ≥ 2, which exists

as argued above Claim A. Then As ⊆ Ak \ {y}, whence As + Ak ⊆ (As ∪ {y}) + (Ak \ {y}),
and removing y from Ak and placing it in As yields a new setpartition B that contradicts the

minimality of (16) for A as before. Therefore As * Ak, completing the claim. �

Let L = H(X +
∑

i∈Im∪Im+1

Ai) and re-index the Ai such that JZ = (Im ∪ Im+1) ∩ IZ = [1, nZ ],

Je = (Im ∪ Im+1) ∩ Ie = [nZ + 1, ne] and Im+2 = [ne + 1, n].

Claim B. |Ak + L| ≥ |Ak|+ 3(|L| − 1) for any k ∈ Im+2.

Proof. Let k ∈ Im+2 and s ∈ Im. Since X +
n∑
i=1
i 6=k

Ai is L-periodic (as k /∈ Im ∪ Im+1), it follows

from Claim A that any element y ∈ Ak ∩ Z satisfying the hypotheses of Claim A must be the

unique element from its L-coset in Ak. Since L ≤ H, the same is true of any element y ∈ Ak
which is the unique element from its H-coset in Ak. Since there is always at least one element

satisfying the hypotheses of Claim A, at least two when k ∈ IZ , and also an element from Ak \Z
which is the unique element from its H-coset in Ak when k ∈ Ie, the claim follows if there

is any y ∈ Ak ∩ Z that is the unique element from its H-coset in Ak, so we instead assume

|(y +H) ∩Ak| ≥ 2 for all y ∈ Ak ∩ Z. Thus

|(Ak ∩ Z) \As| ≥ |Ak ∩ Z| − |As|+ 1 = |Ak ∩ Z| −m+ 1,

is the number of elements y ∈ Ak ∩ Z satisfying the hypothesis of Claim A, with the inequality

following since Claim A ensures that As * Ak. If k ∈ IZ , we obtain at least |(Ak ∩ Z) \ As| ≥
|Ak ∩ Z| −m + 1 = |Ak| −m + 1 ≥ 3 elements satisfying the hypotheses of Claim A. If j ∈ Ie,
we obtain at least |(Ak ∩ Z) \ As| ≥ |Ak ∩ Z| −m + 1 ≥ |Ak| −m ≥ 2 elements satisfying the
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hypotheses of Claim A, as well as the element from Ak \ Z, which is the unique element from

its H-coset in Ak. In either case, the claim follows. �

Claim C. Either |X +
∑
i∈JZ

Ai| ≤ |X|+
∑
i∈JZ
|Ai| − |JZ | −max{|L| − 1, 1}, or else L is trivial and

|X +
j∑
i=1
Ai| = |X +

j−1∑
i=1
Ai|+ |Aj | − 1 for all j ∈ [1, n].

Proof. Suppose

(17) |X +
∑
i∈JZ

Ai| ≥ |X|+
∑
i∈JZ

|Ai| − |JZ | −max{|L| − 1, 1}+ 1.

Note JZ ∪ Je = Im ∪ Im+1 and L = H(X +
∑
i∈JZ

Ai +
∑
i∈Je

Ai). Kneser’ Theorem implies

(18) |X +
∑

i∈Im∪Im+1

Ai| ≥ |X +
∑
i∈JZ

Ai|+
∑
i∈Je

|Ai + L| − |Je||L|.

By definition, each Ai with i ∈ Je ⊆ Ie has some element z ∈ Ai \ Z which is the unique

element from its H-coset in Ai, meaning (z+H)∩Ai = {z}. Since L ≤ H, it is also the unique

element from its L-coset in Ai, ensuring that |Ai + L| ≥ |Ai| + |L| − 1 for i ∈ Je. Combining

this observation with (17) and (18), we conclude that

(19) |X +
∑

i∈Im∪Im+1

Ai| ≥ |X|+
∑

i∈Im∪Im+1

|Ai| − |Im ∪ Im+1| −max{|L| − 1, 1}+ 1.

Let k ∈ Im+2 = [ne + 1, n]. Since X +
ne∑
i=1
Ai is L-periodic, it follows that X +

k−1∑
i=1

Ai is also L-

periodic. Consequently, in view of Claim A, it follows that there is a unique expression element in

the sumset φL

(
X+

k−1∑
i=1

Ai

)
+φL(Ak). Thus Theorem D implies that |φL

(
X+

k−1∑
i=1

Ai

)
+φL(Ak)| ≥

|φL
(
X +

k−1∑
i=1

Ai

)
|+ |φL(Ak)| − 1 for k ∈ Im+2. Lemma 2.1 now yields

(20) |X +

n∑
i=1

Ai| ≥ |X +
∑

i∈Im∪Im+1

Ai|+
∑

i∈Im+2

|Ai + L| − |Im+2| − (|L| − 1)|Im+2|.

By Claim B, we have |Ak +L| ≥ |Ak|+ 3(|L| − 1) for all k ∈ Im+2. Combining this observation

with (19) and (20), we deduce that

(21) |X +

n∑
i=1

Ai| ≥ |X|+
n∑
i=1

|Ai| − n+ 2|Im+2|(|L| − 1)−max{|L| − 1, 1}+ 1.

Suppose |X +
n∑
i=1
Ai| ≤ |X| +

n∑
i=1
|Ai| − n. Then, since |Im+2| ≥ 1, we must have equality

in (21) with L trivial, and equality must hold in all estimates used to derive (21). Since L is

trivial, Kneser’s Theorem implies |X +
j∑
i=1
Ai| ≥ |X|+

j∑
i=1
|Ai| − j for all j ∈ Im ∪ Im+1 = [1, ne].
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But now Lemma 2.1 ensures that equality must hold in all these estimates, as otherwise (19)

holds strictly, implying (21) also holds strictly. We also have equality holding in the modulo L

estimates used to derive (20), meaning |X +
k∑
i=1
Ai| = |X| +

k∑
i=1
|Ai| − k for all k ≥ ne + 1, for

otherwise (20) holds strictly, and thus (21) as well. The claim now follows. So it remains to

consider the case when

|X +

n∑
i=1

Ai| > |X|+
n∑
i=1

|Ai| − n = |S| − n+ |X|,

in which case Z = H = G.

In this case, since n ∈ Im+2 by our choice of indexing, Claim A ensures that every element

y ∈ An \As is part of a unique expression element in
(
X +

n−1∑
i=1

Ai

)
+An, where s ∈ Im. If some

y ∈ An \ As is part of exactly one unique expression element, then |X +
n−1∑
i=1

Ai + (An \ {y})| =

|X +
n∑
i=1
Ai| − 1 ≥ |X| +

n∑
i=1
|Ai| − n. Thus removing y from An and placing it in As yields

a new setpartition contradicting the minimality of (16) for A. Therefore we can assume each

y ∈ An \ As is part of at least two unique expression elements. Since As * An by Claim A,

we have |An \ As| ≥ 3, so there are at least three such elements in An, and thus at least two

elements in An \ {y} that are each part of at least two unique expression elements in the sumset(
X+

n−1∑
i=1

Ai

)
+ (An \{y}), for any fixed y ∈ An \As. In consequence, the Kemperman Structure

Theorem [37, Theorem 9.1] [35, Proposition 2.2] implies

(22) |
(
X +

n−1∑
i=1

Ai

)
+ (An \ {y})| ≥ |X +

n−1∑
i=1

Ai|+ |An \ {y}|.

If L is trivial or |Im+2| ≥ 2, then repeating the arguments used to derive (20) and (21) for

A1 · . . . ·An−1 rather than A1 · . . . ·An yields |X +
n−1∑
i=1

Ai| ≥ |X|+
n−1∑
i=1
|Ai| − (n− 1). Combined

with (22), it follows that |X +
n−1∑
i=1

Ai + (An \ {y})| ≥ |X| +
n∑
i=1
|Ai| − n, and now removing y

from An and placing it in As yields a new setpartition contradicting the minimality of (16) for

A. Therefore we now assume L is nontrivial and |Im+2| = 1, meaning Im ∪ Im+1 = [1, n − 1].

In this case, since H = G ensures n ∈ IZ ∩ Im+2 so that there is at least one element from

An \ {y} satisfying the hypothesis of Claim A, we can repeat the arguments used to derive (20)

for A1 · . . . ·An−1 · (An \ {y}) rather than A1 · . . . ·An to find

(23)

|X+
n−1∑
i=1

Ai+(An\{y})| ≥ |X+
n−1∑
i=1

Ai|+ |(An\{y})+L|−|L| ≥ |X+
∑

i∈Im∪Im+1

Ai|+ |An|+ |L|−3,
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with the latter inequality as Claim B ensures |(An\{y})+L|−|An\{y}| ≥ 2(|L|−1). Combining

(23) with (19) and using that L is nontrivial, we obtain |X+
n−1∑
i=1

Ai+(An\{y})| ≥ |X|+
n∑
i=1
|Ai|−n.

Once again, removing y from An and placing it in As yields a new setpartition contradicting the

minimality of (16) for A, completing Claim C. �

We now split the proof into two cases depending on which outcome holds in Claim C.

CASE 1. |X +
∑
i∈JZ

Ai| ≤ |X| +
∑
i∈JZ
|Ai| − |JZ | −max{|L| − 1, 1} holds for every setpartition

A = A1 · . . . ·An with S(A) = S satisfying (14), (15) and (16).

For j ∈ [0, nZ ], let Kj = H(X+
j∑
i=1
Ai) ≤ L. In view of the case hypothesis, let j ∈ JZ = [1, nZ ]

be the minimal index such that |X +
j∑
i=1
Ai| ≤ |X|+

j∑
i=1
|Ai| − j −max{|Kj | − 1, 1}.

Claim D. Kj = H(X +
j∑
i=1
Ai) = H(X +

j−1∑
i=1
Ai) and |X +

j∑
i=1
Ai| < |X +

j−1∑
i=1
Ai|+ |Aj | − 1.

Proof. If j = 1, then |X+A1| ≤ |X|+ |A1|−2, so that Kneser’s Theorem implies K1 is nontrivial

with |X| + |A1| − |K1| ≥ |X + A1| ≥ |X + K1| + |A1| − |K1| (both upper bounds for |X + A1|
follow from the definition of j). Thus X + K1 = X, ensuring that K0 = K1, and the claim

follows. Therefore we now assume j ∈ [2, nZ ]. Hence the minimality of j ensures

(24) |X +

j−1∑
i=1

Ai| ≥ |X|+
j−1∑
i=1

|Ai| − (j − 1)−max{|Kj−1| − 1, 1}+ 1.

Applying Kneser’s Theorem again, we find

(25) |X +

j∑
i=1

Ai| ≥ |X +

j−1∑
i=1

Ai +Kj |+ |Aj | − |Kj |.

If Kj−1 6= Kj , then Kj is nontrivial and |X +
j−1∑
i=1
Ai + Kj | ≥ |X +

j−1∑
i=1
Ai| + |Kj−1|, which

combined with (24) and (25) yields |X +
j∑
i=1
Ai| ≥ |X| +

j∑
i=1
|Ai| − j + 1 − (|Kj | − 1) = |X| +

j∑
i=1
|Ai| − j + 1 − max{|Kj | − 1, 1}, contrary to the definition of j. Therefore Kj−1 = Kj . If

|X +
j∑
i=1
Ai| ≥ |X +

j−1∑
i=1
Ai| + |Aj | − 1, then (24) yields |X +

j∑
i=1
Ai| ≥ |X| +

j∑
i=1
|Ai| − j + 1 −

max{|Kj−1| − 1, 1} = |X|+
j∑
i=1
|Ai| − j + 1−max{|Kj | − 1, 1}, again contrary to the definition

of j. Therefore |X +
j∑
i=1
Ai| < |X +

j−1∑
i=1
Ai|+ |Aj | − 1, and the claim follows. �
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All the above is valid for any A with S(A) = S which satisfies (14), (15) and (16). We now

impose additional extremal conditions on A:

(a) |JZ | is minimal (subject to satisfying (14), (15) and (16)), say |JZ | = nZ , with the Ai

indexed so that JZ = [1, nZ ].

(b) j is maximal (subject to satisfying (14), (15), (16) and (a)).

(c)
j∑
i=1
|φK(Ai)| is maximal, where K = H(X +

j−1∑
i=1
Ai) (subject to satisfying (14), (15), (16),

(a) and (b)).

Let k ∈ Im+2 be fixed and set K := Kj ≤ L ≤ H, so

K = H(X +

j−1∑
i=1

Ai) = H(X +

j∑
i=1

Ai)

by Claim D. Since Claim D ensures |(X +
j−1∑
i=1
Ai) +Aj | < |X +

j−1∑
i=1
Ai|+ |Aj | − 1, it follows from

Kneser’s Theorem applied to (X +
j−1∑
i=1
Ai) +Aj that K is nontrivial and

(26) |Aj +K| − |Aj | ≤ |K| − 2.

In particular,

(27) |(x+K) ∩Aj | ≥ 2 for all x ∈ Aj .

Since j ∈ JZ ⊆ IZ , we have Aj ⊆ Z. Let Z0 = (Aj +K) \ (Ak +K) ⊆ Z. Let X0 ⊆ Z0 ∩Aj be

a subset consisting of one element from Aj for every K-coset contained in Z0. Thus

|Z0| = |K| |X0|

with Z0 the union of all K-cosets that intersect Aj but not Ak.

Claim E. There is a subset Y ⊆ (Ak∩Z)\(Aj+K) with |Y | ≥ max{1, |X0|} and (Ak\Y )+H =

Ak +H.

Proof. Let us first show there is some y ∈ (Ak ∩ Z) \ (Aj + K) with |(y + H) ∩ Ak| ≥ 2. Let

y0 ∈ Ak ∩ Z be an element satisfying the hypotheses of Claim A. Then |(y0 + H) ∩ Ak| ≥ 2.

Moreover, since X +
∑

i∈Im∪Im+1

Ai is K-periodic with k ∈ Im+2, the conclusion of Claim A

ensures that (y0 + K) ∩ Ak = {y0}. If y0 /∈ Aj + K, then taking y = y0 yields the desired

element y. Therefore we may assume y0 ∈ Aj + K. Then Z0 ∪ (y0 + K) ⊆ Aj + K with(
Z0∪ (y0 +K)

)
∩Ak = {y0}. Thus |Ak ∩ (Aj +K)| ≤ |Aj +K|− |Z0|− |K|+1 ≤ |Aj |− |Z0|−1,

with the second inequality in view of (26). It follows that

(28)

|(Ak∩Z)\(Aj+K)| = |Ak∩Z|−|Ak∩(Aj+K)| ≥ (|Ak|−1)−(|Aj |−|Z0|−1) = |Ak|−|Aj |+|Z0|.
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In particular, since |Ak| − |Aj | ≥ (m + 2) − (m + 1) = 1 (as k ∈ Im+2 and j ∈ Im ∪ Im+1),

we conclude that (Ak ∩ Z) \ (Aj + K) is nonempty. If there is some y ∈ (Ak ∩ Z) \ (Aj + K)

with |(y + H) ∩ Ak| ≥ 2, then the desired element y is found. Otherwise, we conclude that

each y ∈ (Ak ∩ Z) \ (Aj + K) is the unique element from its H-coset in Ak. However, since

y ∈ Z ⊆ Aj +H, it follows that (y+H)∩Aj is also nonempty, say with y′ ∈ (y+H)∩Aj . Since

y /∈ Aj +K, we have y /∈ y′ +K, ensuring that y′ +K 6= y +K. Thus, as (y +H) ∩Ak = {y},
we conclude that (y′ + K) ∩ Ak is empty, meaning y′ + K ⊆ Z0. As this is true for each

y ∈ (Ak ∩ Z) \ (Aj + K), with the corresponding sets y′ + K each lying in the distinct cosets

y + H for y ∈ (Ak ∩ Z) \ (Aj + K) (as each such y is the unique element from its H-coset in

Ak), it follows that

|Z0| ≥ |(Ak ∩ Z) \ (Aj +K)| |K| ≥ |(Ak ∩ Z) \ (Aj +K)|.

However, applying this estimate in (28) yields the contradiction m + 2 ≤ |Ak| ≤ |Aj | ≤ m + 1.

Thus the existence of the desired element y ∈ (Ak ∩ Z) \ (Aj + K) with |(y + H) ∩ Ak| ≥ 2

is established, and we assume |X0| ≥ 2 as the claim is now complete taking Y = {y} when

|X0| ≤ 1.

By definition, Z0 ∩ Ak = ∅ and Z0 ⊆ Aj + K. Thus |Ak ∩ (Aj + K)| ≤ |Aj + K| − |Z0| ≤
|Aj | − |Z0|+ |K| − 2 = |Aj | − |K|(|X0| − 1)− 2, with the second inequality in view of (26). It

follows that

(29) |(Ak ∩ Z) \ (Aj +K)| = |Ak ∩ Z| − |Ak ∩ (Aj +K)| ≥ |Ak| − |Aj |+ |K|(|X0| − 1) + 1.

Let Z ′0 =
(

(Ak∩Z)\(Aj+K)+H
)
∩(Z0+H) and partition

(
(Ak∩Z)\(Aj+K)+H

)
= Z ′0∪Z1.

Since each H-coset in Z ′0 contains a K-coset from Z0, we have

(30) |X0| ≥ |Z ′0|/|H|.

Let Y ⊆ (Ak ∩ Z) \ (Aj +K) be obtained by taking the set (Ak ∩ Z) \ (Aj +K) and removing

one element from (Ak ∩Z)\ (Aj +K) from each of the |Z ′0|/|H| H-cosets contained in Z ′0. Then

(31) |Y | = |(Ak ∩ Z) \ (Aj +K)| − |Z ′0|/|H| ≥ |(Ak ∩ Z) \ (Aj +K)| − |X0|,

with the inequality in view of (30), and (α+H) ∩ (Ak \ Y ) is nonempty for every α+H ⊆ Z ′0
(as one element for each of these H-cosets was left out of Y , and thus remains in Ak \ Y ).

For each α + H ⊆ Z1 ⊆ Z, we have α + H ⊆ Z ⊆ Aj + H, and thus there is some α′ ∈
α + H with (α′ + K) ∩ Aj nonempty. Since α + H * Z ′0, it follows by definition of Z ′0 and

Z0 that (α′ + K) ∩ Ak is nonempty, and necessarily disjoint from (Ak ∩ Z) \ (Aj + K), and

thus also from Y ⊆ (Ak ∩ Z) \ (Aj + K). In consequence, we have (Ak \ Y ) + H = Ak + H.

If |Y | ≥ |X0|, the claim is complete, so we instead assume |Y | ≤ |X0| − 1, in which case (31)

implies |(Ak ∩ Z) \ (Aj + K)| ≤ 2|X0| − 1. However, using this estimate in (29) along with

|Ak| − |Aj | ≥ (m + 2) − (m + 1) = 1 yields (|K| − 2)(|X0| − 1) + 1 ≤ 0, which is not possible

since K is nontrivial (as noted above (26)) and |X0| ≥ 1, completing the claim. �
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In view of Claim E, there is a nonempty subset Y ⊆ (Ak ∩Z) \ (Aj +K) with (Ak \Y ) +H =

Ak + H and |Y | = max{1, |X0|}. Define a new setpartition B = B1 · . . . · Bn by setting

Bj = (Aj \X0) ∪ Y , Bk = (Ak \ Y ) ∪X0 and Bi = Ai for all i 6= k, j. Since K = H(X +
j−1∑
i=1
Ai),

(27) ensures that φK(Aj) = φK(Aj \X0) and X +
j∑
i=1
Ai = X +

j−1∑
i=1
Ai + (Aj \X0). As a result,

(32) X +
n∑
i=1

Ai ⊆ X +
n∑
i=1
i 6=j,k

Ai + (Aj \X0) + (Ak ∪X0).

By definition of Y , we have φK(Y ) disjoint from φK(Aj), and thus also from φK(X0), while the

definition of X0 ensures that φK(X0) is disjoint from φK(Ak) with φK(Aj \ X0) = φK(Aj) ⊆
φK(Ak ∪X0) \ φK(Y ). It follows that

φK(Aj \X0) + φK(Ak ∪X0) ⊆
(
φK(Aj \X0) ∪ φK(Y )

)
+
(
φK(Ak ∪X0) \ φK(Y )

)
⊆ φK(Bj) + φK(Bk).

As a result, since X +
j−1∑
i=1
Ai = X +

j−1∑
i=1
Bi is K-periodic, we conclude from (32) that

X +
n∑
i=1

Ai ⊆ X +
n∑
i=1
i 6=j,k

Ai + (Aj \X0) + (Ak ∪X0) ⊆ X +
n∑
i=1

Bi,

so (14) holds for B. Since X0 ⊆ Aj ⊆ Z (as j ∈ JZ), Claim E ensures that Z ⊆ Ak+H = Bk+H

and |Bk \ Z| = |Ak \ Z| ≤ 1. Since φK(Aj) ⊆ φK(Bj) with Y ⊆ Z by definition, we have

Z ⊆ Bj + H = Aj + H and |Bj \ Z| = |Aj \ Z| = 0. Consequently, Z ⊆
⋂n
i=1(Bi + H)

and |Bi \ Z| ≤ 1 for all i, in which case B satisfies (15). We have |Bj | = |Aj | − |X0| + |Y |,
|Bk| = |Aj | − |Y |+ |X0|, and |Bi| = |Ai| for i 6= j, k. Let I ′m, I ′m+1, I

′
m+2, I

′
e, I
′
Z and J ′Z be the

associated quantities Im, Im+1, Im+2, Ie, IZ and JZ for B rather than A.

Suppose |X0| = 0. Then |Y | = 1, |Bj | = |Aj | + 1 and |Bk| = |Ak| − 1. If |Ak| ≥ |Aj | + 2,

then B contradicts the minimality of (16) for A. Otherwise, we have |Ak| = |Aj |+ 1 = m + 2,

|Bj | = |Ak| = m+ 2 and |Bk| = |Aj | = m+ 1 so that
n∑
i=1
|Bi|2 =

n∑
i=1
|Ai|2, meaning B satisfies the

extremal condition (16). Now I ′m+1 = Im+1 \ {j} ∪ {k}, I ′m = Im and I ′m+2 = Im+2 \ {k} ∪ {j}.
If k ∈ Ie, then k ∈ I ′e (as Y ⊆ Z), in which case J ′Z = JZ \ {j}, contradicting the minimality

condition (a) for A. On the other hand, if k ∈ IZ , then J ′Z = JZ \{j}∪{k}, so condition (a) holds

for B. Swapping the indices on Bk and Bj , so now Bk = (Aj \X0)∪Y and Bj = (Ak \Y )∪X0,

we obtain J ′Z = JZ and I ′m+1 ∪ I ′m = Im+1 ∪ Im. Since Ai = Bi for i < j, the definition of j

ensures j′ ≥ j, where j′ is the associated quantity for B corresponding to the index j for A,

while the extremal condition given in (b) forces j′ ≤ j. Thus j′ = j. However, since k ∈ IZ ,

there are at least two elements y satisfying the hypotheses of Claim A for A, which in view of
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the conclusion of Claim A and K = H(X +
j−1∑
i=1
Ai) = H(X +

j′−1∑
i=1

Bi), means both these elements

are the unique element from their K-coset in Ak. As at most one of them can be contained in

the singleton set Y , we conclude that Bj = Ak \Y contains some y ∈ Bj with |(y+K)∩Bj | = 1.

However, in such case, (27) could not hold for the index j in B, contradicting that it must hold

for j′ = j by the arguments above. So we instead conclude that |X0| ≥ 1,

Since |X0| ≥ 1, we have |X0| = |Y |, |Bj | = |Aj | and |Bk| = |Ak|, so (16) holds for B with

I ′m = Im, I ′m+1 = Im+1 and I ′m+2 = Im+2. Since Y ⊆ Z and Aj ⊆ Z (as j ∈ JZ), we conclude

that J ′Z = JZ , meaning condition (a) holds for B. As argued in the previous case, we must

have j′ = j, so that condition (b) holds. In particular, we must have K = H(X +
j−1∑
i=1
Ai) =

H(X+
j′−1∑
i=1

Bi). By definition of Y , each y ∈ Y is disjoint from Aj+K. Thus, since |Y | = |X0| ≥ 1

and φK(Aj\X0) = φK(Aj), we conclude that |φK(Bj)| > |φK(Aj)|, in which case the maximality

condition (c) for A is contradicted by B, completing CASE 1.

CASE 2. L is trivial and |X +
j∑
i=1
Ai| = |X +

j−1∑
i=1
Ai| + |Aj | − 1 for all j ∈ [1, n], for some

setpartition A = A1 · . . . · An with S(A) = S satisfying (14), (15) and (16), where JZ = [1, nZ ],

Je = [nZ + 1, ne] and Im+2 = [ne + 1, n].

Let Y = X+
n−1∑
i=1

Ai and V = X+
n∑
i=1
Ai = Y +An. In view of the case hypothesis and Lemma

2.1, we have |X +
j∑
i=1
Ai| = |X| +

j∑
i=1
|Ai| − j for all j ∈ [1, n]. In particular, |X +

∑
i∈JZ

Ai| =

|X|+
∑
i∈JZ
|Ai| − |JZ | and

(33) |V | = |X +

n∑
i=1

Ai| = |X|+
n∑
i=1

|Ai| − n = |S| − n+ |X|.

The former equality combined with Claim C ensures that the hypotheses of CASE 2 hold for

A under any re-indexing of the Ai with i ∈ Im+2 = [ne + 1, n], allowing us to freely assume an

arbitrary set Ak with k ∈ Im+2 occurs with k = n. We aim to either contradict the extremal

condition (16) or show that Item 1 holds.

Claim F. If H = H(X +
n∑
i=1
Ai), then Ak ⊆ Z with |(y + H) ∩ Ak| ≥ 2 for all k ∈ Im+2 and

y ∈ Ak.

Proof. Suppose H = H(X +
n∑
i=1
Ai). Note H is nontrivial as remarked after (16). By our choice

of indexing, n ∈ Im+2. Let s ∈ Im. Each y ∈ An satisfying the hypothesis of Claim A is a unique

expression element in Y +An, of which there is at least one. Thus, since Y +An is H-periodic

with |Y + An| = |Y | + |An| − 1 by case hypothesis, we can apply the Kemperman Structure
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Theorem directly to Y + An to conclude that there are H-quasi-periodic decompositions (cf.

[35, Comment c.14]) Y = Y1 ∪ Y0 and An = X1 ∪X0 with |Y0| + |X0| = |H| + 1. Moreover, in

view of [37, Theorem 5.1] and H nontrivial, either all unique expression elements are contained

in Y0 +X0, or |X0| = 1 with all unique expression elements involving the unique element in X0,

or |Y0| = 1 with all unique expression elements involving the unique element in Y0. If |X0| = 1,

then |Y0|+ |X0| = |H|+ 1 ensures |Y0| = |H| ≥ 2, in which case all unique expression elements

in Y +An must involve the unique element from X0. However, this contradicts that there is an

element y ∈ An satisfying Claim A, which is part of a unique expression element in Y +An but

not the unique element from its H-coset. Therefore |X0| ≥ 2, ensuring that |(y +H) ∩An| ≥ 2

for all y ∈ An. Since any element from An \ Z is the unique element from its H-coset in An,

it follows that An ⊆ Z. Repeating the above argument for an arbitrary Ak with k ∈ Im+2

(using an appropriate re-indexing), we conclude that |(y+H)∩Ak| ≥ 2 for all y ∈ Ak, and that

Ak ⊆ Z, which completes the claim. �

Let s ∈ Im be arbitrary. Recall n ∈ Im+2 by our choice of indexing. In view of Claim F, any

element y ∈ An \As satisfies the hypotheses of Claim A (this is trivially true if H = G). Thus,

since Claim A ensures that As * An, we conclude that there are |An\As| ≥ 3 elements satisfying

the hypotheses of Claim A. Each such y ∈ An \ As is part of a unique expression element in

Y + An by Claim A. As there are at least three such y, and since |Y + An| = |Y | + |An| − 1

by case hypothesis, the Kemperman Structure Theorem [37, Theorem 9.1] [35, Proposition 2.2]

ensures this is only possible if there are K-quasi-periodic decompositions Y = (Y \ {y}) ∪ {y}
and An = (An \A∅) ∪A∅ with y +A∅ ⊆ Y +An the subset of all unique expression elements in

Y +An, and

K = 〈A∅ −A∅〉.

In particular, An\As ⊆ A∅ with each x ∈ A∅ being part of exactly one unique expression element

y+x ∈ Y +An. Moreover, since A∅ is a subset of a K-coset, we have |K| ≥ |A∅| ≥ |An \As| ≥ 3.

Consequently, in view of the case hypothesis and Lemma 2.5.3, it follows by a short inductive

argument that there are ai ∈ Ai for i ∈ [1, n− 1] and β ∈ X such that X \ {β} and Ai \ {ai} for

i ∈ [1, n− 1] are K-periodic with β + a1 + . . .+ an−1 = y.

Let x1, . . . , xr ∈ An\As ⊆ A∅ be the r ≥ 3 distinct elements inAn\As. By translating all terms

of S appropriately, we can w.l.o.g. assume as = 0. Consider an arbitrary xt ∈ An \ As ⊆ A∅.

By the above work, Y + (An \ {xt}) = V \ {y + xt}. If V \ {y + xt} is aperiodic, then Lemma

2.6 together with Kneser’s Theorem implies that |X + (As ∪ {xt}) +
n−1∑
i=1
i 6=s

Ai + (An \ {xt})| ≥

|As ∪{xt}|+ |X +
n−1∑
i=1
i 6=s

Ai + (An \ {xt})| − 1 ≥ |X|+
n∑
i=1
|Ai| −n, in which case moving xt from An

to As yields a new setpartition satisfying (14) and (15) (in view of Claim F), thus contradicting

the minimality of (16) for A. Therefore we instead conclude Ht := H(V \ {y+ xt}) is nontrivial
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for every xt ∈ An \ As ⊆ A∅. Since there are at least two such elements, [35, Proposition 2.1]

implies the Ht are distinct cardinality two subgroups for t ∈ An \ As. Moreover, V ∪ {α} is

(H1 + . . .+Hr)-periodic for the unique element

(34) α ∈ (y + xt +Ht) \ {y + xt}.

Since V \ {y + xt} is periodic, [35, Comment c.6] implies

(35) V = X +
n∑
i=1

Ai is aperiodic.

Thus, since H is nontrivial (as noted after (16)), we conclude that H 6= H(X +
n∑
i=1
Ai), leaving

us in the situation where H = Z = G with Ie empty.

We must have φK(β) +
n∑
i=1
φK(ai) ∈ φK(X) +

n∑
i=1
φK(Ai) a unique expression element, where

an ∈ A∅, for otherwise V = X +
n∑
i=1
Ai will be K-periodic (as X \ {β}, An \A∅ and Ai \ {ai} for

i ∈ [1, n− 1] are all K-periodic), contrary to (35). In particular,

V = X +
n∑
i=1

Ai = Z[1,n] ∪ (β +
n−1∑
i=1

ai +A∅) = Z[1,n] ∪ (y +A∅)

for some K-periodic set Z[1,n] ⊆ G. Since X +
n−1∑
i=1

Ai + (An \ {xt}) = Z[1,n] ∪ (y + A∅ \ {xt})

is a K-quasi-periodic decomposition with Ht = H
(
Z[1,n] ∪ (y +A∅ \ {xt})

)
and y +A∅ \ {xt} a

nonempty, proper subset of a K-coset, we must also have (by (12))

(36) Ht = H(A∅ \ {xt}) ≤ K for any xt ∈ An \As.

As a result, since X \ {β} and Ai \ {ai} are K-periodic, it follows that |X +Ht| = |X|+ 1 and

|Ai+Ht| = |Ai|+1 for all i ∈ [1, n−1]. Moreover, An\{xt} is Ht-periodic. Now 0 = as ∈ As with

As\{0} Ht-periodic. Hence, if {xt, as} = {xt, 0} 6= Ht, then |(As∪{xt})+Ht| = |As|+3. In such

case, Lemma 2.6 together with Kneser’s Theorem implies |X+(As∪{xt})+
n−1∑
i=1
i 6=s

Ai+(An\{xt})| ≥

|X +Ht|+ |(As ∪{xt}) +Ht|+
n−1∑
i=1
i 6=s

|Ai +Ht|+ |(An \ {xt}) +Ht| −n|Ht| = |X|+
n∑
i=1
|Ai| −n+ 1,

in which case moving xt from An to As yields a new setpartition contradicting the minimality

of (16) for A. Therefore we instead conclude that

Ht = {0, xt} ≤ K, for each xt ∈ An \As,

is a cardinality two subgroup. Repeating the above arguments using any i ∈ Im in place of s,

we find that ai = 0 for all i ∈ Im (as {ai, xt} must equal a single Ht-coset with xt ∈ Ht the
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unique nonzero element of Ht). Since Ht = {0, xt}, it follows from (34) that

α = y + 2xt = y.

Thus V ∪ {y} = Z[1,n] ∪
(
y + (A∅ ∪ {0})

)
is (H1 + . . .+Hr)-periodic with H1 + . . .+Hr ≤ K,

ensuring that A∅ ∪ {0} is also (H1 + . . .+Hr)-periodic.

Suppose |An| ≥ m + 3 and let K ′ = H1 + H2 = {0, x1, x2, x1 + x2} ≤ K. As just noted,

A∅ ∪ {0} is (H1 + . . . + Hr)-periodic, and thus also K ′-periodic with K ′ ≤ K. Consequently,

An\{x1, x2} = Z ′∪{x1+x2} with Z ′ := An\K ′ a K ′-periodic set and x1+x2 the unique element

from itsK ′-coset in An\{x1, x2}. The setsX\{β} and Ai\{ai} for i ∈ [1, n−1] are allK-periodic,

and thus also K ′-periodic. The set
(
An \{x1, x2}

)
\{x1+x2} = Z ′ = An \K ′ is also K ′-periodic

with φK′(x1+x2) = 0. It follows that φK′(y) = φK′(β)+
n−1∑
i=1

φK′(ai) ∈ φK′(X)+
n∑
i=1
φK′(Ai) must

be a unique expression element, as otherwise X+
n∑
i=1
Ai would be K ′-periodic, contradicting (35),

and thusX+(As∪{x1, x2})+
n−1∑
i=1
i 6=s

Ai+(An\{x1, x2}) = V \(y+K ′)∪(y+{0, x1, x2}+{x1+x2}) = V

Removing x1 and x2 from An and placing them in As now yields a new setpartition with the

same cardinality sumset as A, contradicting the minimality of (16) for A (as |An| ≥ m + 3).

So we conclude that |An| = m + 2. Re-indexing the Ak with k ∈ Im+2 and repeating these

arguments for any Ak with k ∈ Im+2, we conclude that |Ak| = m+ 2 for all k ∈ Im+2.

Since An \ As ⊆ A∅, we have An \ A∅ ⊆ As. Hence, since An \ A∅ is K-periodic and

0 ∈ As is the unique element from it K-coset in As, it follows that An \ A∅ ⊆ As \ {0}. If

An\A∅ 6= As\{0}, then As\{0} and An\A∅ being K-periodic ensures |As| ≥ |An\A∅|+|K|+1 ≥
|An \A∅|+ |A∅|+1 ≥ |An|+1, which is not possible. We are left to conclude An \A∅ = As \{0}.
Thus m − 1 = |As \ {0}| = |An \ A∅|, implying m + 2 = |An| = (m − 1) + |A∅| and |A∅| = 3,

and since An \ As ⊆ A∅ is a set of size at least three, we conclude that A∅ = An \ As and

An ∩ As = An \ A∅ = As \ {0}. In particular, K = 〈A∅ − A∅〉 = H1 + H2 + H3 = 〈x1, x2, x3〉.
Since V ∪ {y} = Z[1,n] ∪

(
y + (A∅ ∪ {0})

)
is K-periodic, with Z[1,n] a K-periodic set, it follows

that {0} ∪ A∅ = {0, x1, x2, x3} = K is an elementary 2-group of order 4, whence K ∼= (Z/2Z)2.

Repeating these arguments for any s ∈ Im and k ∈ Im+2, it follows that there exists a K-periodic

subset W ⊆ G \K such that

(37) As = W ∪ {0} and Ak = W ∪ (K \ {0}) for every s ∈ Im and k ∈ Im+2.

Since As \ {0} is K-periodic, we have |As \ {0}| = m − 1 divisible by |K| = 4. Any j ∈ Im+1

also has Aj \ {aj} K-periodic, whence m = |Aj | − 1 is divisible by 4. Since m− 1 and m cannot

both be divisible by 4, it follows that Im+1 is empty.

Suppose |Im+2| ≥ 2. Then (37) implies An−1 = An. Since An−1 \ {an−1} is K-periodic,

we have |An−1| ≡ 1 mod |K|. Since An \ A∅ is K-periodic with |A∅| = 3, we have |An| ≡ 3
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mod |K|. However, since |K| = 4, this contradicts that An−1 = An. So we conclude that

|Im+2| = 1.

We now know A1 = A2 = . . . = An−1 = W ∪ {0} and An = W ∪ {x1, x2, x3} with W ⊆ G \K
and X \ {β} K-periodic sets and K = {0, x1, x2, x3}. If n ≥ 3, then consider the setpartition

A = A′1 · . . . · A′n with A′i = W ∪ {0} for i ∈ [1, n − 3], A′n−2 = W ∪ {x1}, A′n−1 = W ∪ {0, x2}

and A′n = W ∪ {0, x3}. Then X +
n∑
i=1
A′i = V ∪ {β} = V + K, so that A′ contradicts the

minimality of (16) for A in view of (33). Therefore n = 2 (as we assumed n ≥ 2 at the very

start of the proof). It is now readily checked that A = A1 · A2 with A1 = W ∪ {x} and

A2 = W ∪ (K \ {x}), for x ∈ K, are the only setpartitions partitioning the terms of S with

|X +
2∑
i=1
Ai| ≥ min{|X| +

2∑
i=1
|Ai| − 2, |X + Σ2(S)|} = |X| +

2∑
i=1
|Ai| − 2 = |V |, so the original

setpartition A from the hypotheses must have this form. As the above works shows Item 1 holds

for such A, the case and proof is complete. �

We can now proceed with the proof of Theorem 1.1.

Proof Theorem 1.1. The case when L is nontrivial follows by applying the case L trivial to

φL(S′) | φL(S). So it suffices to handle the case when L is trivial, which we now assume. Let

A = A1 · . . . ·An be a setpartition with S(A) | S and |S(A)| = |S′| with |X +
n∑
i=1
Ai| maximal. In

view of [37, Proposition 10.1], the hypotheses S′ | S and n ≤ |S′| ≤ h(S′) are equivalent to such

a setpartition existing. Then A is a setpartition with S(A) | S maximal relative to X.

Suppose |X+
n∑
i=1
Ai| ≥ |X|+

n∑
i=1
|Ai|−n = |S′|−n+ |X|. Note we trivially have |X+Σn(S)| ≥

|X + Σn(S(A))| ≥ |X +
n∑
i=1
Ai|. Applying Lemma 2.7 to A allows us to assume A is equitable

(by replacing A by a modified setpartition as need be, potentially losing that |X +
n∑
i=1
Ai| is

maximal), yielding Item 1, unless Lemma 2.7.1 holds. Assume this is the case. By translating

all terms of S appropriately, we can w.l.o.g. assume (A1 ∪A2) \ (A1 ∩A2) = K with 0 ∈ A1 and

K\{0} ⊆ A2. If there is some x ∈ Supp(S) with x ∈ K, then the setpartition A′ = A′1·A′2 defined

by A′1 = (A1 \K)∪{x, x1} and A′2 = (A2 \K)∪{x, x2}, where x1, x2 ∈ K \{x} are distinct, is an

equitable setpartition with X+A′1+A′2 = X+A1+A2+K and |X+A′1+A′2| = |X+A1+A2|+1.

Item 1 holds in this case. If there is some x ∈ Supp(S) with x /∈ K and x /∈ A1 ∩ A2,

then (12) ensures H = H(X + A1 + A2 \ {y}) = H(A2 \ {y}) with K \ {0, y} an H-coset,

for any y ∈ K \ {0}. In such case, the setpartition A′ = A′1 · A′2 defined by A′1 = A1 ∪ {x}
and A′2 = A2 \ {y}, where y ∈ K \ {0}, is an equitable setpartition, while Lemma 2.6 and

Kneser’s Theorem imply |X + A′1 + A′2| ≥ |(A1 ∪ {x}) + H| + |X + (A2 \ {y}) + H| − |H| ≥
|X+H|+ |(A1∪{x})+H|+ |(A2 \{y})+H|−2|H| = |X|+ |A1|+ |A2|−1. Item 1 follows in this

case as well. Otherwise, we have Supp(S(A)[−1] · S) ⊆ A1 ∩ A2, and the remaining conclusions

needed for Item 3 to hold follow from Lemma 2.7.1.
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Next instead suppose |X +
n∑
i=1
Ai| < |X|+

n∑
i=1
|Ai|−n = |S′|−n+ |X|. Let H = H(X +

n∑
i=1
Ai)

and Z =
⋂n
i=1(Ai + H). In view of Lemma 2.2, we can assume Supp(S(A)[−1] · S) ⊆ Z and

|(y +H) ∩Ai| ≤ 1 for all y ∈ G \ Z and i ∈ [1, n] (by replacing A by a modified setpartition as

need be). This allows us to apply Lemma 2.3 to add the stronger assumption that |Ai \ Z| ≤ 1

for all i (by replacing A by a modified setpartition as need be). But now Lemma 2.4 ensures that

X+
n∑
i=1
Ai = X+Σn(S(A)) = X+Σn(S). Thus H = H(X+

n∑
i=1
Ai) = H(X+Σn(S)), and we can

apply Lemma 2.7. Since |Σn(S)| = |Σn(S(A))| = |X+
n∑
i=1
Ai| < |X|+

n∑
i=1
|Ai|−n = |S′|−n+ |X|,

Lemma 2.3.1 cannot hold. Thus Lemma 2.3.2 allows us to further assume A is equitable (again,

by replacing A by a modified setpartition as need be), and Item 2 follows, completing the

proof. �

3. Partitioning Results for Large n

In this section, we derive stronger results in the case our setpartition A = A1 · . . . ·An satisfies
n∑
i=1
|Ai| ≤ 2n.

Lemma 3.1. Let G be an abelian group, let n ≥ 1, let X ⊆ G be a finite, nonempty subset, let

A = A1 · . . . · An be a setpartition over G, let H = H(X +
n∑
i=1
Ai) and let Z =

⋂n
i=1(Ai + H).

Suppose
n∑
i=1
|Ai| ≤ 2n, |Ai \ Z| ≤ 1 for all i ∈ [1, n], and

|X +
n∑
i=1

Ai| < |X +H|+
( n∑
i=1

|Ai| − n
)
|H|.

Then H is nontrivial and Z = α+H for some α ∈ G.

Proof. Kneser’s Theorem implies

(38) |X +

n∑
i=1

Ai| ≥ |X +H|+
n∑
i=1

|Ai +H| − n|H|.

If Z = ∅, then the hypothesis |Ai \ Z| ≤ 1 implies |Ai + H| = |H||Ai| = |H| for all i. Thus

(38) implies |X +
n∑
i=1
Ai| ≥ |X + H| +

( n∑
i=1
|Ai| − n

)
|H|, contrary to hypothesis. Therefore Z

is nonempty. If H is trivial, then (38) implies |X +
n∑
i=1
Ai| ≥ |X| +

n∑
i=1
|Ai| − n = |X + H| +( n∑

i=1
|Ai| − n

)
|H|, contrary to hypothesis. Therefore H is nontrivial. Note that Z is H-periodic

by its definition. If |Z| ≥ 2|H|, then |Ai + H| ≥ 2|H| for all i, so that (38) and the hypothesis
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|S| ≤ 2n imply

|X +
n∑
i=1

Ai| ≥ |X +H|+ n|H| ≥ |X +H|+
( n∑
i=1

|Ai| − n
)
|H|,

contrary to hypothesis. Therefore |Z| = |H|, completing the proof. �

We now derive our strengthening of Theorem 1.1 for large n, mirroring the main result from

[38] (which obtained the same conclusion assuming n is large with respect to the exponent).

Theorem 3.2. Let G be an abelian group, let n ≥ 1, let X ⊆ G be a finite, nonempty subset, let

L ≤ H(X), let S ∈ F(G) be a sequence, and let S′ | S be a subsequence with h(φL(S′)) ≤ n ≤ |S′|.
Suppose |S′| ≤ 2n. Then one of the following holds:

1. n = 2, |S′| = |S| = |Supp(φL(S))|, Supp(φL(S)) = α+K/L for some K ≤ G and α ∈ G
with L ≤ K and K/L ∼= (Z/2Z)2, X \ (β+L) is K-periodic (or empty) for some β ∈ X,

and X + Σn(S) = X + (K \L) + 2α with |X + Σn(S)| = |X|+ 2|L| = (|S| − n)|L|+ |X|.
2. There exists an equitable setpartition A = A1 · . . . · An with S(A) | S, |S(A)| = |S′|,
|φL(Ai)| = |Ai| for all i ∈ [1, n], and |X + Σn(S)| ≥ |X +

n∑
i=1
Ai| ≥ (|S′| − n)|L|+ |X|.

3. There exists an equitable setpartition A = A1 · . . . · An with S(A) | S, |S(A)| = |S′|
and |φL(Ai)| = |Ai| for all i ∈ [1, n], a subgroup K ≤ H = H(X + Σn(S)) with L < K

proper, and α ∈ G such that

(a) X + Σn(S) = X +
n∑
i=1
Ai,

(b) Supp(S(A)[−1] · S) ⊆ α+K =
⋂n
i=1(Ai +K) and |Ai \ (α+K)| ≤ 1 for all i,

(c) |X+Σn(S)| ≥ |X+H|+|SG\(α+H)|·|H| and |X+Σn(S)| ≥ |X+K|+|SG\(α+K)|·|K|,
(d) L +

∑
i∈IK

Ai = α|IK | + K, where IK ⊆ [1, n] is the nonempty subset of all i ∈ [1, n]

with Ai ⊆ α+K.

Proof. As with the proof of Theorem 1.1, it suffices to prove the case when L is trivial, as we

can then apply this case to φL(S′) | φL(S). We divide the proof into two mains cases.

CASE 1: |X + Σn(S)| < |S′| − n+ |X|.
We will show Item 3 holds. In this case, let A = A1 · . . . · An be an arbitrary setpartition

resulting from the application of Theorem 1.1.2 to S′ | S. By Theorem 1.1.2, A is equitable, so

|Ai| ≤ 2 for all i (as |S′| ≤ 2n), S(A) | S, |S(A)| = |S′|, (a) holds, Supp(S(A)[−1] ·S) ⊆ Z, and

|Ai \Z| ≤ 1 for all i, where Z =
⋂n
i=1(Ai +H) and H = H(X + Σn(S)). By case hypothesis, we

have |X +
n∑
i=1
Ai| = |X + Σn(S)| < |X|+

n∑
i=1
|Ai| − n ≤ |X|+

( n∑
i=1
|Ai| − n

)
|H|, so that Lemma

3.1 implies H is nontrivial and

Z = α+H for some α ∈ G.
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But now Theorem 1.1.2 implies (b) holds with K = H, in which case n + |SG\(α+H)| =
n∑
i=1
|φH(Ai)|, and now (c) holds with K = H by Kneser’s Theorem. Since H is nontrivial,

the case when G is trivial is complete, allowing us to proceed by induction on |G| ∈ N ∪ {∞}.
Let IH ⊆ [1, n] be all those indices i ∈ [1, n] with Ai ⊆ α + H, and let I ′H ⊆ IH all those

indices i ∈ IH with |Ai| = 1. If IH = [1, n], then
n∑
i=1
Ai =

∑
i∈IH

Ai = α|IH | + H and (d) holds

with K = H, yielding Item 3 with K = H, as desired. Therefore, we may assume IH ⊂ [1, n] is

a proper subset. Since (b) and (c) hold with K = H, it follows that

(39) |X+Σn(S)| ≥ |X+H|+ |SG\(α+H)| · |H| = |X+H|+(n−|IH |)|H| ≥ |X|+(n−|IH |)|H|.

Since A is equitable with |S′| ≤ 2n, we have |Ai| ≤ 2 of all i, and thus |S′| ≤ 2n− |I ′H |. Hence

the case hypothesis yields |X+ Σn(S)| ≤ |S′|−n− 1 + |X| ≤ n− 1 + |X|− |I ′H |, which combines

with (39) and IH ⊂ [1, n] proper to yield

(40) |IH \ I ′H | ≥ (n− |IH |)(|H| − 1) + 1 ≥ |H|.

Consequently,

(41)
∑
i∈IH

|Ai| − |IH |+ 1 =
∑

i∈IH\I′H

|Ai| − |IH \ I ′H |+ 1 ≥ |H|+ 1,

with the final inequality following by combining (40) with the fact that |Ai| = 2 for i ∈ IH \ I ′H .

As a result, if |
∑
i∈IH

Ai| ≥ min{|H|,
∑
i∈IH
|Ai| − |IH | + 1} = |H|, then |

∑
i∈IH

Ai| = |H| follows, in

which case (d) holds with K = H, completing the proof as before. By translating all terms

appropriately, we can w.l.o.g. assume α = 0.

Let T = SH , let T ′ = S(
∏•
i∈IH Ai), let n′ = |IH | ≥ |H| > 0, and letH ′ = H({0}+Σn′(T )) ≤ H.

By re-indexing the Ai, we can w.l.o.g. assume IH = [1, n′]. Since T ′ is the sequence partitioned

by the setpartition A1 · . . . · An′ , it follows that h(T ′) ≤ n′ ≤ |T ′| (see [37, Proposition 10.1]).

Since the setpartition A1 · . . . · An is equitable with |S| ≤ 2n, we have |Ai| ∈ {1, 2} for all i, so

|T ′| ≤ 2n′. Since T ∈ F(H), we trivially have

(42) |Σn′(T )| ≤ |H| <
∑
i∈IH

|Ai| − |IH |+ 1 = |T ′| − n′ + 1,

with the second inequality following from (41). If H = G, then (a) becomes X + Σn(S) =

X +
n∑
i=1
Ai = G with |SG\(α+G)| = 0, in which case (b)–(d) all follow trivially with K = H = G.

Therefore we may assume H < G is a proper, nontrivial subgroup, and since the stabilizer

H = H(X + Σn(S)) of a finite set must be finite, it follows that we can apply the induction

hypothesis to {0} + Σn′(T ) using T ′ | T . Then Item 3 must hold for Σn′(T ) in view of (41).

Let B = B1 · . . . · Bn′ be the resulting setpartition and let β + K, where K ≤ H ′ ≤ H, be the

resulting coset. Let IK ⊆ [1, n′] = IH be the subset of indices i ∈ [1, n′] with Bi ⊆ β + K. By

re-indexing the Bi, we can w.l.o.g. assume IK = [1, n′′], where n′′ = |IK |.



REPRESENTING SEQUENCE SUBSUMS AS SUMSETS OF NEAR EQUAL SIZED SETS 29

Define a new setpartition A′ = A′1 · . . . · A′n as follows. Set A′i = Bi for i ∈ [1, n′]. Since each

Ai with i ∈ [1, n] \ IH = [n′ + 1, n] contains a term from outside H = α + H, it follows that

|Ai| = 2 and |H ∩ Ai| = |Ai| − 1 = 1 for all i /∈ IH . Since
n′∑
i=1
|Bi| =

n′∑
i=1
|Ai| =

n∑
i=1
|Ai ∩H|, we

have |S(B)[−1] · SH | ≥
n∑

i=n′+1

|Ai ∩ H|. This means we can take each set Ai with i /∈ IH and

replace the element from Ai ∩H with a separate term from S(B)[−1] ·SH to yield the set A′i. As

|Ai ∩H| = 1 for all i /∈ IH , we are guaranteed that |A′i| = |Ai| for all i.

By translating all terms of S by −β ∈ H, we can w.l.o.g. assume β = 0. Since all terms

of S(B)[−1] · SH are from K = β + K by (b) (holding for B), it follows that each A′i, with

i > n′, has |A′i \ K| = 1. Since (b) holds for B, we also have |A′i \ K| = |Bi \ K| ≤ 1 for all

i ≤ n′ with K =
⋂n
i=1(Ai + K). Thus, since

n′∑
i=1
Bi =

n′∑
i=1
A′i is K-periodic, Lemma 2.4.1 implies

n∑
i=1
A′i = Σn(S) =

n∑
i=1
Ai. Hence (a) holds for A′ = A′1 ·. . .·A′n. If

n′∑
i=1
Bi =

n′∑
i=1
A′i = H, then (a)–(d)

all hold for A′ with K = H, completing the proof. Therefore we may assume |
n′∑
i=1
Bi| ≤ |H|−|K|

(as
n′∑
i=1
Bi ⊆ H is K-periodic). Thus (c) for B ensures that |TH\K | ≤ |H/K| − 2. The first part

of (c) was already established. If the second fails for A′, then it follows that

|X+H|+|SG\H | |H| ≤ |X+Σn(S)| < |X+K|+|SG\K | |K| ≤ |X+H|+(|SG\H |+|H/K|−2)|K|,

implying |SG\H |(|H/K| − 1) ≤ |H/H| − 2, which forces |SG\H | = 0. However, in such case

(a)–(d) all hold for A with K = H. Thus we can assume both parts of (c) hold for A′ using

K. In view of the construction of the A′i and (b) for B, it follows that (b) holds for A′ with K,

while (d) holds for A′ with K as it holds for B. But now (a)–(d) all hold for A′ with subgroup

K ≤ H, which completes CASE 1.

CASE 2: |X + Σn(S)| ≥ |S′| − n+ |X|
Apply Theorem 1.1 to S′ | S. If either Theorem 1.1.1 or Theorem 1.1.2 holds, then the case

hypothesis ensures there exists an equitable setpartition A = A1 · . . . · An with S(A) | S and

|S(A)| = |S′| such that

(43) |X + Σn(S)| ≥ |X +
n∑
i=1

Ai| ≥ |S′| − n+ |X|.

It follows that Item 2 holds in this case. Therefore we may instead assume Theorem 1.1.3 holds,

and let A = A1 · A2 be the resulting setpartition. Then |A1| ≡ 1 mod 4 and |A2| ≡ 3 mod 4

with |A1| + |A2| = |S′| ≤ 2n = 4. It follows that |A1| = 1, |A2| = 3 and A1 ∩ A2 = ∅. Item 1

now follows from Theorem 1.1.3, completing the case and proof. �
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Finally, we conclude with the following application of Theorem 3.2, deriving some structural

information regarding S when, in particular, |S| = 2n with |Σn(S)| ≤ n+ 1 and h(S) ≤ n.

Theorem 3.3. Let G be an abelian group, let n ≥ 1, and let S ∈ F(G) be a sequence with

|S| > n. Suppose |Σn(S)| ≤ m + 1, where m = min{n, |S| − n, |S| − h(S)}. Then one of the

following holds, with Items 1–4 only possible if |Σn(S)| = m+ 1 or |Supp(S)| = 1.

1. n = 2, |S| = |Supp(S)|, and Supp(S) = x + K for some K ≤ G and x ∈ G with

K ∼= (Z/2Z)2.

2. m = 2 and Supp(S) = x+K for some K ≤ G and x ∈ G with K ∼= Z/3Z.

3. |Supp(S)| ≤ 2.

4. Supp(S) ⊆ {x− d, x, x+ d} for some x, d ∈ G with vx(S) = h(S) ≥ |S| −m.

5. There exists x ∈ G and a setpartition A = A1 · . . . · An with S(A) | S, |S(A)| = n + m,
n∑
i=1
Ai = Σn(S), Supp(S(A)[−1] · S) ⊆ x + H, |Ai| ≤ 2 and (x + H) ∩ Ai 6= ∅ for all

i ∈ [1, n], and |
n∑
i=1
Ai| = |

n∑
i=1
i 6=j

Ai| for some j ∈ [1, n], where H = H(Σn(S)) is nontrivial.

Proof. If h(S) = |S|, then |Supp(S)| = 1, and Item 3 holds. Therefore we may assume h(S) <

|S|, and so, since |S| > n, may let m be the maximal integer in [1, n] such that there is a

subsequence S′ | S with |S′| = n+m and h(S′) ≤ n. If m = n, then 2n ≤ |S| and h(S) ≤ |S|−n,

whence m = n = min{n, |S| − n, |S| − h(S)} ≥ 1. If S′ = S, then |S| = |S′| = n + m ≤ 2n

and h(S) ≤ |S| − m = n, whence m = |S| − n = min{n, |S| − n, |S| − h(S)} ≥ 1. If m < n

and S′ is a proper subsequence, then the maximality of m ensures that (S′)[−1] · S has only one

distinct term, say x. Now vx(S′) ≤ n. If vx(S′) < n, then S′′ = S′ · x is a subsequence with

|S′′| = |S′| + 1 = n + m + 1, h(S′′) ≤ n and m + 1 ≤ n, so m + 1 contradicts the maximality

of m. Therefore h(S) = vx(S) = |S| − |S′| + n = |S| − m ≥ |S| − n in this case, implying

h(S) = |S| − |S′|+n ≥ n and m = |S| − h(S) = min{n, |S| −n, |S| − h(S)} ≥ 1. In consequence,

in all possible cases, we deduce that

(44) m = min{n, |S| − n, |S| − h(S)} ≥ 1.

Let H = H(Σn(S)).

By hypothesis, |Σn(S)| ≤ m + 1 = |S′| − n + 1. If |Σn(S)| ≤ m, then Theorem 1.1.2

applied to S′ | S (with X = {0}) yields a setpartition A = A1 · . . . · An with S(A) | S,

|S(A)| = |S′| = n+m,
n∑
i=1
Ai = Σn(S), Supp(S(A)[−1] ·S) ⊆ Z, and |Ai| ≤ 2 and |Ai \Z| ≤ 1 for

all i, where Z =
⋂n
i=1(Ai + H). By indexing the Ai appropriately, we can assume |Ai| = 2 for

i ∈ [1,m]. By Lemma 3.1, H is nontrivial and Z = x + H for some x ∈ G. If |
j∑
i=1
Ai| > |

j−1∑
i=1
Ai|

for all j ∈ [2,m], then it follows that |Σn(S)| = |
n∑
i=1
Ai| ≥ m+ 1, contrary to assumption. Thus
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there is some j ∈ [2,m] with |
j∑
i=1
Ai| = |

j−1∑
i=1
Ai|, meaning Item 5 holds. It remains to consider the

case when |Σn(S)| = m+ 1 = |S′| − n+ 1 =
n∑
i=1
|Ai| − n+ 1.

Suppose m = 1. If 1 = m = |S| − h(S), then h(S) = |S| − 1, implying | Supp(S)| ≤ 2, so Item

3 follows. If 1 = m = n, then |Supp(S)| = |Σ1(S)| = |Σn(S)| ≤ m+ 1 = 2, and Item 3 follows.

If 1 = m = |S| −n, then n = |S| − 1 and | Supp(S)| = |Σ1(S)| = |σ(S)−Σ|S|−1(S)| = |Σn(S)| ≤
m+ 1 = 2, and Item 3 again follows. So we may now assume m ≥ 2.

Apply Theorem 3.2 (with X = {0}) to Σn(S) with S′ | S. If Theorem 3.2.1 holds, then Item

1 follows. Otherwise, in view of |Σn(S)| ≤ m + 1 = |S′| − n + 1, let A = A1 · . . . · An be the

resulting equitable setpartition with Z =
⋂n
i=1(Ai +H),

(45) S(A) | S, |S(A)| = |S′| = n+m,

n∑
i=1

Ai = Σn(S) and |Ai| = 2 for all i ∈ [1,m].

CASE 1. For any setpartition A satisfying (45), we have |
j∑
i=1
Ai| ≥ |

j−1∑
i=1
Ai|+ 1 for all j ∈ [2,m].

In this case, Lemma 2.1 implies |
n∑
i=1
Ai| ≥ m+ 1, with equality only possible if equality holds

in each estimate |
j∑
i=1
Ai| ≥ |

j−1∑
i=1
Ai| + 1 for j ∈ [2,m]. As this is the case, |

j∑
i=1
Ai| = |

j−1∑
i=1
Ai| + 1

for all j ∈ [2,m]. Moreover, this must be true under any re-indexing of the Ai with i ∈ [1,m],

whence each Ai is an arithmetic progression with a common difference d ∈ G, and each
j∑
i=1
Ai is

also an arithmetic progression with difference d and length j + 1 for j ∈ [1,m]. In particular,

3 ≤ m+ 1 ≤ ord(d),

and Σn(S) =
n∑
i=1
Ai is an arithmetic progression with difference d, whence either H is trivial or

H = 〈d〉. Thus
n∑
i=1
i 6=j

Ai is aperiodic for any j ∈ [1,m]. Moreover, if H = 〈d〉, then m = ord(d)− 1

and Σn(S) =
n∑
i=1
Ai is a single H-coset, which in view of |S| > n is only possible if Supp(S) is

contained in a single H-coset.

Suppose some pair Ai and Aj are disjoint with i, j ∈ [1,m], say Am = {x, x + d} and

Am−1 = {y, y + d}. Then y /∈ {x+ d, x, x− d} and

Σ2(x · (x+ d) · y · (y + d)) = {x+ y, x+ y + d, x+ y + 2d, 2y + d, 2x+ d}

is a set of cardinality at least 4. Thus, since A1+ . . .+Am−2+Σ2(x ·(x+d) ·y ·(y+d))+Am+1+

. . . + An ⊆ Σn(S) with |Σn(S)| = m + 1, we must have m ≥ 3. Now
m−2∑
i=1

Ai is an arithmetic

progression with difference d and length 2 ≤ m− 1 ≤ ord(d)− 2, but {x, y} is not an arithmetic
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progression with difference d since y /∈ {x+d, x, x−d}. It follows that |
m−2∑
i=1

Ai+{x, y}| ≥ m+1.

Thus, since |Σn(S)| = m+ 1, we conclude that

(46) |Σn(S)| = |
m−2∑
i=1

Ai + {x, y}| = |
m−2∑
i=1

Ai + {x, y}+ {x+ d, y + d}|,

implying that
m−2∑
i=1

Ai+ {x, y} is a translate of Σn(S) =
m−2∑
i=1

Ai+ {x, y}+ {x+d, y+d}+Am+1 +

. . . + An with x − y ∈ H = H(
m−2∑
i=1

Ai + {x, y}). In such case, H is nontrivial as x 6= y, so we

have m = ord(d) − 1 and Supp(S) ⊆ x + H = x + 〈d〉 by the observation at the end of the

previous paragraph. Letting A′ = A′1 · . . . · A′n, where A′m−1 = {x, y}, A′m = {x+ d, y + d} and

A′i = Ai for i 6= m − 1,m, it follows in view of (46) that Item 5 holds. So we can now assume

Ai ∩Aj 6= ∅ for all i, j ∈ [1,m]. Thus, since each Ai is an arithmetic progression with difference

d, it follows that there must be some x ∈
⋂m
i=1Ai (this is trivially true if ord(d) = 3, as then

m ≤ ord(d)− 1 = 2). Thus A1 ∪ . . . ∪Am ⊆ {x− d, x, x+ d} with x ∈ Ai for all i ∈ [1,m].

If there is some y ∈ Supp(S)\{x−d, x, x+d}, then we can exchange the term equal to x±d in

Am with y, resulting in a set A′m = {x, y} that is not an arithmetic progression with difference d,

while A1 remains an arithmetic progression with difference d as m ≥ 2. Since
n∑
i=1
i 6=m

Ai is aperiodic,

Knseser’s Theorem ensures the resulting setpartition (replacing Am by A′m) satisfies (45), and so

repeating the above arguments using the setpartition A1 · . . . Am−1 ·A′m ·Am+1 · . . .·An completes

the proof. Therefore we may instead assume Supp(S) ⊆ {x−d, x, x+d}. Indeed, we may assume

Supp(S) = {x − d, x, x + d}, else Item 3 holds. If ord(d) = 3, then 2 ≤ m ≤ ord(d) − 1 forces

m = 2. In this case, Supp(S) = x + K with K = {0, d,−d} a subgroup of size 3, and Item 2

follows. Therefore we can assume ord(d) ≥ 4.

Suppose there is a term y ∈ Supp((A1 · . . . · Am)[−1] · S) with y 6= x. Since Supp(S) =

{x − d, x, x + d}, we have y = x ± d, say w.l.o.g. y = x + d. If Ai = {x, x + d} for all

i ∈ [1,m], then either |Supp(S)| = 2, yielding Item 3, or else we can exchange y for some

y′ = x− d ∈ Supp((A1 · . . . ·Am)[−1] · S). Thus, swapping y as need be, we obtain that there is

some Ai with i ∈ [1,m], say Am, with y /∈ Am. Then w.l.o.g. y = x + d and Am = {0, x − d}.
Note we either have y ∈ Supp(S(A)[−1] ·S) or Ak = {y} = {x+d} for some k > m. Define a new

setpartition A′ = A′1 · . . . ·A′n with A′i = Ai for i ≤ m, A′m = {x− d, x+ d}, and either A′i = Ai

for all i > m (if y ∈ Supp(S(A)[−1] ·S)) or else A′k = {x} and A′i = Ai for all i ∈ [m+ 1, n] \ {k}
(if y /∈ Supp(S(A)[−1] ·S)). Since ord(d) ≥ 4, it follows that A′m is not an arithmetic progression

with difference d, while each A′i with i ∈ [1,m−1] is. Since m ≥ 2, repeating the above arguments

using the setpartition A′ completes the proof (as
n∑
i=1
i 6=m

Ai is aperiodic, Kneser’s Theorem ensures

(45) holds for A′). So we instead assume Supp((A1 · . . . · Am)[−1] · S) ⊆ {x}. Combined with
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x ∈ Ai for all i ∈ [1,m], we find vx(S) = h(S) ≥ |S| −m, and now Item 4 holds, completing

CASE 1.

CASE 2. There is some setpartition A satisfying (45) with |
n∑
i=1
Ai| = |

n∑
i=1
i 6=j

Ai| for some j ∈ [2,m].

By case hypothesis and Kneser’s Theorem, H = H(Σn(S)) is nontrivial. If m+ 1 = |Σn(S)| =
|H|, then Σn(S) is an H-coset, which in view of |S| > n is only possible if Supp(S) ⊆ x + H

for some x ∈ G. Hence Item 5 holds in view of the case hypothesis. So we now assume

|
n∑
i=1
Ai| = |Σn(S)| ≥ 2|H|. Thus

n∑
i=1
|φH(Ai)| ≥ n+ 1. Let B = B1 · . . . ·Bn be a setpartition with

S(B) | S, |S(B)| = n + m, and
n∑
i=1
Bi = Σn(S) such that, letting I2 ⊆ [1, n] be the subset of all

i ∈ [1, n] with |φH(Bi)| ≥ 2, the following hold

M1. For each i ∈ I2, there is some bi ∈ Bi such that |φH
(
Bi \ (bi+H)

)
| = |Bi \ (bi+H)|, and

M2. either
∑
i∈I2
|φH(Bi)| > 2|I2| or |φH(Bi′)| = |Bi′ | for some i′ ∈ I2

Since |Ai| ≤ 2 for all i and
n∑
i=1
|φH(Ai)| ≥ n+1, A satisfies all these hypotheses. Let I1 = [1, n]\I2

be the subset of all i ∈ [1, n] with |φH(Bi)| = 1, and re-index the Bi so that I1 = [1, |I1|]. Kneser’s

Theorem implies |
n∑
i=1
Bi| ≥

∑
i∈I2
|Bi+H|−(|I2|−1)|H| ≥

∑
i∈I2
|Bi|+(|I2|+1)(|H|−1)−(|I2|−1)|H| =∑

i∈I2
|Bi| − |I2| + (2|H| − 1), with the latter inequality in view of conditions M1 and M2 (note∑

i∈I2
|φH(Bi)| ≥ 2|I2| holds trivially in view of |φH(Bi)| ≥ 2 for i ∈ I2). Combined with the

inequality |
n∑
i=1
Bi| = |Σn(S)| ≤ |S′| − n+ 1 =

n∑
i=1
|Bi| − n+ 1 =

n∑
i=1
|Bi| − |I1| − |I2|+ 1, we find

(47)
∑
i∈I1

|Bi| ≥ |I1|+ 2|H| − 2.

Consequently, I1 is nonempty, and since we trivially have |
∑
i∈I1

Bi| ≤ |H| (as each Bi with

i ∈ I1 is contained in an H-coset), it follows that |
∑
i∈I1

Bi| ≤ |H| ≤
∑
i∈I1
|Bi| − |I1| − (|H| − 2) <∑

i∈I1
|Bi| − |I1|+ 1, with the later inequality holding since H is nontrivial (as noted at the start

of the case). Lemma 2.1 now implies there is some j ∈ [2, |I1|] with |
j∑
i=1
Bi| < |

j−1∑
i=1
Bi|+ |Bj | − 1,

in which case Theorem D implies

(48)

j−1∑
i=1

Bi + (Bj \ {y}) =

j∑
i=1

Bi for all y ∈ Bj .
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In particular, |Bj | ≥ 2. Also, since |Bi| ≥ 2 for all i ∈ I2, and since
n∑
i=1
|Bi| = |S′| ≤ 2n, it

follows that

(49)
∑
i∈I1

|Bi| ≤ 2|I1| and |I1| ≥ 2|H| − 2 ≥ |H|,

with the latter inequality above following from the former combined with (47).

Now additionally assume that our setpartition B is chosen, subject to S(B) | S, |S(B)| = n+m,
n∑
i=1
Bi = Σn(S), M1 and M2, so that

M3.
n∑
i=1
|φH(Bi)| is maximal.

Since A satisfies the defining conditions for B, we have
n∑
i=1
|φH(Bi)| ≥

n∑
i=1
|φH(Ai)| ≥ n + 1,

ensuring that I2 is nonempty. We claim that this ensures Bj + H ⊆ Bi for all i ∈ [1, n], where

j ∈ I1 is the index defined above. Indeed, if this fails, then there is some x ∈ Bj and k ∈ [1, n]

with φH(x) /∈ φH(Bk). In this case, remove x from Bj and place it in Bk to yield a new

setpartition B = B′1 · . . . · B′n, where B′j = Bj \ {x}, B′k = Bk ∪ {x} and B′i = Bi for i 6= j, k.

In view of (48), we have S(B′) = S(B), |S(B′)| = |S(B)| = n + m and
n∑
i=1
B′i = Σn(S). Since

φH(x) /∈ φH(Bk), it follows that x is the unique element from its H-coset in B′k, so M1 and M2

also hold for B′. However, since |φH(Bj)| = |φH(B′j)| = 1 and |φH(B′k)| = |φH(Bk)|+ 1, we see

that B′ contradicts the maximality of
n∑
i=1
|φH(Bi)| for B given in M3. Therefore, Bj + H ⊆ Bi

for all i, as claimed. Letting x ∈ Bj and recalling that Bj is contained in an H-coset (as j ∈ I1),
it follows that x+H =

⋂n
i=1(Bi +H). Likewise, if there were some y ∈ Supp(S(B)[−1] · S) with

φH(y) 6= φH(x), then we could remove x from Bj and place y in Bj to yield a new setpartition

B = B′1 · . . . ·B′n, where B′j = Bj \{x}∪{y} and B′i = Bi for i 6= j, which would again contradict

the maximality of B given in M3. Therefore we may assume otherwise. In summary,

(50) Supp(S(B)[−1] · S) ⊆ x+H =

n⋂
i=1

(Bi +H).

Claim A. (y +H) ∩Bi = {y} for any i ∈ [1, n] and y ∈ Bi \ (x+H).

Proof. Assume by contradiction there is some k ∈ [1, n] and y ∈ Bk\(x+H) with |(y+H)∩Bk| =
r ≥ 2. Since Bi ⊆ x + H for each i ∈ I1 by (50), we must have k ∈ I2. Let C = C1 · . . . · Cn
be a setpartition with S(C) = S(B) and

n∑
i=1
Bi = Σn(S) such that Ci = Bi for all i ∈ I2 \ {k},

Ck \ Bk ⊆ x + H, Ck ∩ Bk = Bk \ {y1, . . . , yt}, C|I1|+1−i \ (x + H) = {yi} ⊂ C|I1|+1−i for

i ∈ [1, t], where y1, . . . , yt ∈ (y+H)∩Bk are t ∈ [0, r−1] distinct elements, and (subject to these

conditions) |(x+H) ∩Ck| is maximal, and then (subject to prior conditions) t ≥ 0 is maximal.
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Note B satisfies these conditions with t = 0, so C exists. The defining conditions for C ensure

I ′2 = I2 ∪ [|I1|+ 1− t, |I1|]

is the subset of indices i ∈ [1, n] with |φH(Ci)| ≥ 2 and that M1 holds for all Ci with i ∈ I ′2 \{k}.
Suppose t = r−1. The defining conditions for C along with M1 for B ensure all elements from

Ck\({x, y}+H) are the unique element from their H-coset in Ck with |(y+H)∩Ck| = r−t. Thus,

since t = r−1, we see that M1 holds for C. The defining conditions for C ensure φH(Ci) = φH(Bi)

for i ∈ I2 and i ∈ I1\[|I1|+1−t, |I1|], while φH(B|I1|+1−i) ⊂ φH(C|I1|+1−i) for i ∈ [1, t]; moreover,

Ci = Bi for i ∈ I2 \ {k}. Thus, since M2 holds for B, it also holds for C (note i′ 6= k in M2 as

|(y + H) ∩ Bk| ≥ 2), and
n∑
i=1
|φH(Ci)| =

n∑
i=1
|φH(Bi)| + t =

n∑
i=1
|φH(Bi)| + r − 1 >

n∑
i=1
|φH(Bi)|.

Hence C contradicts the maximality condition M3 for B. So we instead assume t < r − 1,

meaning |(y +H) ∩ Ck| = r − t ≥ 2.

Suppose (x + H) ∩ Ck = x + H. Then Ci ⊆ x + H ⊆ Ck for all i ∈ [1, |I1| − t] (since

φH(Ci) = φH(Bi) for all i /∈ [|I1| + 1 − t, |I1|]). Let yt+1 ∈ (y + H) ∩ Ck. In view of (49),

we have |I1| ≥ |H| ≥ r ≥ t + 2, so we can define a new setpartition C′ = C ′1 · . . . · C ′n, where

C ′k = Ck \{yt+1}, C ′|I1|−t = C|I1|−t∪{yt+1}, and C ′i = Ci for all i 6= k, |I1|−t. Then S(C′) = S(C).

We have C|I1|−t ⊆ x+H = (x+H)∩Ck and yt+1 ∈ y+H 6= x+H. Thus C|I1|−t ⊆ Ck \ {yt+1}

and C|I1|−t +Ck ⊆ (C|I1|−t ∪ {yt+1}) + (Ck \ {yt+1}), ensuring Σn(S) =
n∑
i=1
Ci ⊆

n∑
i=1
C ′i ⊆ Σn(S),

forcing equality to hold. But now, since t+ 1 ≤ r− 1, we see that C′ contradicts the maximality

of t for C. So we instead conclude that

(51) (x+H) ∩ Ck ⊂ x+H.

Note ρ := |H|−|(x+H)∩Ck| ≥ 1 by (51). Since Ck\Bk ⊆ x+H and Ck∩Bk = Bk\{y1, . . . , yt}
with t < r, it follows from M1 for B that

(52) |(Ck +H) \ Ck| ≥ (|φH(Ck)| − 2)(|H| − 1) + t+ ρ ≥ t+ 1.

We also have |(Ci +H) \Ci| ≥ (|φH(Ci)| − 1)(|H| − 1) ≥ |H| − 1 for i ∈ I2 \ {k} (by M1 for B),

either |φH(Ck)| ≥ 3 (improving the final estimate in (52) by |H|−1) or |(Ci+H)\Ci| ≥ 2(|H|−1)

for some i ∈ I2 \ {k} (by M2 for B, noting that i′ 6= k in view of |(y + H) ∩ Bk| ≥ 2), and

|(Ci +H) \ Ci| = |H| − 1 for i ∈ [|I1|+ 1− t, |I1|]. As a result,∑
i∈I′2

|(Ci +H) \ Ci| ≥
∑
i∈I′2

|Ci|+ |I ′2|(|H| − 1) + t+ 1.

Combining this estimate with Kneser’s Theorem, we obtain |
n∑
i=1
Ci| ≥

∑
i∈I′2
|Ci+H|−(|I ′2|−1)|H| ≥

∑
i∈I′2
|Ci| − |I ′2| + t + 1 + |H|. Combined with the inequality |

n∑
i=1
Ci| = |Σn(S)| ≤ |S′| − n + 1 =
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n∑
i=1
|Ci| − n+ 1 =

n∑
i=1
|Ci| − |I ′1| − |I ′2|+ 1, where I ′1 := [1, n] \ I ′2 = [1, |I1| − t], we find

(53)
∑
i∈I′1

|Ci| ≥ |I ′1|+ |H|+ t ≥ |I ′1|+ |H|.

Consequently, since we trivially have |
∑
i∈I′1

Ci| ≤ |H| (as each Ci with i ∈ I ′1 is contained in an

H-coset), it follows that |
∑
i∈I′1

Ci| ≤ |H| <
∑
i∈I′1
|Ci| − |I ′1|+ 1. As before, this ensures via Lemma

2.1 and Theorem D that there is some j′ ∈ [2, |I ′1|] with

(54)

j′−1∑
i=1

Ci + (Cj′ \ {z}) =

j∑
i=1

Ci for all z ∈ Cj′ .

Suppose Cj′ ⊆ Ck. Let yt+1 ∈ (y + H) ∩ Ck. In view of (49), we have |I1| ≥ |H| ≥
r ≥ t + 2, so we can define a new setpartition C′ = C ′1 · . . . · C ′n, where C ′k = Ck \ {yt+1},
C ′j′ = Cj′ ∪ {yt+1}, and C ′i = Ci for all i 6= k, j′. Then S(C′) = S(C). We have Cj′ ⊆ Ck, and

thus Cj′ ⊆ Ck \ {yt+1} (since j′ ∈ I ′1 ensures Cj′ ⊆ x + H 6= y + H and yt+1 ∈ y + H). Hence

Cj′ + Ck ⊆ (Cj′ ∪ {yt+1}) + (Ck \ {yt+1}), ensuring Σn(S) =
n∑
i=1
Ci ⊆

n∑
i=1
C ′i ⊆ Σn(S), forcing

equality to hold. But now, since t + 1 ≤ r − 1, we see that C′ contradicts the maximality of t

for C (re-indexing the C ′i with i ∈ I ′1 so that j′ = |I ′1|). So we instead conclude that Cj′ * Ck.

Since Cj′ * Ck and Cj′ ⊆ x + H (as j′ ∈ I ′1), there is some z ∈ Cj′ \ Ck with z ∈ x + H.

Define a new setpartition C′ = C ′1 · . . . · C ′n, where C ′j′ = Cj′ \ {z}, C ′k = Ck ∪ {z}, and C ′i = Ci

for all i 6= j′, k. Then S(C′) = S(C), and (54) ensures Σn(S) =
n∑
i=1
Ci ⊆

n∑
i=1
C ′i ⊆ Σn(S), in which

case equality holds. But now |(x + H) ∩ C ′k| = |(x + H) ∩ Ck| + 1, so that C′ contradicts the

maximality of |(x+H) ∩ Ck| for C, completing Claim A �

Since H is nontrivial (as noted at the start of CASE 2) and m + 1 = |Σn(S)| ≤ |S′| − n +

1 =
n∑
i=1
|Bi| − n + 1, Claim A allows us to apply Lemma 2.3 to B (with X = {0}), giving

the existence of a setpartition C = C1 · . . . · C` with S(C) = S(B),
n∑
i=1
Ci =

n∑
i=1
Bi = Σn(S),

(x + H) ⊆ Z =
⋂n
i=1(Ci + H), and |Ci \ Z| ≤ 1 for all i. If Z 6= x + H, then m = n

and |φH(Ci)| = 2 for all i (recall |S′| = n + m ≤ 2n), whence Kneser’s Theorem implies

|S′| − n + 1 = |Σn(S)| = |
n∑
i=1
Ci| ≥ (n + 1)|H| ≥ (|S′| − n + 1)|H|, contradicting that H is

nontrivial. Therefore Z = x + H. It necessarily follows that
n∑
i=1
|φH(Ci)| =

n∑
i=1
|φH(Bi)| since

x + H =
⋂n
i=1(Bi + H) =

⋂n
i=1(Ci + H) with |(y + H) ∩ Ci| ≤ 1 and |(y + H) ∩ Bi| ≤ 1 for

all i ∈ [1, n] and y + H 6= x + H (cf. Claim A and Lemma 2.3). Applying Lemma 2.7 (with

X = {0}) allows us to replace C with a setpartition having all the defining properties for C and

which is equitable (Lemma 2.7.1 cannot hold since H = H(Σn(S)) is nontrivial), so we gain that
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|Ci| ≤ 2 for all i. In doing so, we find that C now satisfies the defining conditions for B. Thus

we can w.l.o.g. assume the setpartition B defined above has |Bi| ≤ 2 for all i. In view of (47),

there are at least 2|H| − 2 ≥ |H| sets Bi with |Bi| = 2 and i ∈ I1. Since |
∑
i∈I1

Bi| ≤ |H| in view

of each Bi being contained in an H-coset for i ∈ I1, it now follows by a simple greedy algorithm

[28, Proposition 2.2] that there is a subset J1 ⊂ I1 with |J1| ≤ |H| − 1 and |
∑
i∈J1

Bi| = |
∑
i∈I1

Bi|.

Recalling (50), we find Item 5 holds using the setpartition B, completing the case and proof. �
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[2] A. Bialostocki and P. Dierker, On the Erdős-Ginzburg-Ziv theorem and the Ramsey numbers for stars and

matchings, Discrete Math., 110 (1992), no. 13, 1-8.

[3] A. Bialostocki and M. Lotspeich, Developments of the Erdős-Ginzburg-Ziv Theorem I, in Sets, graphs and
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