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Abstract

Let G be an additive finite abelian group. For a positive integer k, let s≤k(G)
denote the smallest integer ` such that each sequence of length ` with terms from
G has a non-empty zero-sum subsequence of length at most k. In this paper,
we investigate the inverse problem of s≤D(G)−k(G) for the rank 2 abelian group
G = Z/nZ⊕ Z/nZ, where D(G) denotes the Davenport constant of G. Among
other results, we solve the inverse problem when n = pm ≥ 5 is a prime power
and 2 ≤ k ≤ 2pm+1

3 , provided k 6≡ 0 mod p. In particular, this solves the
inverse problem for the elementary p-group G = Z/pZ⊕ Z/pZ when p ≥ 5 and
2 ≤ k ≤ 2p+1

3 .
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1. Introduction

Let Cn denote the cyclic group of n elements. Let G be an additive finite
abelian group. It is well known that |G| = 1 or G = Cn1

⊕ Cn2
· · · ⊕ Cnr with

1 < n1 | n2 | · · · | nr. Then, r(G) = r is the rank of G and the exponent exp(G)
of G is nr. Let

S := g1 · . . . · g`
be a sequence of terms gi ∈ G (a finite, unordered string of terms from G,
repetition allowed) written multiplicatively using the bold dot operation · . We
let F (G) denote the set of all such sequences S ∈ F (G) with terms from G, use
g[k] = g · . . . · g︸ ︷︷ ︸

k

to denote the sequence consisting of the term g ∈ G repeated

k times, and we call S a zero-sum sequence if g1 + · · ·+ g` = 0. We say that S
is a minimal zero-sum sequence if S is a nonempty zero-sum sequence and no
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proper, nonempty subsequence is zero-sum. The Davenport constant D(G) is
the minimal integer ` ∈ N such that every sequence S over G of length |S| ≥ `
has a nonempty zero-sum subsequence. Set

D∗(G) := 1 +

r∑
i=1

(ni − 1).

It’s known that D(G) ≥ D∗(G) and that equality holds if r(G) ≤ 2 or if G is an
abelian p-group [6]. In particular, it follows that

D(Cn ⊕ Cn) = 2n− 1.

Let d(G) denote the maximal length of zero-sum free sequences in a group G.
It’s easy to see that d(G) = D(G)−1. Let η(G) denote the smallest integer ` ∈ N
such that every sequence S over G of length |S| ≥ ` has a nonempty zero-sum
subsequence T of length |T | ≤ exp(G). Denote by s≤k(G) the smallest element
` ∈ N ∪ {+∞} such that each sequence of length ` has a non-empty zero-sum
subsequence of length at most k (k ∈ N). In particular, when k ≥ D(G),

s≤D(G)(G) = D(G);

and when k = exp(G),
s≤exp(G)(G) = η(G).

In [8], the authors determined s≤k(G) for all finite abelian groups of rank
two.

Theorem 1 ([8], Theorem 2). Let G = Cm⊕Cn, where m and n are integers
with 1 ≤ m | n. Then

s≤D(G)−k(G) = D(G) + k = m+ n− 1 + k for every k ∈ [0,m− 1].

Let G = Cn ⊕ Cn. By Theorem 1, we know that

s≤D(G)(G) = s≤2n−1(G) = D(G) = 2n− 1,

and
s≤exp(G)(G) = s≤n(G) = η(G) = 3n− 2.

We investigate the inverse problem of the invariant s≤2n−1−k(Cp ⊕ Cp) for k ∈
[0, n − 1], that is, characterizing the structure of those sequences S with |S| =5

s≤2n−1−k(Cn⊕Cn)− 1 = 2n− 2 +k having no zero-sum subsequences of length
from [1, 2n − 1 − k]. Our focus is on the case when n = pm is a prime power,
and in particular, when n = p is prime.

Definition 2. Let G = Cn
⊕
Cn with n ≥ 2. We say that n has

• Property B, if every minimal zero-sum sequence S ∈ F (G) with length10

|S| = 2n− 1 contains some element with multiplicity n− 1;
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• Property C, if every sequence S ∈ F (G) with length |S| = 3n − 3 which
contains no zero-sum subsequence of length at most n has the form S =
an−1bn−1cn−1 for some distinct elements a, b, c ∈ G of order n.

In fact, it’s known that Property B holds for all n ≥ 2. The paper [13] of15

Gao, Geroldinger and Grynkiewicz reduces its validity to the prime case, which
was resolved by Reiher in [9]. From then on, the structure of minimal zero-sum
sequences with length D(G) in the group G = Cn

⊕
Cn is known. It’s worth

noting that in [13] the authors fully described the structure of the minimal zero-
sum sequence with length D(G) in the abelian group of rank two. Property C20

was investigated by Weidong Gao and Alfred Geroldinger [10] in detail. From
[10] and [11], we know that the property C holds for any positive integer n ≥ 2.
We have S≤k(G) = ∞ for k < exp(G), while s≤D(G)(G) = D(G) if k ≥ D(G),
and s≤k(G) = η(G) if k = exp(G). From the above, we see that the inverse
problems were solved for the group Cn

⊕
Cn if k ≥ D(G)− 1 or k = exp(G). It25

is natural to consider the inverse problems for k ∈ [exp(G) + 1,D(G)− 2]. For
these problems, we give a conjecture in the prime case.

Conjecture 3. Let G = Cp ⊕ Cp with a prime p and let k ∈ [2, p − 2]. If a
sequence S of terms from G with length D(G) + k − 1 = 2p − 2 + k has no
zero-sum subsequences with length from [1,D(G)−k] = [1, 2p−1+k], then there
is a basis (e1, e2) for G such that

S = e
[p−1]
1 · e[p−1]2 · (e1 + e2)[k].

Our main result is the following, establishing Conjecture 3 for k ≤ 2p+1
3 .

Theorem 4. Let G = Cp ⊕ Cp with p ≥ 5 a prime and let k ∈ [2, 2p+1
3 ] be an

integer. If S is a sequence of terms from G with length |S| = D(G) + k − 1 =
2p − 2 + k such that 0 6∈

∑
≤D(G)−k(S) =

∑
≤2p−1−k(S), then there is a basis

(e1, e2) for G such that

S = e
[p−1]
1 · e[p−1]2 · (e1 + e2)[k].

We derive Theorem 4 from the following result applicable in the prime power
case.30

Theorem 5. Let G = Cp⊕Cp with pn ≥ 5 a prime power, and let k ∈ [2, 2p
n+1
3 ]

be an integer with p - k. If S is a sequence of terms from G with length |S| =
D(G) + k− 1 = 2pn− 2 + k such that 0 6∈

∑
≤D(G)−k(S) =

∑
≤2pn−1−k(S), then

there is a basis (e1, e2) for G such that

S = e
[pn−1]
1 · e[p

n−1]
2 · (e1 + e2)[k].
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2. Preliminaries

In this paper, our notation is consistent with [6], and we briefly present some
key concepts. Let N denote the set of positive integers and N0 = N ∪ {0}. All
intervals are discrete, so [x, y] = {z ∈ Z : x ≤ z ≤ y} for x, y ∈ R.

Let F (G) be the free abelian monoid, multiplicatively written, with basis
G. The elements of F (G) are called sequences over G. Each sequence from
F (G) has the form

S = g1 · . . . · g` =
∏•

g∈G
g[vg(S)] ∈ F (G)

with vg(S) ∈ N0 for all g ∈ G and almost all vg(S) = 0. We call vg(S) the
multiplicity of g in S, and if vg(S) > 0, we say that S contains g. If vg(S) = 0
for every g ∈ G, then we call S the empty sequence, denoted by S = 1 ∈ F (G).
We use T | S to denote that T is a subsequence of S, meaning vg(T ) ≤ vg(S)
for all g ∈ G, and let S · T [−1] = T [−1] · S denote the sequence obtained from
S by removing the terms from T , so vg(S · T [−1]) = vg(S) − vg(T ). For k ≥ 1,
g ∈ G and T ∈ F (G), we let g[k] = g · . . . · g︸ ︷︷ ︸

k

and T [k] = T · . . . · T︸ ︷︷ ︸
k

be a

sequence with the term g repeated k times and the sequence T repeated k
times. Moreover, if T [k] | S, then S · T [−k] = T [−k] · S = S · (T [−k])[−1] is the
subsequence of S having the terms from T [k] removed. We have the following:

|S| = ` =
∑
g∈G

vg(S) ∈ N0, the length of S;

h(S) = max{vg(S) : g ∈ G} ∈ [0, |S|], the maximum multiplicity of S;

Supp(S) = {g ∈ G : vg(S) > 0} ⊆ G, the support of S;

σ(S) =
∑̀
i=1

gi =
∑
g∈G

vg(S)g ∈ G, the sum of S;

Σ(S) = {
∑
i∈I

gi : I ⊆ [1, `] with 1 ≤ |I| ≤ `}, the set of all subsums of S;

Σk(S) = {
∑
i∈I

gi : I ⊆ [1, `] with |I| = k}, the set of k-term subsums of S.

We write

Σ≤k(S) =
⋃

j∈[1,k]

Σj(S) and Σ≥k(S) =
⋃
j≥k

Σj(S).

The sequence S is called35

• zero-sum free if 0 6∈ Σ(S),

• a zero-sum sequence if σ(S) = 0,

• a minimal zero-sum sequence if S 6= 1F(G), σ(S) = 0, and every S′ | S
with 1 ≤ |S′| < |S| is zero-sum free.
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Every map of abelian groups ϕ : G → H extends to a map from F (G) to
F (H) by setting

ϕ(S) = ϕ(g1) · . . . · ϕ(g`).

If ϕ is a homomorphism, then ϕ(S) is a zero-sum sequence if and only if σ(S) ∈40

kerϕ.
We will have need of the following results.

Definition 6. Let G be an abelian group, let S = g1 · . . . g` ∈ F (G) be a
sequence of length |S| = ` ∈ N0, and let g ∈ G.

1. For every k ∈ N0, let45

Nkg(S) := #
{
I ⊆ [1, `] :

∑
i∈I

gi = g and |I| = k
}
.

denote the number of subsequences T of S having sum σ(T ) = g and length
|T | = k (counted with the multiplicity of their appearance in S). When
g = 0, Nkg(S) is denoted by Nk(S) for short.

2. We define

Ng(S) :=
∑
k≥0

Nkg(S), N+
g (S) :=

∑
k≥0

N2k
g (S) and N−g (S) :=

∑
k≥0

N2k+1
g (S).

Thus Ng(S) denotes the number of subsequences T of S having sum σ(T ) =
g, N+

g (S) denotes the number of all such subsequences of even length, and50

N−g (S) denotes the number of all such subsequences of odd length (each
counted with the multiplicity of its appearance in S).

Lemma 7 ([6], Proposition 5.5.8). Let p be a prime, let G be an abelian p-
group, and let S = g1 · . . . · g` ∈ F (G). If ` ≥ D(G), then N+

g (S) ≡ N−g (S)

mod p for all g ∈ G. In particular, N+
0 (S) ≡ N−0 (S) mod p.55

Lemma 8 ([9] [13]). Let G = Cn ⊕ Cn with n ≥ 2 and let S ∈ F (G) be a
minimal zero-sum sequence with length D(G) = 2n−1. Then S has the following
form:

e
[n−1]
1 ·

∏•

i∈[1,n]
(xie1 + e2)

with xi ∈ [0, n− 1] and
∑n
i=1 xi ≡ 1 mod n, for some basis (e1, e2) for G.

Lemma 9 ([12], Theorem 1.4). Let G be an abelian group, let n ≥ 1 be an
integer, and let S ∈ F (G) be a sequence of terms from G of length |S| ≥ n+ 1.
Then either

|Σn(S)| ≥ min{n+ 1, |S| − n+ |Supp(S)| − 1}

or ng ∈ Σn(S) for every g ∈ G whose multiplicity in S is at least vg(S) ≥60

h(S)− 1.

5



Corollary 10. Let G be an abelian group of order n. Let S ∈ F (G) be a
sequence of terms from G with length |S| ≥ n+ 1 and 0 6∈ Σn(S). Then

|Σn(S)| ≥ |S| − n+ |Supp(S)| − 1.

Lemma 11 ([7], Erdős-Ginzburg-Ziv Theorem). If G is an abelian group
and S ∈ F (G) with |S| ≥ 2|G| − 1, then 0 ∈ Σ|G|(S).

For subsets A1, . . . , An ⊆ G, with G an abelian group, we define the sumset
n∑
i=1

Ai = {
n∑
i=1

ai : ai ∈ Ai}. For A ⊆ G, we use H(A) = {h ∈ G : h+A = A} ≤ G65

to denote the stabilizer subgroup of A. Note A is a union of H(A)-cosets.

Lemma 12 ([7], Kneser’s Theorem). Let G be an abelian group, and let
A, B ⊆ G be nonempty subsets. Then |A + B| ≥ |A + H| + |B + H| − |H|.
In particular, if A1, . . . , An ⊆ G are nonempty subsets, then

|
n∑
i=1

Ai| ≥

(
n∑
i=1

|φH(Ai)| − n+ 1

)
|H|,

where φH : G→ G/H is the natural homomorphism.

Lemma 13 ([7], Subsum Kneser’s Theorem). Let G be an abelian group,
let S ∈ F (G), let n ∈ [1, |S|] be an integer, and let H = H(Σn(S)). Then

|Σn(S)| ≥

 ∑
g∈G/H

min{n, vg(φH(S))} − n+ 1

 |H|
= ((N − 1)n+ e+ 1)|H|,

where φH : G → G/H is the natural homomorphism, N is the number of ele-
ments of G/H having multiplicity at least n in φH(S), and e is the number of
terms in φH(S) having multiplicity strictly less than n.70

Given a fixed integer n ≥ 2 and x ∈ Z or x ∈ Z/nZ, we let x ∈ [1, n] denote
the least positive representative for x modulo n. Note n is not indicated in the
notation, but will always be clear in contexts where the notation is used.

3. Proof of Theorems 4 and 5

In this section, we prove Theorems 4 and 5. We proceed in a series of lemmas.75

Lemma 14. Let G = Cpm ⊕ Cpm with p prime and m ≥ 1, let k ∈ [1, D(G)+2
3 ]

be an integer, and let S ∈ F (G) be a sequence of terms from G with |S| =
D(G) + k − 1 and 0 /∈ Σ≤D(G)−k(S). Then

ND(G)+1−t(S) ≡
(
k

t

)
mod p for every t ∈ [1, k].

In particular, if k 6≡ 0 mod p, then there exists a minimal zero-sum subsequence
T | S of length D(G).
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Proof. For convenience, we set d := D(G) = 2pm−1. Note that k ≤ D(G)+2
3 =

d+2
3 ensures that

|S| = d+ k − 1 ≤ 2d− 2k + 1.

Because the sequence S of length |S| = d+ k− 1 has no zero-sum subsequences
of length in [1, d − k], we have Ni(S) = 0 for i ∈ [1, d − k]. By definition of
d = D(G) and the pigeonhole principle, any zero-sum sequence of length i with80

i ∈ [d + 1, |S|] ⊆ [d + 1, 2d − 2k + 1] has a nonempty zero-sum subsequence of
length at most d− k. Thus we conclude that Ni(S) = 0 for i ∈ [d+ 1, |S|].

Let T be a subsequence of S with |T | = |S| − t = d + k − 1 − t, where t is
an integer such that 0 ≤ t ≤ k − 1. Obviously 0 ≤ Ni(T ) ≤ Ni(S) = 0 holds for
i ∈ [1, d− k] ∪ [d+ 1, |S|]. Then, by lemma 7, we have the following equation:

1 + (−1)d−k+1Nd−k+1(T ) + · · ·+ (−1)dNd(T ) ≡ 0 mod p.

It follows that∑
T |S, |T |=|S|−t

(
1 + (−1)d−k+1Nd−k+1(T ) + · · ·+ (−1)dNd(T )

)
≡ 0 mod p.

Analysing the number of times each subsequence is counted, one obtains(
|S|
|T |

)
+ (−1)d−k+1

(
|S| − (d− k + 1)

|T | − (d− k + 1)

)
Nd−k+1(S)

+ · · ·+ (−1)d
(
|S| − d
|T | − d

)
Nd(S)

=

(
|S|
t

)
+ (−1)d−k+1

(
2k − 2

t

)
Nd−k+1(S)

+ · · ·+ (−1)d
(
k − 1

t

)
Nd(S) ≡ 0 mod p. (3.3)

Set X = (1, (−1)d−k+1Nd−k+1(S), · · · , (−1)dNd(S))T = (1, x1, · · · , xk) and

A :=


(|S|

0

) (
2k−2

0

)
· · ·

(
k−1
0

)(|S|
1

) (
2k−2

1

)
· · ·

(
k−1
1

)
· · · · · · · · · · · ·( |S|
k−1
) (

2k−2
k−1

)
· · ·

(
k−1
k−1
)


On the one hand, it can be deduced from (3.3) that

AX ≡ 0 mod p.

We take some row transformations of A as follows (with the rows operations
performed top to bottom each time):

A→


(|S|−1

0

) (
2k−3

0

)
· · ·

(
k−2
0

)(|S|−1
1

) (
2k−3

1

)
· · ·

(
k−2
1

)
· · · · · · · · · · · ·(|S|−1
k−1

) (
2k−3
k−1

)
· · ·

(
k−2
k−1
)
→


(|S|−l

0

) (
2k−2−l

0

)
· · ·

(
k−1−l

0

)(|S|−l
1

) (
2k−2−l

1

)
· · ·

(
k−1−l

1

)
· · · · · · · · · · · ·(|S|−l
k−1

) (
2k−2−l
k−1

)
· · ·

(
k−1−l
k−1

)

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→


(
D(G)
0

) (
k−1
0

)
· · ·

(
0
0

)(
D(G)
1

) (
k−1
1

)
· · ·

(
0
1

)
· · · · · · · · · · · ·(
D(G)
k−1

) (
k−1
k−1
)
· · ·

(
0

k−1
)


Consequently, since AX ≡ 0 mod p and
(
a
b

)
= 0 if 0 ≤ a < b, we find that(

D(G)

k − s

)
+

(
k − 1

k − s

)
x1 + · · ·+

(
k − s
k − s

)
xs ≡ 0 mod p, for s ∈ [1, k].

We proceed by induction on s ∈ [1, k] to show

xs ≡ (−1)k−s+1

(
k

k − s+ 1

)
mod p.

Note D(G) = 2pm−1 and k ≤ D(G)+2
3 = 2pm+1

3 < pm. In consequence,
(
D(G)
h

)
≡

(−1)h mod p for h ∈ [0, k], and
(
D(G)+1

h

)
≡ 0 mod p for h ∈ [1, k]. When

s = 1, we have 0 ≡
(
D(G)
k−1

)
+
(
k−1
k−1
)
x1 ≡ (−1)k−1 + x1 mod p. It follows that

x1 ≡ (−1)k
(
k
k

)
mod p, as desired. So we assume s ≥ 2 and that the formula has

been established for all smaller values h ∈ [1, s−1]. Since
(

D(G)
k−s+1

)
+
(
k−1
k−s+1

)
x1+

· · ·+
(
k−s+1
k−s+1

)
xs−1 ≡ 0 mod p and

(
D(G)
k−s

)
+
(
k−1
k−s
)
x1 + · · ·+

(
k−s
k−s
)
xs ≡ 0 mod p,

it follows that

xs ≡ −
(

D(G)

k − s+ 1

)
−
(
D(G)

k − s

)
−
s−1∑
h=1

((
k − h

k − s+ 1

)
+

(
k − h
k − s

))
xh

= −
(
D(G) + 1

k − s+ 1

)
−
s−1∑
h=1

(
k − h+ 1

k − s+ 1

)
xh ≡ −

s−1∑
h=1

(
k − h+ 1

k − s+ 1

)
xh

≡ −
s−1∑
h=1

(−1)k−h+1

(
k − h+ 1

k − s+ 1

)(
k

k − h+ 1

)

= (−1)k−s
(

k

k − s+ 1

)s−1∑
h=1

(−1)s−h
(
s− 1

s− h

)
= (−1)k−s+1

(
k

k − s+ 1

)
mod p, (1)

completing the induction. Therefore,

(−1)d−(k−s)Nd−(k−s)(S) = xs ≡ (−1)(k−s)+1

(
k

(k − s) + 1

)
mod p,

for s ∈ [1, k], implying Nd+1−t(S) ≡ (−1)d+1
(
k
t

)
≡
(
k
t

)
mod p, for t = k−s+1 ∈

[1, k] (since d = D(G) = 2pm − 1 is odd). In particular, ND(G)(S) ≡ k mod p.
Thus, if k 6≡ 0 mod p, then there must exists a zero-sum subsequence T | S of85

length D(G) = 2pm−1. If it were not a minimal zero-sum, then it would contain
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a nonempty zero-sum subsequence of length at most pm − 1 < 2pm − 1 − k =
D(G) − k, contrary to hypothesis. Therefore T | S is a minimal zero-sum
subsequence of length D(G). �

Lemma 15. Let G = Cn ⊕ Cn with n ≥ 4, let (e1, e2) be a basis for G, let
k ∈ [2, n− 2], and let

S = e
[n−1]
1 ·

∏•

i∈[1,n+k−1]
(xie1 + e2) ∈ F (G),

where xi ∈ [1, n] for i ∈ [1, n + k − 1] and
∑n
i=1 xi ≡ 1 mod n. If 0 /∈

Σ≤D(G)−k(S), then there exists a basis (e1, f2) for G, where f2 = xe1 + e2
for some x ∈ [1, n], such that

S = e
[n−1]
1 · f [n−1]2 · (e1 + f2)[k].

Proof. Let
S1 =

∏•

i∈[1,n+k−1]
xie1 ∈ F (Cn).

We have |S1| = n+ k − 1 ≥ n+ 1.90

Suppose |Supp(S1)| ≥ 3. Since 0 6∈ Σn(S1) (lest 0 ∈ Σ≤n(S), contrary to
hypothesis), then by Corollary 10, we have

|Σn(S1)| ≥ k + 1.

Therefore, there exists a subset T ⊆ [1, n + k − 1] whose terms index a sub-
sequence S(T ) =

∏•
i∈T xi with length |T | = n such that σ(S(T )) ≥ k + 1.

Let

S2 = e
n−σ(S(T ))
1 ·

∏•

i∈T
(xie1 + e2).

We have that S2 is a zero-sum subsequence of S with |S2| = |T |+n−σ(S(T )) ≤
2n − k − 1 = D(G) − k. This derives a contradiction. If |Supp(S1)| = 1,
we can also find a zero-sum subsequence with length n in S. This derives a
contradiction. So, we have |Supp(S1)| = 2.

Without loss of generation, let Supp(S1) = {0, ae1} where a ∈ [1, n− 1]. We95

have
S = e

[n−1]
1 · e[s]2 · (ae1 + e2)[n+k−1−s] with s ∈ [k, n− 1]. (2)

Note k ≤ s ≤ n−1 lest S contain a zero-sum subsequence of length n ≤ D(G)−k,
contrary to hypothesis. By Corollary 10, we have

|Σn(S1)| ≥ k.

As before, if there exists a subset T ⊆ [1, n + k − 1] whose elements index a
length n subsequence S(T ) =

∏•
i∈T xi with σ(S(T )) ≥ k + 1, then we derive a

contradiction to 0 ∈ Σ≤D(G)−k(S). Therefore,

Σn(S1) = [1, k]e1 := {e1, 2e2, . . . , ke1},

9



which is an arithmetic progression with difference e1. However, from the struc-
ture of S given in (2), Σn(S1) must also be an arithmetic progression with
difference ae1. It is well-known (and easily shown) that the difference d of an
arithmetic progression is uniquely defined up to sign, so long as there are strictly100

less than ord(d)−1 terms and at least 2 terms (see also [7, Exercise 4.2]). Since
2 ≤ k = |Σn(S1)| ≤ n − 2 = ord(e1) − 2, these hypotheses hold, forcing a = 1
or n− 1.

If a = 1, then n − s = (n − s)a ≡ 1 mod n (in view of the structure of S
given in (2) combined with Σn(S1) = [1, k]e1), implying s = n− 1, and then S105

has the desired form taking f2 = e2. If a = n− 1, then arguing similarly gives
s ≡ (n− s)a ≡ k mod n, implying s = k, in which case S has the desired form
taking f2 = −e1 + e2. �

Lemma 16. Let n ≥ 2 and let S ∈ F ([2, n]) be a nonempty sequence of inte-
gers. Then there exists a nonempty subsequence T | S with

σ(T ) ≥ min

{⌈
n− 1

2

⌉
, σ(S)− |S|

}
+ |T |,

where σ(T ) ∈ [1, n] is the least positive representative for σ(T ) modulo n. In
particular,

σ(T ) ≥ min

{⌈
n− 1

2

⌉
, |S|

}
+ |T |.

Proof. Since all terms in S are at least 2 by hypothesis, we have σ(S) ≥ 2|S|,
so it suffices to prove the main bound in lemma. Let S = x1 · . . . · x`, so ` = |S|110

is the length of S. Moreover, choose the indexing so that x1 ≥ x2 ≥ . . . ≥ x`.
Let M = min

{⌈
n−1
2

⌉
, σ(S)− |S|

}
. Then

2M ≤ n and σ(S) ≥M + |S| = M + `. (3)

If x1 ≥M + 1, then the sequence T consisting of the single term x1 satisfies the
lemma. Therefore we may assume x1 ≤M . In view of (3), we have x1+. . .+x` ≥
M + `. Consequently, there is a maximal s ∈ [1, `− 1] such that

x1 + . . .+ xs ≤M + s− 1.

Since s ≤ `− 1, the term xs+1 exits. Since S ∈ F([2, n]), we have xi ≥ 2 for all
i, implying 2s ≤ x1 + . . .+ xs ≤M + s− 1, whence

1 ≤ s ≤M − 1 and M ≥ 2.

By the maximality of s, it follows that x1+ . . .+xs+1 ≥M+s+1. As a result, if
x1+ . . .+xs+1 ≤ n, then x1 + . . .+ xs+1 = x1+ . . .+xs+1 ≥M+s+1, in which
case T = x1 · . . . · xs+1 satisfies the lemma. Therefore we can instead assume115

x1 + . . .+xs+1 ≥ n+ 1, which combined with x1 + . . .+xs ≤M + s− 1 implies
xs+1 ≥ n−M−s+2. By our choice of indexing, we have xi ≥ xs+1 ≥ n−M−s+2
for all i ≤ s+ 1, whence

s(n−M − s+ 2) ≤ x1 + . . .+ xs ≤M + s− 1.

10



Rearranging the above inequality, it follows that

s2 − (n+ 1−M)s+ (M − 1) ≥ 0 (4)

with s ∈ [1,M − 1]. If s = 1, then (4) yields 2M − 1 − n ≥ 0, contradicting120

(3). Therefore, (4) fails for s = 1, in which case it must hold for the maximum
allowed valued for s (since we know it holds for some value of s), namely s =
M − 1. Substituting this value into (4) and using that M ≥ 2, we obtain
(M − 1)− (n+ 1−M) + 1 ≥ 0, in turn implying 2M − 1− n ≥ 0, which again
gives the contradiction 2M ≥ n+ 1 to (3). �125

Lemma 17. Let n ≥ 3 and let S ∈ F ([3, n]) be a nonempty sequence of in-
tegers for which the multiplicity of the term dn+1

2 e is at most one. Then there
exists a nonempty subsequence T | S with

σ(T ) ≥ min

{⌊
2n− 2

3

⌋
, 2|S|

}
+ |T |,

where σ(T ) ∈ [1, n] is the least positive representative for σ(T ) modulo n.

Proof. Let S = x1 · . . . ·x`, so |S| = ` is the length of S. Moreover, choose the
indexing so that x1 ≥ x2 ≥ . . . ≥ x`. Let M = min

{⌊
2n−2

3

⌋
, 2|S|

}
. Then

M ≤ 2n− 2

3
and 2` = 2|S| ≥M. (5)

By hypothesis, 3 ≤ xi ≤ n, and xi = dn+1
2 e for at most one i ∈ [1, `]. If

x1 ≥ M + 1, then the sequence T consisting of the single term x1 satisfies the
lemma. Therefore we may assume

3 ≤ x1 ≤M.

In particular, (5) gives ` ≥ d 12Me ≥ 2.

Case 1: x1 + x2 ≤ n.130

We have x1 ≤M , while (5) ensures x1+. . .+x` ≥ 3` ≥M+`. Consequently,
there is a maximal s ∈ [1, `− 1] such that

x1 + . . .+ xs ≤M + s− 1.

Since s ≤ `− 1, the term xs+1 exists. If s = 1, then the maximality of s ensures
M + 2 ≤ x1 + x2 ≤ n, with the latter inequality by case hypothesis. Thus
x1 + x2 = x1 +x2 ≥M + 2, and the lemma holds taking T = x1 ·x2. Therefore
we can assume s ≥ 2. We have 3s ≤ x1 + . . .+ xs ≤M + s− 1, which implies

2 ≤ s ≤ M − 1

2
and M ≥ 2s+ 1 ≥ 5.

By the maximality of s, it follows that x1+ . . .+xs+1 ≥M+s+1. As a result, if
x1+ . . .+xs+1 ≤ n, then x1 + . . .+ xs+1 = x1+ . . .+xs+1 ≥M+s+1, in which

11



case T = x1 · . . . · xs+1 satisfies the lemma. Therefore we can instead assume
x1 + . . .+xs+1 ≥ n+ 1, which combined with x1 + . . .+xs ≤M + s− 1 implies
xs+1 ≥ n−M−s+2. By our choice of indexing, we have xi ≥ xs+1 ≥ n−M−s+2135

for all i ≤ s+1, whence s(n−M−s+2) ≤ x1+. . .+xs ≤M+s−1. Multiplying
by 4 and rearranging yields

4M + 4s− 4− 2s(2n− 2M − 2s+ 4) ≥ 0 (6)

with s ∈ [2, M−12 ]. If s = 2, then (6) yields M ≥ 2n−1
3 , contrary to (5). If s =

M−1
2 , so that 2s = M−1, then (6) becomes 6(M−1)−(M−1)(2n−3M+5) ≥ 0,

implying (in view of M > 1) that M ≥ 2n−1
3 , contrary to (5). However, since140

the expression in (6) is quadratic in s with positive lead coefficient, we now
conclude that (6) fails for all possible values of s, completing Case 1.

Case 2: x1 + x2 ≥ n+ 1.

In view of the case hypothesis and x1 ≥ x2, we conclude that x1 ≥ n+1
2 .

Thus there is a maximal t ∈ [1, `] such that145

2n− 2

3
≥M ≥ x1 ≥ . . . ≥ xt ≥

n+ 1

2
. (7)

Then
n ≥ 7 and xi ≤

n

2
for all i ≥ t+ 1.

Since there is at most one term xi equal to dn+1
2 e, we must have

xi ≥ d
n+ 3

2
e for i ≤ t− 1. (8)

If n ≤ 12, then b 2n−23 c = dn+1
2 e (or b 2n−23 c < d

n+1
2 e in case n = 8, in which

case (7) cannot hold). In such case, (7) ensures xi = dn+1
2 e for all i ≥ t, forcing

t = 1 by (8). In summary,

n ≤ 12 implies t = 1. (9)

If t is odd, modify the sequence S by replacing each pair of terms x2i−1 ·x2i
with the single term x2i−1 + x2i − n, for i ∈ [1, t−12 ]. If t is even, modify the
sequence S by replacing each pair of terms x2i−1 · x2i with the single term
x2i−1 +x2i−n, for i ∈ [1, t−22 ], and then remove the term xt. In either case, let

S′ = y1 · . . . · y`′ , where `′ = `− b t2c ≥
1
2`,

denote the resulting sequence, and choose the indexing on the yi such that150

y1 ≥ y2 ≥ . . . ≥ y`′ . Let Inew ⊆ [1, `′] consist of the ‘new’ terms in S′, each
having the form x2i−1 + x2i − n for some i ∈ [1, b t−12 ]c.

If yj is a new term, so j ∈ Inew, then yj = x2i−1 + x2i − n for some i ∈
[1, b t−12 c], ensuring

3 =
n+ 3

2
+
n+ 3

2
− n ≤ yj ≤ 2M − n ≤ n− 4

3
for j ∈ Inew, (10)

12



with the final inequality above from (5). Thus y1 ≥ n+1
2 is the unique term in

S′ strictly larger than n
2 , and

yi ≥ 3 for all i ∈ [1, `′].

Note y1 = xt or xt−1 by construction.155

Since ` ≥ 2, `′ = 1 would imply t = ` = 2 with M ≥ x1 ≥ x2 ≥ n+1
2 and

x1 ≥ n+3
2 . In such case, the sequence T consisting of the single term x1 = n+3

2

has σ(T ) ≥ n+3
2 ≥ 5 = 2|S| + |T | in view of n ≥ 7, as desired. Therefore we

may assume `′ ≥ 2, so that y2 exists. Define

ε =

{
0 if y1 + y2 ≤ n
1 if y1 + y2 ≥ n+ 1.

If ε = 1, then y2 ≥ n + 1 − y1 ≥ n + 1 −M ≥ n+5
3 > n−4

3 , with the third
inequality in view of (5). Thus (10) ensures that y2 ≤ n

2 is not a new term
when ε = 1, so

t ≤ `− ε and `′ = `−
⌊
t

2

⌋
≥ `+ ε

2
. (11)

Since y2 ≤ n
2 , we see the hypothesis y1 + y2 ≥ n + 1 needed for ε = 1 forces

y1 ≥ n
2 + 1. Thus160

y1 ≥
n+ 1 + ε

2
. (12)

If t = 1 and ε = 0, then ` = `′ with yi = xi for all i, whence n ≥ y1+y2 = x1+x2,
contrary to case hypothesis. Thus (9) ensures

n ≥ 13− 6ε. (13)

It suffices to find a nonempty subsequence T ′ | S′ with

σ(T ′) ≥M + |T ′|+ |T ′new|, (14)

where T ′new | T denotes the subsequence of new terms, for then the corresponding
sequence T | S obtained by replacing each new term yj = x2i−1 + x2i − n in165

T ′ with the pair of terms x2i−1 · x2i from S that originated yj will satisfy the
lemma since σ(T ′) ≡ σ(T ) mod n and |T | = |T ′|+ |T ′new|.

Suppose y1 + (y2+ε + . . .+ y`′) ≤M + 2(`′ − ε)− 2. Then

0 ≥ y1 + y2+ε + . . .+ y`′ −M − 2`′ + 2ε+ 2 ≥ n− 1− ε
2

+ `′ −M

≥ n− 1

2
+
`

2
−M ≥ n− 1

2
− 3

4
M ≥ 0

with the first inequality in view of (12) and yi ≥ 3 for all i ∈ [2 + ε, `′], the
second in view of (11), the third in view of ` ≥ 1

2M (by (5)), and the fourth
in view of M ≤ 2n−2

3 (also by (5)). As a result, we must have equality in

13



all these estimates. In particular, equality in (12) forces y1 = n+1+ε
2 , while

equality in (11) forces t = ` − ε to be even. However, when t is even, we have
y1 = xt−1 ≥ n+3

2 by definition of the yi, contradicting that y1 = n+1+ε
2 ≤ n+2

2 .
So we instead conclude that y1 + y2+ε + . . .+ y`′ ≥M + 2(`′− ε)− 1. Combined
with y1 ≤M , it follows that there is a maximal s ∈ [1, `′ − ε− 1] such that

y1 + (y2+ε . . .+ ys+ε) ≤M + 2s− 2.

Since s ≤ `′ − ε− 1, the term ys+ε+1 exists.
Suppose s = 1. Then the maximality of s ensures that y1 + y2+ε ≥ M + 3.

If y1 + y2+ε ≤ n, then y1 + y2+ε = y1 + y2+ε ≥M + 3, and since y1 = xt or xt−1170

is not a new term, it follows that (14) holds taking T ′ = y1 · y2+ε, completing
the proof. On the other hand, if y1 + y2+ε ≥ n + 1, then the definition of
ε forces ε = 1 with y1 + y2 ≥ n + 1 and y1 + y3 ≥ n + 1. It follows that
n
2 ≥ y2 ≥ n+1−y1 ≥ n+1−M ≥ n+5

3 and n
2 ≥ y3 ≥ n+1−y1 ≥ n+1−M ≥ n+5

3
(in view of (5)). Consequently, (10) implies that neither y2 nor y3 is a new term,175

while y2 + y3 = y2 + y3 ≥ 2n+10
3 ≥ M + 3 (in view of (5)), in which case (14)

holds taking T = y2 ·y3, completing the proof. So we may instead assume s ≥ 2.
Since y1 ≥ n+1+ε

2 (by (12)) and yi ≥ 3 for all i, we have n+1+ε
2 + 3(s− 1) ≤

y1 + y2+ε + . . .+ ys+ε ≤M + 2s− 2, implying

2 ≤ s ≤M − n− 1 + ε

2
. (15)

In view of the maximality of s, we have y1 + y2+ε + . . .+ ys+ε+1 ≥M + 2s+ 1.180

If y1 + y2+ε + . . . + ys+ε+1 ≤ n, then T ′ = y1 · y2+ε · . . . · ys+ε+1 satisfies (14)
(as y1 is not a new term), and the proof is complete. Therefore we may assume
y1 + y2+ε + . . . + ys+ε+1 ≥ n + 1, which combined with y1 + y2+ε + . . . + ys ≤
M + 2s − 2 yields ys+ε+1 ≥ n −M − 2s + 3. Since y1 ≥ n+1+ε

2 (by (12)) and
y2+ε ≥ . . . ≥ ys+ε ≥ ys+ε+1, it follows that n+1+ε

2 + (s− 1)(n−M − 2s+ 3) ≤185

y1 + y2+ε + . . . + ys+ε ≤ M + 2s − 2. Multiplying this inequality by 2 and
rearranging terms yields

2M + 4s− 5− ε− n− (2s− 2)(n−M − 2s+ 3) ≥ 0 (16)

with s ∈ [2,M − n−1+ε
2 ]. If s = 2, then (16) yields M ≥ 3n−5+ε

4 > 2n−2
3 , with

the latter inequality in view of (13), contrary to (5). If s = M − n−1+ε
2 , so that

190

4 ≤ 2s ≤ 2M − n+ 1− ε, (17)

then (16) yields 3(2M − n − 1 − ε) − (2M − n − 1 − ε)(2n − 3M + 2 + ε) ≥ 0,
in turn implying 3 − (2n − 3M + 2 + ε) ≥ 0 (as 2M − n − 1 − ε > 0 follows
from (17)). Hence M ≥ 2n−1+ε

3 ≥ 2n−1
3 , contrary to (5). As a result, since the

expression in (16) is quadratic in s with positive lead coefficient, we conclude
that (16) cannot hold for any possible value of s, completing Case 2 and the195

proof. �
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Lemma 18. Let G = Z/nZ be a cyclic group with n ≥ 2, let b ∈ G, let S ∈
F (G) be a sequence with 0 /∈ Σn(S), and let m ∈ [1, |S|] be an integer. Then
there is some x ∈ b+ Σm(S) with

x ≥ min{n, m+ 1, |S| −m+ 1, |S| − h(S) + 1, |S| − n

2
+ 1},

where x ∈ [1, n] denotes the least positive representative for x modulo n.

Proof. Since 1 ≤ m ≤ |S|, we can apply the Subsum Kneser’s Theorem to
Σm(S). Then, letting H = H(Σm(S)), we conclude that

|Σm(S)| ≥ ((N − 1)m+ e+ 1)|H|, (18)

where N ≥ 0 is the number of elements of Supp(φH(S)) having multiplicity at200

least m, and e ≥ 0 is the number of terms of φH(S) whose multiplicity is less
than m. Here φH : G→ G/H denotes the natural homomorphism.

Since H = {|G/H|, 2|G/H|, . . . , (|H| − 1)|G/H|, |G|} mod |G| and H +
Σm(S) = Σm(S), the pigeonhole principle ensures that we can always find some
x ∈ b+ Σm(S) with205

x ≥ |G| − |G/H|+ |Σm(φH(S))| ≥ |G| − |G/H|+ (N − 1)m+ e+ 1, (19)

with the latter inequality in view of (18). Thus we may assume N ≤ 1 lest x ≥
m+1 follows, as desired. If N = 0, then e = |S|, and we obtain x ≥ |S|−m+1,
as desired. Therefore we conclude that N = 1, meaning there is exactly one
term in φH(S) with multiplicity at least m. If H = G, then b + Σm(S) = G,
and we can find x ∈ b + Σm(S) with x = n, as desired. If H is trivial, then210

N = 1 implies e = |S| − h(S), and x ≥ |S| − h(S) + 1 follows, as desired. We
are left to consider when H < G is a proper, nontrivial subgroup.

By translating all terms of S appropriately, as well as b, we can w.l.o.g.
assume 0 is the unique term with multiplicity at least m in φH(S). Let SH | S
denote the subsequence of S consisting of terms from H, so e = |S · S[−1]

H |.
If |SH | ≥ |G| + |H| − 1, then repeated application of the Erdős-Ginzburg-Ziv
Theorem yields a zero-sum subsequence of length n = |G| (with all terms from
H), contrary to hypothesis. Therefore we instead conclude |SH | ≤ |G|+ |H|−2,
whence (19) now gives

x ≥ |G| − |G/H|+ (|S| − |G| − |H|+ 2) + 1

= |S| − |G/H| − |H|+ 3 ≥ |S| − |G|
2

+ 1 = |S| − n

2
+ 1,

with the final inequality above in view of H being proper and nontrivial, which
completes the proof. �

Corollary 19. Let G = Z/nZ be a cyclic group with n ≥ 2, let b ∈ G, let
S ∈ F (G) be a sequence such that 0 /∈ Σn(S), and let m ≤ |S| be an integer
with 1 ≤ m < n. Then there is some x ∈ b+ Σm(S) with

x ≥ min{|S| − n+ 2, m+ 1},

where x ∈ [1, n] denotes the least positive representative for x modulo n.215
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Proof. Note 0 /∈ Σn(S) ensures h(S) ≤ n−1. Thus |S|−n+2 ≤ |S|−h(S)+1.
Since m < n, we have |S| − n + 2 ≤ |S| − m + 1 and m + 1 ≤ n. Also,
|S| − n + 2 ≤ |S| − n

2 + 1 since n ≥ 2. Thus the desired bound follows by
applying Lemma 18. �

Lemma 20. Let G = Cn ⊕ Cn with n ≥ 5, let k ∈ [2, 2n+1
3 ] be an integer, and

suppose S ∈ F (G) is a sequence with 0 /∈ ΣD(G)−k(S) and |S| = D(G) + k − 1.
If S contains a minimal zero-sum subsequence of length D(G), then there is a
basis (e1, e2) for G such that

S = e
[n−1]
1 · e[n−1]2 · (e1 + e2)[k].

Proof. By hypothesis,

2 ≤ k ≤ 2n+ 1

3
< n− 1,

with the latter inequality in view of n ≥ 5. Since D(G) = 2n− 1, we also have220

|S| = 2n− 2 + k with
0 /∈ Σ2n−1−k(S) (20)

by hypothesis, and since S contains a minimal zero-sum subsequence of length
D(G) = 2n − 1, it follows from Property B and the characterization of such
sequences (Lemma 8) that there is a basis (e1, e2) for G such that

S = e
[n−1]
1 · U · V,

where

U =
∏•

i∈[1,|U |]
(aie1 + e2) and V =

∏•

i∈[1,|V |]
(bie1 + xie2),

with the ai, bi ∈ [1, n] and the xi ∈ [2, n− 1],

|U | ≥ n, a1 + . . .+ an ≡ 1 mod n, and |U |+ |V | = n− 1 + k. (21)

Note xi = 0 for some i would ensure a zero-sum subsequence of length at most
n with terms from 〈e1〉, contrary to (20). If |V | = 0, then Lemma 15 can be
applied to complete the proof. Therefore we may assume |V | ≥ 1. On the other225

hand, |V | = n− 1 + k − |U | ≤ k − 1 follows from (21). In summary:

1 ≤ |V | ≤ k − 1. (22)

Let π1 : G → 〈e1〉 and π2 : G → 〈e2〉 be the projection homomorphisms, so
z = xe1 +ye2 has π1(z) = xe1 and π2(z) = ye2. Then π1(U) = a1e1 · . . . ·a|U |e1.
For an element xei with x ∈ Z, we let xei ∈ [1, n] be the least positive integer
congruent to x modulo n. By replacing e2 by ae1 + e2 for an appropriate230

a ∈ [1, n], we can w.l.o.g. assume

h := h(π1(U)) = v0(π1(U)) ≤ n− 1, (23)
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where the upper bound follows lest S contain a zero-sum subsequence of length
at most n, contrary to (20). Let

s = |U | − h = |U | − v0(π1(U)) ≥ 1

denote the number of nonzero terms in π1(U), where the inequality follows in
view of |U | ≥ n and h ≤ n − 1. We may assume by contradiction that S is a
counter example to the lemma, satisfying the above setup with respect to some
basis (e1, e2), with h ≤ n− 1 maximal. For I ⊆ [1, |V |], we let

V (I) =
∏•

i∈I
(bie1 + xie2),

and we likewise extend this notation to π2(V )(I) =
∏•
i∈I xie2, etc. If 0 ∈

Σn(π1(U)), then 0 ∈ Σn(S) follows (in view of the definition of U), contradicting
(20). Therefore, we can assume

0 /∈ Σn(π1(U)). (24)

Step A: |V | ≥ n− k + 1.235

Assume by contradiction 1 ≤ |V | ≤ n− k. Averaging this bound with (22),
we obtain

|V | ≤ n− 1

2
. (25)

Since π2(V ) = x1 · . . . ·x|V | ∈ F ([2, n− 1]), Lemma 16 applied to π2(V ) implies
that there is a nonempty subset I ⊆ [1, |V |] such that

σ := σ
(
π2(V )(I)

)
≥ |I|+ min{dn− 1

2
e, |V |} = |I|+ |V |, (26)

with the equality in view of (25) Let m = n− σ < n and let b = σ
(
π1(V )(I)

)
.

In view of (24), we can apply Corollary 19 to π1(U) (if m = 0, so σ = n, we do
not apply Corollary 19 and simply take U ′ to be the trivial sequence) to find a
subsequence U ′ | U with |U ′| = n− σ and

r = b+ σ
(
π1(U ′)

)
≥ min{|U | − n+ 2, n− σ + 1}
= min{k + 1− |V |, n− σ + 1}. (27)

It follows that T = e
[n−r]
1 · U ′ · V (I) is a non-empty zero-sum subsequence of S

with
|T | = n− r + |U ′|+ |I| = 2n+ |I| − σ − r.

We handle two short subcases based on which quantity attains the minimum in240

(27).
If n−σ+1 ≤ k+1−|V |, then (27) implies |T | ≤ 2n+ |I|−σ− (n−σ+1) =

n+ |I| − 1 ≤ 2n− k− 1, with the latter inequality in view of |I| ≤ |V | ≤ n− k,
contradicting (20). If k + 1 − |V | ≤ n − σ + 1, then (26) and (27) imply
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|T | ≤ 2n− |V | − (k + 1− |V |) = 2n− 1− k, contradicting (20). As this covers245

all cases, Step A is complete.

In view of Step A and (22), we have n− k + 1 ≤ |V | ≤ k − 1, implying

k ≥ n+ 2

2
. (28)

Step B: s ≤ 2k − 1− n.

Assume by contradiction that s ≥ 2k − n, so

h = h(π1(U)) ≤ |U | − 2k + n. (29)

In view of Step A, let V ′ | V be a subsequence with length n− k, say the first250

n − k terms in V . Since π2(V ′) = x1 · . . . · xn−k ∈ F ([2, n − 1]), we can apply
Lemma 16 to π2(V ′) to find a nonempty subset I ⊆ [1, n− k] such that

σ := σ
(
π2(V ′)(I)

)
≥ |I|+ min{dn− 1

2
e, n− k} = |I|+ n− k, (30)

with the final equality above in view of (28). Then

m := n− σ ≤ k − |I| ≤ k − 1.

Let b = σ
(
π1(V ′)(I)

)
. If m = 0, then T = e

[n−b]
1 ·V ′(I) is a non-empty zero-sum

subsequence of V with length |T | ≤ n − 1 + |I| ≤ n − 1 + |V ′| = 2n − 1 − k,
contradicting (20). Therefore we may assume m ≥ 1. In view of (24), we can
now apply Lemma 18 to π1(U) to find a subsequence U ′ | U with |U ′| = n− σ
and

r = b+ σ
(
π1(U ′)

)
≥ min{n, m+ 1, |U | −m+ 1, |U | − h+ 1, |U | − n

2
+ 1}.

(31)

It follows that T = e
[n−r]
1 · U ′ · V (I) is a non-empty zero-sum subsequence of S

with
|T | = n− r + |U ′|+ |I| = 2n+ |I| − σ − r ≤ n+ k − r,

with the latter inequality above in view of (30). We handle five short subcases
based on which quantity attain the minimum in (31).

If r ≥ n, then |T | ≤ n+ k− n = k ≤ n− 2, contrary to (20). If r ≥ m+ 1 =
n−σ+1, then |T | ≤ 2n+ |I|−σ− (n−σ+1) = n+ |I|−1 ≤ 2n−k−1 (in view
of |I| ≤ |V ′| ≤ n − k), contrary to (20). If r ≥ |U | −m + 1 = |U | − n + σ + 1,
then

|T | ≤ 2n+ |I| − σ − (|U | − n+ σ + 1) = 3n+ |I| − 1− |U | − 2σ

≤ n+ 2k − |I| − 1− |U | ≤ 2k − 2,

with the second inequality from (30), and the third in view of |I| ≥ 1 and255

|U | ≥ n. Combined with (20), it follows that 2n−k ≤ 2k−2, implying k ≥ 2n+2
3 ,
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contrary to hypothesis. If r ≥ |U | − h + 1, then |T | ≤ n + k − |U | + h − 1 ≤
2n− 1− k (in view of (29)), contrary to (20). Finally, if r ≥ |U | − n

2 + 1, then
|T | ≤ n + k − |U | + n

2 − 1 ≤ k − 1 + n
2 , with the latter inequality in view of

|U | ≥ n. Combined with (20), it follows that 2n − k ≤ k − 1 + n
2 , implying260

k ≥ 3n+2
4 ≥ 2n+2

3 , contrary to hypothesis. As this exhausts all possibilities,
Step B is complete.

In view of Step B, |U | ≥ n and k ≤ 2n+1
3 , it follows that

h = v0(π1(U)) ≥ |U | − 2k + 1 + n ≥ 2n− 2k + 1 ≥ 2n+ 1

3
. (32)

Partition V = V2 ·V1/2 ·V0, where V2 | V consists of all terms x with π2(x) = 2e1,

where V1/2 | V consists of either all terms x with π2(x) = dn+1
2 ee1 (if there

are no such terms or an odd number) or else all but one of the terms x with
π2(x) = dn+1

2 ee1 (if there are a nonzero even number of such terms), and where
V0 contains all other terms. Note |V1/2| is either 0 or odd by construction. To
reduce floor and ceiling use, let

dn+ 1

2
e =

n+ ε

2
, so ε ∈ [1, 2] with ε ≡ n mod 2.

Partition [1, |V |] = J2 ∪ J1/2 ∪ J0 with V (J2) = V2, V (J1/2) = V1/2 and
V (J0) = V0. Let

U · e[−h]2 =
∏•

i∈[1,s]
(αie1 + e2), V2 =

∏•

i∈[1,|V2]]
(βie1 + 2e2), and

V1/2 =
∏•

i∈[1,|V1/2|]
(γie1 +

n+ ε

2
e2), where αi ∈ [1, n− 1] and βi, γi ∈ [1, n].

Step C: βi ≤ k−2 and γj ≤ k+1− n+ε
2 ≤

n+8−3ε
6 ≤ n+5

6 , for all i ∈ [1, |V2|]
and j ∈ [1, |V1/2|].265

Suppose βi = n for some i, i.e., that 2e2 ∈ Supp(V ). Let S′ = S · (2e2)[−1] ·
e2 · e2. Then |S′| = |S|+ 1 = D(G) + k, whence 0 ∈ Σ≤D(G)−k(S′) by Theorem
1. Thus there is a nonempty zero-sum subsequence T ′ | S′ with |T ′| ≤ D(G)−k.

If ve2(T ′) ≥ 2, then T = T ′ · e[−2]2 · 2e2 is a nonempty zero-sum subsequence
of T with |T | = |T ′| − 1 ≤ D(G) − k − 1 = 2n − 2 − k, contrary to (20). On270

the other hand, if ve2(T ′) ≤ 1, then T ′ | S (since ve2(S) = h ≥ 1) is a non-
empty zero-sum subsequence with |T | = |T ′| ≤ 2n− 1− k, contrary to (20). So

we instead conclude that βi ≤ n − 1 for all i. Next consider T = e
[n−βi−1]
1 ·

(βie1 + 2e2) ·
∏•
j∈[1,n](aje1 + e2) · e[−2]2 . Note T is a nonempty subsequence in

view of βi ≤ n− 1 and Step B, which ensures that ve2

(∏•
j∈[1,n](aje1 + e2)

)
≥275

n−(2k−1−n) = 2n−2k+1 ≥ 2. Moreover, T is zero-sum since a1+. . .+an ≡ 1
mod n (from (21)). Thus (20) implies 2n − k ≤ |T | = n − βi + n − 2, whence
βi ≤ k − 2, as desired.
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Suppose γi ≥ k + 2 − n+ε
2 for some i ∈ [1, |V1/2|]. Then, since h ≥ 2n+1

3 ≥
n− n+ε

2 , it follows that T = e
[n−γi]
1 · (γie1 + n+ε

2 e2) · e[
n−ε
2 ]

2 is a nonempty zero-280

sum subsequence of S with |T | = n − γi + 1 + n−ε
2 ≤ 2n − 1 − k, contrary to

(20). So we instead conclude that γi ≤ k+ 1− n+ε
2 ≤

n+8−3ε
2 for all i, with the

latter inequality in view of k ≤ 2n+1
3 , completing Step C.

Step D: vn
2 e1+e2

(S) ≤ 1

Assume to the contrary that vn
2 e1+e2

(S) ≥ 2, which necessarily means n is285

even. Let S′ = S · (n2 e1 + e2)[−2] · e2 · e2. Then |S′| = |S| and h(π1(U ′)) =
h(π1(U)) + 2, where U ′ | S′ consists of all terms x with π2(x) = e2. Suppose
there were a nonempty zero-sum subsequence T ′ | S′ with |T ′| ≤ D(G) − k. If

ve2(T ′) ≥ 2, then T = T ′·e[−2]2 ·(n2 e1+e2)[2] is a nonempty zero-sum subsequence
of T with |T | = |T ′| ≤ D(G) − k = 2n − 1 − k, contrary to (20). On the other290

hand, if ve2(T ′) ≤ 1, then T ′ | S (since ve2(S) = h ≥ 1) is a nonempty zero-sum
subsequence with |T | = |T ′| ≤ 2n − 1 − k, contrary to (20). So we instead
conclude 0 /∈ ΣD(G)−k(S′). If the lemma holds for S′ with basis (e′1, e

′
2), then

ve1(S′) = n − 1 forces e′1 = e1 or e′2 = e1, say w.l.o.g e′1 = e1, and then also
π2(x) is constant for all x 6= e1 that occur in S′. However, the latter condition295

fails for S′ as |V | ≥ 1. Therefore S′ is also a counterexample to the lemma, and
one with h(π1(U ′)) > h(π1(U)) = h, contradicting the maximality of h. So we
instead conclude that vn

2 e1+e2
(S) ≤ 1, completing Step D.

Step E: |V0| ≤ 1
3n− 1.

Assume to the contrary that |V0| ≥ n−2
3 . Let V ′0 | V0 be a subsequence with300

|V ′0 | = dn−23 e ≤
1
3n, say V ′0 = V0(J ′0) with J ′0 ⊆ J0. If 2|V ′0 | ≤ b2n−23 c−1 ≤ 2n−5

3 ,
then equality cannot hold in this inequality (as then 2n−5

3 must be an even
integer, which is never the case), whence 2|V ′0 | ≤ 2n−6

3 , implying |V ′0 | ≤ n−3
3 ,

contrary to assumption. Therefore 2|V ′0 | ≥ b 2n−23 c. By construction, π2(V0) ∈
F ([3, n − 1]) with at most one term of π2(V0) equal to dn+1

2 e. Thus we can305

apply Lemma 17 to π2(V ′0) and thereby find a nonempty subset I ⊆ J ′0 with

σ := σ
(
π2(V0)(I)

)
≥ |I|+ min{b2n− 2

3
c, 2|V ′0 |} = |I|+ b2n− 2

3
c. (33)

If σ = n, then T = e
[n−b]
1 · V0(I) is a nonempty zero-sum subsequence, where

b = σ(π1(V0)(I)), with |T | ≤ n− 1 + |I| ≤ n− 1 + |V ′0 | ≤ 4
3n− 1 < 2n− k, with

the final inequality in view of k ≤ 2n+1
3 , contradicting (20). Therefore σ < n.

By (33), (32) and |I| ≥ 1, we have n− σ ≤ n− |I| − b2n−23 c ≤
n+1
3 ≤ h. Thus310

Ti = e
[n−bi]
1 · V ′0(I) · e[n−σ−1]2 · (aie1 + e2) is a non-empty zero-sum subsequence

of S for any i ∈ [1, n], where bi = σ(π1(V0)(I)) + aie1. Since a1 + . . . + an ≡ 1
mod n by (21), not all ai can equal zero, meaning there are two distinct choices
for the value of ai, and thus two distinct possibilities for bi. It follows that bi ≥ 2
for some i ∈ [1, n], and now Ti | S is a nonempty zero-sum subsequence with315

|T | ≤ n−bi+n−σ+ |I| ≤ 2n−2+ |I|−σ ≤ 2n−2−b 2n−23 c ≤ n+ n−2
3 < 2n−k,
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with the third inequality by (33) and the final inequality in view of k ≤ 2n+1
3 ,

contradicting (20), which completes Step E.

In view of Step E, we have

2|V0| ≤ b
2n− 2

3
c. (34)

Step F: |V1/2| = 0.320

Assume to the contrary that |V1/2| > 0, and thus |V1/2| is odd. Observe that

U · e[−h]2 · V2 · V1/2 =
∏•

i∈[1,s]
(αie1 + e2) ·

∏•

i∈[1,|V2]]
(βie1 + 2e2)·

(γ1e1 +
n+ ε

2
e2) ·

∏•

i∈[1, 12 (|V1/2|−1)]

(
(γ2ie1 +

n+ ε

2
e2) · (γ2i+1e1 +

n+ ε

2
e2)
)
.

Let

` = s+ |V2|+
1

2
(|V1/2| − 1)

and define sequences Ti for i ∈ [1, `] as follows:

Ti = αie1 + e2 for i ∈ [1, s],

Ti = βje1 + 2e2 for i = s+ j ∈ [s+ 1, s+ |V2|],

Ti = (γ2je1 +
n+ ε

2
e2) · (γ2j+1e1 +

n+ ε

2
e2) for i = s+ |V2|+ j

with j ≥ 1.

Note

|Ti| =
{

1 i ≤ s+ |V2|
2 i ≥ s+ |V2|+ 1

and σ(π2(Ti)) =

 1 i ≤ s
2 s+ 1 ≤ i ≤ s+ |V2|
ε i ≥ s+ |V2|+ 1.

Moreover, 1 ≤ σ(π1(Ti)) ≤ n − 1 for i ≤ s + |V2| (by definition of the αi and
Step C), and (also by Step C)

2 ≤ σ(π1(Ti)) ≤ 2k+2−n−ε ≤ n+ 8− 3ε

3
≤ n−1 for i ≥ s+ |V2|+ 1. (35)

Since s ≥ 1, we have ` ≥ 1. Since h ≤ n− 1 and |U |+ |V | = n− 1 + k, Step E
implies s+ |V2|+ |V1/2| = |U |+ |V |−h−|V0| ≥ (n−1 +k)− (n−1)− (n3 −1) =
k − n

3 + 1. In summary:325

s+ |V2|+ |V1/2| ≥ k −
n

3
+ 1. (36)

By (32), we have h ≥ n−ε
2 ≥ 1. If

∑̀
i=1

σ(π2(Ti)) ≥ n−ε
2 , then let `′ ≤ ` be

the maximal index with
`′∑
i=1

σ(π2(Ti)) ≤ n−ε
2 , in which case

`′∑
i=1

σ(π2(Ti)) = n−ε
2
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or n−ε
2 − 1. Otherwise, let `′ = `. Since s ≥ 1 and n−ε

2 ≥ 1, we have `′ ≥ 1.
Consider an arbitrary sequence T formed as follows. Begin with γ1e1+n+ε

2 e2 and
sequentially concatenate additional terms as follows. For each i ∈ [1,min{s, `′}],330

choose to either concatenate a term equal to e2 or the sequence Ti = αie1 + e2.
Next, we proceed to concatenate the sequences Ti = βje1 + 2e2 for i = s+ j ∈
[s + 1,min{`′, s + |V2|}]. For each i = s + |V2| + j ∈ [s + |V2| + 1, `′], choose
to either concatenate a term equal to e2 or else concatenate the sequence Ti =

(γ2je1 + n+ε
2 e2) · (γ2j+1e1 + n+ε

2 e2) instead. If
`′∑
i=1

σ(π2(Ti)) <
n−ε
2 , concatenate335

an additional n−ε
2 −

`′∑
i=1

σ(π2(Ti)) terms each equal to e2. Then the sum of

the sequence as so constructed lies in 〈e1〉, say equal to be1. Complete the

construction of T by now concatenating the sequence e
[n−b]
1 to yield a nonempty

zero-sum subsequence T | S (T is a subsequence of S in view of h ≥ n−ε
2 ).

Let x = γ1e1+
∑
βje1, where the sum runs over all j ∈ [1, |V2|] with s+j ≤ `′.

The possibilities for be1 are precisely those elements from the sumset

B := x+

min{`′,s}∑
i=1

{0, αie1}+
∑

i=s+|V2|+j∈[s+|V2]+1,`′]

{0, (γ2j + γ2j+1)e1}

Note that B is a sumset of (say) m ≥ 1 cardinality two subsets: we have m ≥ 1340

since `′, s ≥ 1, and the sets have cardinality two since σ(π1(Ti)) ≤ n − 1 for
all i as remarked at the start of Step F. Apply Kneser’s Theorem to B and
let H = H(B). If H is trivial, then Kneser’s theorem implies there is some
be1 ∈ B with b ≥ m + 1. If |H| ≥ 2, then there will be some be1 ∈ B with
b ≥ n

2 + 1 > n−ε
2 + 1 ≥ `′ + 1 ≥ m + 1. In either case, we find some be1 ∈ B345

with
b ≥ m+ 1. (37)

We proceed in several short subcases.
Suppose `′ = ` and `′ ≤ s. Then, since ` ≥ s, we conclude that ` = `′ = s, in

which case |V2| = 0, |V1/2| = 1 and m = s. It follows that |T | = n−b+ n−ε
2 +1 ≤

3n−ε
2 − s ≤ 3n−ε

2 − k + n
3 < 2n − k, with the first inequality by (37) and the350

second by (36), which contradicts (20).
Suppose `′ < ` and `′ ≤ s. Then `′ = m = n−ε

2 , and |T | = n−b+ n−ε
2 +1 ≤ n

follows by (37), contradicting (20).
Suppose `′ = ` and s+ 1 ≤ `′ ≤ s+ |V2|. Then |V1/2| = 1, `′ = ` = s+ |V2|

and m = s. It follows that |T | = n − b + n−ε
2 + 1 − |V2| ≤ 3n−ε

2 − s − |V2| ≤355

3n−ε
2 −k+ n

3 < 2n−k, with the first inequality by (37), and the second by (36),
contradicting (20).

Suppose `′ < ` and s+1 ≤ `′ ≤ s+|V2|. Then `′ = b 12 (n−ε2 −s)c+s andm = s.

It follows that |T | = n−b+s+1+d 12 (n−ε2 −s)e ≤ n+d 12 (n−ε2 −s)e ≤
5
4n < 2n−k,

with the first inequality by (37), the second as ε ≥ 1 and s ≥ 1, and third in360

view of k ≤ 2n+1
3 and n ≥ 5, contradicting (20).
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Suppose `′ = `, `′ ≥ s + |V2| + 1 and n is even. Then |V1/2| ≥ 3, ε = 2,

`′ = s + |V2| + 1
2 (|V1/2| − 1) and m = s + 1

2 (|V1/2| − 1). It follows that |T | =

n− b+ 1 + n−ε
2 − |V2| ≤ n− s− 1

2 (|V1/2| − 1) + n−ε
2 − |V2| =

3
2n− `− 1, with

the inequality by (37). In view of (36), s ≥ 1 and the definition of `, we find365

that ` ≥ 1
2 (k − n

3 − s) + s ≥ k
2 −

n
6 + 1

2 . Combined with the previous estimate,

we obtain |T | ≤ 5
3n −

k
2 −

3
2 < 2n − k, with the latter inequality in view of

k ≤ 2n+1
3 , contradicting (20).

Suppose `′ < `, `′ ≥ s+ |V2|+ 1 and n is even. Then |V1/2| ≥ 3, ε = 2, and

m = s+ b 12 (n−ε2 − 2|V2| − s)c = bn−2+2s
4 c − |V2| ≥ n

4 −
1
2 − |V2|. It follows that370

|T | = n − b + 1 + n−ε
2 − |V2| ≤

5
4n −

1
2 < 2n − k, with the first inequality by

(37), and the second in view of k ≤ 2n+1
3 , contradicting (20).

In view of the above cases, it remains to consider when `′ ≥ s+ |V2|+ 1 with
n odd, so ε = 1, |V1/2| ≥ 3 and m > s. We aim to improve the estimate (37) as
follows:375

b ≥ 2m− s+ 1 (38)

for some be1 ∈ B. Let B0 = x +
s∑
i=1

{0, αie1}, and for t ∈ [0,m − s], let Bt be

the sum of the first s+ t summands in the definition of B, so

Bt = Bt−1 + {0, (γ2t + γ2t+1)e1} for t ≥ 1.

We proceed inductively to show |maxBt| ≥ s+1+2t for t = 0, 1, . . . ,m−s. Then
the case t = m − s will yield the desired bound (38). For t = 0, the argument
used to establish (37) applied to B0 rather than B yields maxB0 ≥ |B0| ≥ s+1,
which completes the base of the induction. Now assume t ≥ 1. The elements
b ∈ Bt−1 are the possibilities for those constructed sequences T that use 0 rather
than (γ2j +γ2j+1)e1 for all j ≥ t. For such T , we have |T | ≤ n− b+ n+1

2 + t−1.

Since (20) ensures |T | ≥ 2n−k, it follows that b ≤ k− n+1
2 + t. This shows that

maxBt−1 ≤ k −
n+ 1

2
+ t.

By (35), we have
2 ≤ γ2t + γ2t+1 ≤ 2k + 1− n.

Consequently, if (2k + 1 − n) + (k − n+1
2 + t) ≤ n, then adding (γ2t + γ2t+1)

to the largest element b′ ∈ Bt−1 yields an element b ∈ Bt with 2 + b′ ≤ b ≤ n,
and thus with b ≥ s+ 1 + 2(t− 1) + 2 = s+ 1 + 2t by induction hypothesis, as
desired. Assuming instead that (2k + 1− n) + (k − n+1

2 + t) ≥ n+ 1, it follows
that 1

2 (|V1/2| − 1) ≥ t ≥ 5
2n + 1

2 − 3k. However, we have |V1/2| ≤ |V | ≤ k − 1380

by (22), yielding k−2
2 ≥ 5

2n + 1
2 − 3k, and thus k ≥ 5n+3

7 . This contradicts
that k ≤ 2n+1

3 , completing the induction and thereby establishing the desired
improvement (38). We are now ready to finish the last two subcases.

Suppose `′ = `, `′ ≥ s + |V2| + 1 and n is odd. Then |V1/2| ≥ 3, ε = 1,

`′ = s + |V2| + 1
2 (|V1/2| − 1) and m = s + 1

2 (|V1/2| − 1). It follows that |T | =385
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n− b+ 1 + n−1
2 − |V2|+

1
2 (|V1/2| − 1) ≤ 3

2n− |V2| −
1
2 |V1/2| − s = 3

2n− `−
1
2 ,

with the inequality in view of (38). In view of (36) and s ≥ 1, we have ` ≥
1
2 (k − n

3 − s) + s ≥ k
2 −

n
6 + 1

2 . Combined with the previous estimate, we find

that |T | ≤ 5
3n−

k
2 − 1 < 2n− k, with the latter inequality in view of k ≤ 2n+1

3 ,
contradicting (20).390

Suppose `′ < `, `′ ≥ s+ |V2|+ 1 and n is odd. Then |V1/2| ≥ 3, ε = 1, and

m = n−1
2 − 2|V2|. Moreover, by definition of `′ < `, we have

n− 1

2
≥

`′∑
i=1

σ(π2(Ti)) ≥ s+ 2|V2|+ 1, (39)

with the latter inequality following in view of `′ ≥ s+ |V2|+ 1, and the former
in view of ε = 1. It follows that |T | = n− b+ 1 + s+ |V2|+ 2(n−12 − s− 2|V2|) =

2n − b − s − 3|V2| ≤ n + |V2|, with the inequality in view of (38). As a result,395

(20) implies that |V2| ≥ n − k. However, (39) and s ≥ 1 imply |V2| ≤ n−5
4 ,

which combined with n−k ≤ |V2| yields k ≥ 3n+5
4 , contradicting the hypothesis

k ≤ 2n+1
3 , and completing the final subcase in Step F.

Since π2(V0) ∈ F ([3, n − 1]) with at most one term of π2(V0) equal to
dn+1

2 e (by construction), we can apply Lemma 17 to π2(V0) and thereby find a400

nonempty subset I ⊆ J0 with

σ := σ
(
π2(V0)(I)

)
≥ |I|+ min{b2n− 2

3
c, 2|V0|} = |I|+ 2|V0|, (40)

with the latter equality in view of (34). Note, if |V0| = 0, then we simply take I
to be the empty set and set σ = 0 (without using Lemma 17). In view of (32)
and k ≤ 2n+1

3 , it follows that

h ≥ 2n− 2k + 1 ≥ k.

Let
s′ = min{s, s− (n− σ − h)}.

We claim that
|V0|+ |V2|+ s′ ≥ k − 1, (41)

with equality only possible if s′ < s and |V0| = 0. Indeed, if s′ = s, then Step F
implies |V0|+ |V2|+ s′ = |V0|+ |V2|+ s = |U |+ |V |−h = n−1 +k−h ≥ k, with
the final inequality in view of h ≤ n− 1 (by (23)). On the other hand, if s′ < s,405

then |V0|+ |V2|+s′ = |V0|+ |V2|+s− (n−σ−h) = |U |+ |V |−h− (n−σ−h) =
k − 1 + σ ≥ k − 1 + 2|V0|, with the final inequality from (40). Thus (41) is
established with the stated equality conditions.

By construction,

e
[min{h,n−σ}]
2 ·

∏•

i∈[s′+1,s]
(αie1 + e2) = z1 · . . . · zn−σ (42)

is a subsequence of S with length n − σ, where zi = e2 for i ≤ min{h, n − σ},410

and zmin{h,n−σ}+i = αie1 + e2 for i ∈ [1, s− s′].
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Step G: s′ ≤ n− σ − 2 and s′ ≤ 1
2 (h− 1) < h− 1.

Note s′ ≤ s ≤ 2k − 1 − n ≤ n − k ≤ 1
2 (h − 1) < h − 1, with the second

inequality by Step B, the third in view of k ≤ 2n+1
3 , the fourth from (32), and

the fifth as h ≥ 2n+1
3 > 1 (in view of (32)).415

Letting a = σ(π1(V0)(I)) + αs′+1e1 + . . .+ αse1, it follows that e
[n−a]
1 ·V0(I)·

z1 · . . . · zn−σ is a nonempty zero-sum sequence of length 2n − a + |I| − σ ≤
2n − 1 + |V0| − σ ≤ 2n − 2 + bn3 c − σ, with the latter inequality in view of
Step E. Consequently, (20) ensures that 2n − k ≤ 2n − 2 + bn3 c − σ, in turn
implying σ ≤ bn3 c + k − 2 ≤ bn3 c + b 2n+1

3 c − 2 ≤ n − 2. Let m = n − σ ≥ 2
and b = σ(π1(V0)(I)). In view of (24) and |U | ≥ n, we can apply Lemma 18 to
π1(U) to find a subsequence U ′ | U with |U ′| = n− σ and

r = b+ σ
(
π1(U ′)

)
≥ min{n, m+ 1, |U | −m+ 1, |U | − h+ 1, |U | − n

2
+ 1}.

(43)

It follows that T = e
[n−r]
1 ·U ′ · V0(I) is a non-empty zero-sum subsequence of S

with
2n− k ≤ |T | = n− r + |U ′|+ |I| = 2n+ |I| − σ − r, (44)

with the first inequality above in view of (20).
In view of Step B, k ≤ 2n+1

3 and |U | ≥ n, we have s′+ 1 ≤ s+ 1 ≤ 2k−n ≤
n
2 +1 ≤ n and s′+1 ≤ n

2 +1 ≤ |U |−n
2 +1. We also have s′+1 ≤ s+1 = |U |−h+1.

If h ≤ m = n − σ, then s′ + 1 = |U | − m + 1, while h ≥ m = n − σ implies
s′ + 1 = s+ 1 ≤ h+ s−m+ 1 = |U | −m+ 1. Thus (43) implies

r ≥ min{m+ 1, s′ + 1} ≥ min{m, s′ + 1}.

If s′ ≥ m − 1, then r ≥ m = n − σ. In this case, (44) and Step E yield
2n − k ≤ n + |I| ≤ n + |V0| ≤ 4n

3 − 1, contradicting k ≤ 2n+1
3 . Therefore420

s′ ≤ m− 2 = n− σ − 2, completing Step G.

Step H: s′ + 2|V2| ≥ n− σ + 1.

Assume to the contrary that s′ + 2|V2| ≤ n − σ. Consider an arbitrary
sequence T formed as follows. Begin with

V0(I) · V2 · z2|V2|+s′+1 · . . . · zn−σ.

For each i ∈ [1, s′], choose to either concatenate the term zi = e2 (in view of Step
G) or the term αie1 + e2. In view of s′+ 2|V2| ≤ n−σ, the sum of the sequence
as so constructed lies in 〈e1〉, say equal to be1. Complete the construction425

of T by now concatenating the sequence e
[n−b]
1 to yield a nonempty zero-sum

subsequence T | S. Note T being empty would imply |I| = 0 and n − σ = 0,
while |I| = 0 is only possible by construction when |V0| = 0 = σ, contradicting
that n− σ = 0. Also,

|T | = 2n− b+ |I| − σ − |V2| ≤ 2n− b− |V2| − 2|V0|, (45)
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with the inequality from (40). Let x = σ
(
π1
(
V0(I) ·V2 · z2|V0|+s′+1 · . . . · zn−σ

))
.

Let
B0 = {0, α1e1}+ . . .+ {0, αs′e1},

which is a sum of s′ ≥ 0 cardinality two sets in view of the definition of the αi.
The possibilities for be1 are precisely the elements from the sumset x+B0. Let
H = H(B0) and apply Kneser’s Theorem to B0. If H is trivial, then Kneser’s
Theorem implies |B0| ≥ s′ + 1, in which case there is some be1 ∈ x + B0 with
b ≥ s′ + 1. On the other hand, if |H| ≥ 2, then there is some be1 ∈ x+B0 with
b ≥ n

2 + 1 > 2k − n ≥ s+ 1 ≥ s′ + 1, with the second inequality since k ≤ 2n+1
3

and the third from Step B. In either case, we can find some such zero-sum
subsequence T with b ≥ s′+1, with equality only possible if x+B0 = [1, s′+1].
Thus (45) and (41) imply |T | ≤ 2n−1−s′−|V2|−2|V0| ≤ 2n−k−|V0| ≤ 2n−k.
Combined with (20), we conclude that |T | = 2n− k, and so equality must hold
in all estimates used to derive |T | ≤ 2n−k. In particular, equality holds in (45)
and (41), ensuring s′ < s, and thus h < n− σ, and we must also have

|V0| = 0 and x+B0 = [1, s′ + 1].

Since s′ ≤ h − 2 < n − σ − 2 (by Step G), it follows that zs′+1 = zs′+2 = e2.430

Since V = V0 ·V2 (By Step F) with |V | ≥ 1 and |V0| = 0, it follows that |V2| ≥ 1.

Now consider the sequence T ′ = e
[−(n−b)]
1 · T · (β1e1 + 2e2)[−1] · e[2]2 . Since

|V2| ≥ 1 and zs′+1 = zs′+2 = e2, it follows that T ′ | S · e[−(n−1)]1 . Let b′e1 =
σ(π1(T ′)) = (b− β1)e1. In view of x+B0 = [1, s′ + 1], we see that

−β1 + [1, s′ + 1]

is the set of possible values for b′. Now e
[n−b′]
1 · T ′ is a nonempty zero-sum

subsequence of S with length

|T ′| = |T |+ 1− b′ + b = 2n− b′ − |V2|+ 1 = 2n− k + s′ + 2′ − b′,

with the second equality following as equality holds in (45) and |V0| = 0, and the
third equality holding as equality holds in (41) and |V0| = 0. As a result, (20)
implies b′ ∈ [1, s′+2]. Consequently, since −β1 + [1, s′ + 1] is the set of possible
values for b′, we conclude that β1 ∈ {n− 1, n} (note s′ ≤ s ≤ 2k− 1−n < n− 1435

by Step B). However, this contradicts Step C, completing Step H.

Step I: bn−σ−s
′

2 c ≥ 2k − 1− n− σ + |I|

If Step I fails, we obtain n−σ−s′−1
2 ≤ 2k − 2 − n − σ + |I|, which implies

2k ≥ 3n+3
2 + 1

2σ−
1
2s
′−|I| ≥ 3n+3

2 −
1
2s
′+|V0|− 1

2 |I| ≥
3n+3

2 −
1
2s
′ ≥ 2n+2−k, with

the second inequality from (40), the third since 0 ≤ |I| ≤ |V0|, and the fourth440

from Step B and s′ ≤ s. However, this contradicts the hypothesis k ≤ 2n+1
3 ,

completing Step I.

Let

t0 = bmin{h, n− σ} − s′

2
c ≥ 1, t = bn− σ − s

′

2
c ≥ 1, and

t1 = min{t0, t− 2k + 2 + n+ σ − |I|} ≥ 1,
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with the inequalities in view of Steps G and I. Note t0 ≤ t. Consider an arbitrary
sequence T formed as follows. Begin with V0(I) and sequentially concatenate
additional terms as follows. For each i ∈ [1, s′], choose to either concatenate445

the term zi = e2 (by Step G) or the term αie1 + e2. Next, for each i = s′ + j ∈
[s′+ 1, s′+ t1], choose to either concatenate the sequence zs′+2j−1 · zs′+2j = e

[2]
2

(in view of t1 ≤ t0 and the definition of t0) or the term βje1 + 2e2 (this term
exists in view of Step H). For each i = s′ + j ∈ [s′ + t1 + 1, s′ + t], concatenate
the term βje1 + 2e2 (there are enough such terms βje1 + 2e2 in view of Step450

H). Finally, if n − σ − s′ is odd, so that t < n−σ−s′
2 , concatenate the term

zn−σ. The sum of the sequence as so constructed lies in 〈e1〉, say equal to be1.

Complete the construction of T by now concatenating the sequence e
[n−b]
1 to

yield a nonempty zero-sum subsequence T | S. Note T being empty would
imply |I| = 0 and n−σ = 0, while |I| = 0 is only possible by construction when455

|V0| = 0 = σ, contradicting that n− σ = 0. By construction,

|T | = 2n− b− σ + |I| − r2(T ), where r2(T ) ∈ [t− t1, t] (46)

denotes the number of terms in T of the form βje1 + 2e2. Note, by definition of
t1, we have

r2(T ) ≥ t− t1 ≥ 2k − 2− n− σ + |I|. (47)

Let x = σ(π1(V0)(I))+
t∑

j=t1+1

βje1 (if n−σ−s′ is even) or x = σ(π1(V0)(I))+

t∑
j=t1+1

βje1 + π1(zn−σ) (if n− σ − s′ is odd). For j ∈ [0, t1], let

Bj =

s′∑
i=1

{0, αie1}+

j∑
i=1

{0, βie1},

where we set B0 := {0} in case s′ = 0. Step C and the definition of the αi
ensures that each Bj is sumset of cardinality two sets (except B0 when s′ = 0).460

The possibilities for be1 are precisely those elements from the sumset x + Bt1 .
In view of (46) and (20), we have 2n − k ≤ |T | ≤ 2n − b − σ + |I| − r2(T ),
implying

b ≤ k − σ + |I| − r2(T ) ≤ n− k + 2, (48)

with the latter inequality above in view of (47). Let H = H(B0). Apply
Kneser’s Theorem to B0. If |H| ≥ 3, then, given any y ∈ 〈e1〉, there will
be some ae1 ∈ y + B0 with a ≥ 2n

3 + 1 > k. In particular, there is some

be1 ∈ x+Bt0 with b > k, contradicting (48) in view of (28). Therefore |H| ≤ 2.
If H is trivial, then Kneser’s Theorem implies |B0| ≥ s′ + 1. If |H| = 2, then
s′ ≥ 1, while Step D ensures that at most one of the sets in the defining sumset
for B0 has cardinality one modulo H, in which case Kneser’s Theorem implies
|B0| ≥ |H|s′ = 2s′ ≥ s′ + 1. In either case,

|B0| ≥ s′ + 1.
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We proceed to show by induction on j = 0, 1, . . . , t1 that

max

(
x+ y +B0 +

∑j

i=1
βi

)
≥ s′ + 1 + j, for any y ∈

t1∑
i=j+1

{0, βie1}. (49)

The case j = 0 follows from |B0| ≥ s′ + 1, so assume j ≥ 1. By (48), we have465

βy := max
(
x+ y +B0 +

∑j−1
i=1βi

)
≤ n−k+2 for any y ∈

t1∑
i=j

{0, βie1}, and thus

also for any y ∈
t1∑

i=j+1

{0, βie1} ⊆
t1∑
i=j

{0, βie1}. By Step C, we have βj ≤ k − 2.

Thus βy + βj ≤ n, ensuring βy + βj = βy + βj = max
(
x+ y +B0 +

∑j
i=1βi

)
,

for any y ∈
t1∑

i=j+1

{0, βie1}. Since βy+βj > βy, the desired bound (49) follows in

view of the induction hypothesis applied to βy = max
(
x+ y +B0 +

∑j−1
i=1βi

)
,470

and (49) is established.
In view of (49) applied with j = t1, it follows that we can find some choice

of T such that
r2(T ) = t and b ≥ s′ + 1 + t1. (50)

We handle three final subcases based on which quantities obtain the minimums
in the definitions of t1 and t0.475

Suppose t1 = t− 2k + 2 + n+ σ − |I|. Then

|T | = 2n− b− σ + |I| − r2(T ) ≤ 2n− 1− s′ − σ + |I| − t− t1
= n+ 2k − s′ − 3 + 2|I| − 2σ − 2t

≤ 2k − 2 + 2|I| − σ ≤ 2k − 2− |V0| ≤ 2k − 2 ≤ 2n− k − 1,

with the first equality by (46), the first inequality in view of (50), the second
inequality by definition of t, the third from (40) and |I| ≤ |V0|, the fourth as
|V0| ≥ 0, and the fifth in view of k ≤ 2n+1

3 . However, this contradicts (20).
Suppose t1 = t0 = t. Then

|T | = 2n− b− σ + |I| − r2(T ) ≤ 2n− 1− s′ − σ + |I| − t− t1
= 2n− 1− s′ − σ + |I| − 2t

≤ n+ |I| ≤ n+ |V0| ≤
4

3
n− 1 < 2n− k,

with the first equality by (46), the first inequality in view of (50), the second
equality in view of the assumption t1 = t0 = t, the second inequality by defini-480

tion of t, the third since |I| ≤ |V0|, the fourth from Step E, and the fifth in view
of k ≤ 2n+1

3 . However, this contradicts (20).
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Finally, suppose t1 = t0 = bh−s
′

2 c < t. Then

|T | = 2n− b− σ + |I| − r2(T ) ≤ 2n− 1− s′ − σ + |I| − t− t1

= 2n− 1− s′ − σ + |I| − t− bh− s
′

2
c

≤ 3n− σ − h
2

+ |I| ≤ 3n− h− |V0|
2

≤ n− 1

2
+ k < 2n− k,

with the first equality in view of (46), the first inequality in view of (50), the
second inequality by definition of t, the third from (40) and |I| ≤ |V0|, the fourth
from |V0| ≥ 0, (32) and |U | ≥ n, and the fifth in view of k ≤ 2n+1

3 . However,485

this contradicts (20), completing the proof. �

We can now prove our main results quite readily.

Proof. (Theorem 5) Since k ≤ 2pn+1
3 = D(G)+2

3 and k 6≡ 0 mod p, Lemma 14
implies there exists a minimal zero-sum subsequence U | S with |U | = D(G).

Since 2 ≤ k ≤ 2pn+1
3 , applying Lemma 20 completes the proof. �490

Proof. (Theorem 4) Since 2 ≤ k ≤ 2p+1
3 < p, it follows that p - k, and so the

result is simply a special case of Theorem 5. �
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