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Abstract. Let G be a finite group. A sequence over G means a finite sequence of terms from G,

where repetition is allowed and the order is disregarded. A product-one sequence is a sequence whose
elements can be ordered such that their product equals the identity element of the group. The set of all

product-one sequences over G (with concatenation of sequences as the operation) is a finitely generated

C-monoid. Product-one sequences over dihedral groups have a variety of extremal properties. This
article provides a detailed investigation, with methods from arithmetic combinatorics, of the arithmetic

of the monoid of product-one sequences over dihedral groups.

1. Introduction

Let G be a finite group. A sequence over G means a finite sequence of terms from G, where repetition
of terms is allowed and their order is disregarded. A sequence is called product-one free if no subproduct
of terms (in any order) equals the identity of the group, and it is called a product-one sequence if its terms
can be ordered such that their product equals the identity of G. The small Davenport constant d(G) is
the maximal length of a product-one free sequence and the large Davenport constant D(G) is the maximal
length of a minimal product-one sequence (a minimal product-one sequence is a product-one sequence
that cannot be factorized, or say partitioned, into two nontrivial product-one sequences). The study of
sequences, their subsequence products, and their structure under extremal properties is a classical topic
in additive combinatorics.

If G is additively written and abelian, then we speak of zero-sum free sequences, zero-sum sequences,
and of sequence subsums. Their study is a main objective of zero-sum theory, which has intimate
connections to various areas of combinatorics, graph theory, finite geometry, factorization theory, and
invariant theory. Although, for a long time, the focus of study was on the abelian setting, the study
of combinatorial invariants in the general setting dates back at least to the 1970s when Olson gave an
upper bound for d(G) ([33]). There are recent studies on (small and large) Davenport constants, on
the Erdős-Ginzburg-Ziv constant s(G), and on the constant E(G), which asks for the smallest integer `
such that every sequence over G of length at least ` has a product-one subsequence of length |G| (e.g.,
[3, 11, 26, 4, 27, 32, 31]). These investigations were pushed forward by new applications to invariant
theory and to factorization theory. To begin with invariant theory, let β(G) denote the Noether number
of G. If G is abelian, then B. Schmid [36] observed that d(G) + 1 = β(G) = D(G). If G has a cyclic
subgroup of index two, then it was shown by Cziszter, Domokos, and by two of the present authors that
d(G) + 1 ≤ β(G) ≤ D(G) ([12, 7]). For general groups the relationship between the Davenport constants
and the Noether number is open, but in all cases studied so far we have d(G) + 1 ≤ β(G) ([8, 9, 6]).

To discuss the connection with factorization theory, we first observe that the set B(G) of product-one
sequences over G is a finitely generated (commutative and cancellative) monoid with concatenation of
sequences as its operation. The atoms (i.e., the irreducible elements) of B(G) are precisely the minimal
product-one sequences over G. First, let G be abelian and, for simplicity, suppose that |G| ≥ 3. Then
B(G) is a Krull monoid with class group (isomorphic to) G and every class contains precisely one prime
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divisor. If H is any Krull monoid with class group G and prime divisors in each class, then there is
a transfer homomorphism θ : H → B(G) implying that arithmetical invariants (such as sets of lengths,
catenary degrees, and more) of H and of B(G) coincide. The arithmetic of B(G) is studied with methods of
additive combinatorics and the long-term goal is to determine the precise value of arithmetical invariants
in terms of the group invariants of G and/or in terms of classical combinatorial invariants such as the
Davenport constant. We refer to [15] for the interplay of the arithmetic of Krull monoids and additive
combinatorics, and to the survey [38] for a discussion of the state of the art.

Monoids of product-one sequences over finite groups are C-monoids. C-domains and C-monoids are
submonoids of factorial monoids with finite class semigroup. They include Krull monoids with finite
class group (and in that case the class semigroup coincides with the usual class group) but also classes
of non-integrally closed noetherian domains (such as orders in number fields). The finiteness of the
class semigroup yields abstract finiteness results for arithmetical invariants, but so far no combinatorial
description of invariants in terms of the class semigroup are available (as is the case for Krull monoids)
let alone any sort of precise results.

In the present paper, we study the arithmetic of the monoid of product-one sequences over dihedral
groups G of order 2n for odd n ≥ 3, and we obtain precise results. These dihedral groups were chosen
because their arithmetic shows extremal behavior among all finite groups (see Proposition 2.3 and The-
orem 6.7), such as cyclic groups and elementary 2-groups do among all finite abelian groups. We do not
involve algebraic considerations (structural results on the class semigroup of monoids of product-one se-
quences were recently established in [29, Section 3]) but work with methods from additive combinatorics.
We use substantially the recent characterization of minimal product-one sequences of maximal length
(Proposition 2.4) and a recent refinement ([21]) of the Partition Theorem ([24, Chapters 14 and 15]). Let
G be a dihedral group of order 2n for some odd n ≥ 3. In the short Section 3, we do some necessary
algebraic clarifications. Theorem 4.1 states that ω(G) = 2n. Theorem 5.1 states that the set of distances
∆(G) is equal to [1, 2n− 2], and the set of catenary degrees Ca(G) equals [2, 2n]. Theorems 6.7 and 6.8
give detailed information on crucial subsets of ∆(G) which describe the structure of sets of lengths.

2. Background on the arithmetic of monoids

Our notation and terminology are consistent with [13, 24]. We briefly gather some key notions and fix
notation. We denote by N the set of positive integers. For rational numbers a, b ∈ Q, [a, b] = {x ∈ Z : a ≤
x ≤ b} means the discrete interval between a and b. For an additive group G and subsets A,B ⊂ G,
A+B = {a+ b : a ∈ A, b ∈ B} denotes their sumset and, for every k ∈ N, k ·A = A+ . . .+A is the k-fold
sumset of A. For A ⊆ Z, the set of distances ∆(A) is the set of all d ∈ N for which there is a ∈ A such
that A ∩ [a, a + d] = {a, a + d}. If A ⊂ N0, then ρ(A) = sup(A ∩ N)/min(A ∩ N) ∈ Q≥1 ∪ {∞} denotes
the elasticity of A with the convention that ρ(A) = 1 if A ∩ N = ∅.

2.1. Monoids. Throughout this paper, a monoid means a commutative, cancellative semigroup with
identity. Let H be a monoid. Then H× denotes the group of invertible elements, A(H) the set of atoms
of H, q(H) the quotient group of H, and Hred = {aH× : a ∈ H} the associated reduced monoid of H. A
submonoid S ⊂ H is said to be divisor-closed if a ∈ H, b ∈ S and a | b implies that a ∈ S. For a subset
E ⊂ H we denote by

• [E] ⊂ H the smallest submonoid of H containing E, and by
• [[E]] ⊂ H the smallest divisor-closed submonoid of H containing E.

Clearly, [[E]] is the set of all a ∈ H dividing some element b ∈ [E]. If E = {a1, . . . , am}, then we write
[a1, . . . , am] = [E] and [[a1, . . . , am]] = [[E]]. We denote by

• H ′ = {x ∈ q(H) : there is N ∈ N such that xn ∈ H for all n ≥ N} the seminormal closure of H,

• H̃ = {x ∈ q(H) : xn ∈ H for some n ∈ N} the root closure of H, and by

• Ĥ = {x ∈ q(H) : there is c ∈ H such that cxn ∈ H for all n ∈ N} the complete integral closure of
H.
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Then H ⊂ H ′ ⊂ H̃ ⊂ Ĥ ⊂ q(H), and H is called seminormal (root closed, resp. completely integrally

closed) if H = H ′ (H = H̃, resp. H = Ĥ). For a set P , we denote by F(P ) the free abelian monoid with
basis P whose elements are written as

a =
∏
p∈P

pvp(a) ∈ F(P ) ,

where vp : H → N0 is the p-adic valuation of a. We call |a| =
∑
p∈P vp(a) ∈ N0 the length of a and

supp(a) = {p ∈ P : vp(a) > 0} ⊂ P the support of a.
The monoid Z(H) = F(A(Hred)) is the factorization monoid of H and the unique epimorphism

π : Z(H) → Hred, satisfying π(u) = u for all u ∈ A(Hred), denotes the factorization homomorphism.
For a ∈ H, we denote by

• Z(a) = π−1(aH×) the set of factorizations of a,
• L(a) = {|z| | z : z ∈ Z(a)} ⊂ N0 the set of lengths of a, and
• L(H) = {L(a) : a ∈ H} the system of sets of lengths of H.

Note that L(a) = {0} if and only if a ∈ H× and that L(a) = {1} if and only if a ∈ A(H). The monoid
H is called atomic if Z(a) 6= ∅ for all a ∈ H (equivalently, if every a ∈ H \H× has a factorization into
atoms), and H is called half-factorial if |L(a)| = 1 for all a ∈ H. We denote by

(2.1) ∆(H) =
⋃

L∈L(H)

∆(L) ⊂ N

the set of distances of H. If ∆(H) 6= ∅, then

(2.2) min ∆(H) = gcd ∆(H) .

For an atomic monoid H with H 6= H× and every k ∈ N, let

(2.3) Uk(H) =
⋃

k∈L∈L(H)

L ⊂ N

denote the union of sets of lengths containing k. Then ρk(H) = supUk(H) is the k-th elasticity of H and
(see [13, Proposition 1.4.2])

(2.4) ρ(H) = sup{ρ(L) : L ∈ L(H)} = lim
k→∞

ρk(H)

k

is the elasticity of H. We define a distance function d on Z(H). If z, z′ ∈ Z(H), then z and z′ can be
written uniquely in the form

z = u1 · . . . · u`v1 · . . . · vm and z′ = u1 · . . . · u`w1 · . . . · wn ,

where `,m, n ∈ N0, all ui, vj , wk ∈ A(Hred), and {v1, . . . , vm}∩{w1, . . . , wn} = ∅, and we define d(z, z′) =
max{m,n} ∈ N0.

2.2. Product-one sequences over finite groups. Let G be a multiplicatively written finite group
with identity 1G ∈ G and let G0 ⊂ G be a subset. Then 〈G0〉 ⊂ G is the subgroup generated by G0 and
G′ = 〈g−1h−1gh : g, h ∈ G〉 ⊂ G is commutator subgroup of G. If G is (additively written) abelian, then
H(G0) = {g ∈ G : g +G0 = G0} denotes the stabilizer of G0. We say that a subset A ⊆ G is H-periodic
if H ≤ H(A), which is equivalent to A being a union of H-cosets. We use φH : G → G/H to denote
the natural homomorphism. For every n ∈ N, Cn denotes a cyclic group of order n and D2n denotes a
dihedral group of order 2n.

Elements of F(G0) are called sequences over G0. Thus, in combinatorial language, a sequence means
a finite sequence of terms from G0 which is unordered with the repetition of terms allowed. In order to
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distinguish between the group operation in G and the operation in F(G0), we use the symbol · for the
multiplication in F(G0) and we denote multiplication in G by juxtaposition of elements. Let

S = g1 · . . . · g` =
∏•

g∈G0

g[vg(S)]

be a sequence over G0. Then

• h(S) = max{vg(S) : g ∈ G0} is the maximum multiplicity of a term of S,

• k(S) =
∑`
i=1

1
ord(gi)

∈ Q is the cross number of S, and

• π(S) = {gτ(1) . . . gτ(`) ∈ G : τ is a permutation of [1, `]} ⊂ G is the set of products of S,

and it is readily seen that π(S) is contained in a G′-coset. If |S| = 0, then we use the convention
that π(S) = {1G}. When G is written additively with commutative operation, we likewise let σ(S) =
g1 + . . . + g` ∈ G denote the sum of S. For n ∈ N0, the n-sums and n-products of S are respectfully
denoted by

Σn(S) = {σ(T ) : T | S and |T | = n} ⊂ G and Πn(S) =
⋃

T |S,|T |=n

π(T ) ⊂ G .

The subsequence sums and subsequence products of S are respectively denoted by

Σ(S) =
⋃
n≥1

Σn(S) and Π(S) =
⋃
n≥1

Πn(S) ⊂ G .

A map of groups ϕ : G → H extends to a monoid homomorphism ϕ : F(G) → F(H) by setting ϕ(S) =
ϕ(g1) · . . . ·ϕ(g`) ∈ F(H). If ϕ is the multiplication by some m ∈ N, then we set mS = (mg1) · . . . · (mg`).
For a subset X ⊂ G0, we let SX denote the subsequence of S consisting of all terms from X. The
sequence S is called

• a product-one sequence if 1G ∈ π(S),
• product-one free if 1G /∈ Π(S).

The set

B(G0) = {S ∈ F(G0) : 1G ∈ π(S)} ⊂ F(G0)

is a finitely generated submonoid of F(G0), called the monoid of product-one sequences over G0. For all
arithmetical invariants ∗(H) defined for a monoid H, we write ∗(G0) instead of ∗(B(G0)) (although being
an abuse of notation this is a usual convention that will not lead to confusion). Similarly, we say that
G0 is (non-)half-factorial if B(G0) is (non-)half-factorial. The atoms of B(G0) are also called minimal
product-one sequences. Since B(G0) is finitely generated, A(G0) is finite,

• K(G0) = max{k(S) : S ∈ A(G0)} ∈ Q≥0 is the cross number of G0,
• D(G0) = max{|S| : S ∈ A(G0)} ∈ N0 is the large Davenport constant of G0, and
• d(G0) = max{|S| : S ∈ F(G0) is product-one free} ∈ N0 is the small Davenport constant of G0.

It is easy to verify that

(2.5) d(G) + 1 ≤ D(G) ≤ |G| and K(G) ≤ max
{

1,
D(G)

2

}
.

Let G be a finite group and G0 < G a proper subgroup. Then d(G0) < d(G) and D(G0) ≤ D(G). If
G is abelian, then D(G0) = 1 + d(G0) < 1 + d(G) = D(G). If G is not abelian, then we might have
D(G0) = D(G), as it is outlined in the next example.

Example 2.1. We consider the semidirect product

G = C5 o2 C4 = 〈a, b : a5 = b4 = 1, bab−1 = a2〉 .

Thus G is a group with 20 elements and Table 1 in [9] shows that D(G) = 10. Let G0 = 〈a, b2〉 ⊂ G.
Then G0 is a dihedral group with 10 elements, whence D(G0) = 10 = D(G).
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Thus the example shows that the subgroup G0 (with G0 < G proper and D(G0) = D(G)) can be
dihedral (for some consequences, see Proposition 2.3), but the next lemma shows that G0 cannot be
abelian.

Lemma 2.2. Let G be a finite group and G0 < G a subgroup with D(G0) = D(G).

1. If D(G0) = 1 + d(G0), then G0 = G.
2. If G is nilpotent but not a 2-group, then G0 is not generated by elements of order two.

Proof. 1. Let S ∈ F(G0) be product-one free with |S| = d(G0). Assume to the contrary that there is an
element g ∈ G \G0. Then S · g is product-one free, whence

D(G) = D(G0) = 1 + d(G0) < 1 + |S · g| ≤ 1 + d(G) ≤ D(G) ,

a contradiction.
2. Let G1 ⊂ G be a subgroup that is generated by elements of order two. It suffices to show that

D(G1) < D(G). Since finite nilpotent groups that are generated by elements of order p are p-groups ([28,
Corollary 2.4]), it follows that G1 is a 2-group, thus contained in the Sylow 2-group. As a finite nilpotent
group is the direct product of its Sylow subgroups (which are each normal for nilpotent groups), there is
a non-trivial group G2 < G (any nontrivial Sylow p-group with p 6= 2) such that G1 ×G2 is a subgroup
of G, which implies that D(G1) < D(G1 ×G2) ≤ D(G). �

Proposition 2.3. Let G be a finite group with |G| > 1.

1.

D(G)


= |G| G is either cyclic or a dihedral group of order 2n for some odd n ≥ 3 ,

≤ 3|G|
4

otherwise .

2. Consider the following two conditions :
(a) G is either an elementary 2-group or has a subgroup G0 < G which is a dihedral group of

order 2n for some odd n ≥ 3 with D(G0) = D(G).

(b) K(G) = D(G)
2 .

Then (a) implies (b). If G is nilpotent and (b) holds, then G is a 2-group and it is an elementary
2-group in the abelian case.

Proof. 1. See [23, Theorem 7.2].
2. (a) ⇒ (b) If G is elementary 2-group, then by [13, Corollaries 5.1.9 and 5.1.13], we obtain that

K(G) =
1

2
+ k(G) =

1 + d(G)

2
=

D(G)

2
.

Suppose that G0 = 〈α, τ |αn = τ2 = 1G and τα = α−1τ〉 < G is a dihedral group of order 2n for some

odd n ≥ 3 with D(G0) = D(G). Then Equation (2.5) shows that K(G) ≤ D(G)
2 . On the other hand, it is

easy to verify (or use Proposition 2.4) that S = (ατ)[n] · τ [n] is a minimal product-one sequence with

|S| = 2n = D(G0) = D(G) and k(S) =
2n

2
=

D(G)

2
.

Now suppose that G is nilpotent and (b) holds. Suppose that K(G) = D(G)
2 and note that K(G) ≥ 1

since |G| > 1. Then there exists S = g1 · . . . · g` ∈ A(G) such that k(S) = D(G)
2 . Then ord(gi) ≥ 2 for all

i ∈ [1, `], whence

D(G)

2
= k(S) =

|S|∑
i=1

1

ord(gi)
≤ |S|

2
.

Therefore |S| = D(G) and ord(gi) = 2 for all i ∈ [1, `]. Thus G0 = 〈g1, . . . , g`〉 is generated by elements
of order two and D(G0) = D(G). If G0 is abelian, then G0 is an elementary 2-group and since D(G0) =
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1 + d(G0), Lemma 2.2.1 implies that G = G0 is an elementary 2-group. If G is nilpotent, then Lemma
2.2.2 implies that G is a 2-group. �

The associated inverse problem with respect to the Davenport constant asks for the structure of
minimal product-one sequences of length D(G). Even for abelian groups, the inverse problem is settled
only for a small number of cases, namely for cyclic groups and elementary 2-groups (for them the problem
has a trivial answer), for groups of rank two, and for groups of the form C2 ⊕ C2 ⊕ C2n ([37]). Dihedral
and dicyclic groups are the only non-abelian groups for which a characterization of product-one sequences
of length D(G) is available. We cite the result for dihedral groups of order 2n, where n ≥ 3 is odd (see
[32, Theorem 4.1]).

Proposition 2.4. Let G be a dihedral group of order 2n, where n ≥ 3 is odd. A sequence S over G of
length D(G) is a minimal product-one sequence if and only if it has one of the following two forms :

(a) There exist α, τ ∈ G such that G = 〈α, τ | αn = τ2 = 1G and τα = α−1τ〉 and S = α[2n−2] · τ [2].
(b) There exist α, τ ∈ G and i, j ∈ [0, n − 1] with gcd(i − j, n) = 1 such that G = 〈α, τ | αn = τ2 =

1G and τα = α−1τ〉 and S = (αiτ)[n] · (αjτ)[n].

3. Algebraic Properties

In this section, we study ideal theoretic properties of monoids of product-one sequences. Our references
for ideal theory are [25, 13]. Let H be a monoid. We denote by s-spec(H) the set of prime s-ideals of
H and by X(H) ⊂ s-spec(H) the set of minimal nonempty prime s-ideals of H. For a prime ideal p ∈ s-
spec(H), we denote by Hp = (H \ p)−1H ⊂ q(H) the localization at p. The monoid H is said to be
weakly Krull if

H =
⋂

p∈X(H)

Hp and {p ∈ X(H) : a ∈ p} is finite for all a ∈ H .

The localizations Hp are primary, and all primary monoids are weakly Krull. If all localizations Hp are
discrete valuation monoids, then H is a Krull monoid. A domain R is weakly Krull if and only if its
multiplicative monoid R• of nonzero elements is weakly Krull. Atomic domains having only finitely many
non-associated atoms (i.e., R•red is a finitely generated monoid) are called Cohen-Kaplansky domains ([2,
Theorem 4.3]), and they are weakly Krull ([1, Corollary 5]). However, in contrast to the ring setting,
finitely generated monoids are not weakly Krull in general. Root-closed finitely generated monoids are
Krull and hence weakly Krull. In this section, we show that the monoid of product-one sequences over a
finite group is weakly Krull if and only if the group is abelian (Theorem 3.3).

Proposition 3.1. Let G be a finite group.

1. X
(
B(G)

)
= {pg : g ∈ G}, where pg = {A ∈ B(G) : vg(A) ≥ 1} for each g ∈ G.

2.

B̂(G) = {S ∈ F(G) : π(S) ⊂ G′} =
⋂

p∈X(B(G))

B(G)p .

Proof. We set H = B(G), F = F(G), and n = lcm{ord(g) | g ∈ G}.
1. Let g ∈ G. Clearly, pg is a prime s-ideal of H. Since g[ord(g)] ∈ pg \ ph for all h ∈ G \ {g}, it follows

that pg 6= ph and pg ( ph for all h ∈ G \ {g}. Thus it remains to show the following claim.

A. Let p ∈ s-spec(H). Then there is a g ∈ G such that pg ⊂ p.

Proof of A. Let A = g1 · . . . · gk ∈ p. Then

A[n] =
(
g

[ord(g1)]
1

)[n/ ord(g1)]

· . . . ·
(
g

[ord(gk)]
k

)[n/ ord(gk)]

∈ p ,
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whence there is some g ∈ {g1, . . . , gk} such that g[ord(g)] ∈ p. We assert that pg ⊂ p. Assume to the

contrary that there is some B ∈ pg \ p, say B = g · h2 · . . . · h`. Since g[ord(g)] ∈ p, it follows that

B[n] =
(
g[ord(g)]

)[n/ ord(g)]

·
(
h

[ord(h2)]
2

)[n/ ord(h2)]

· . . . ·
(
h

[ord(h`)]
`

)[n/ ord(h`)]

∈ p ,

whence B ∈ p, a contradiction. �[Proof of A.]

2. We proceed in three steps.

(i) Let a = s1
s2
∈ Ĥ, where s1, s2 ∈ H. Then there exists c ∈ H such that can ∈ H ⊂ F for all n ∈ N.

Since F is completely integrally closed, we have a ∈ F and π(a) ⊂ {xy−1 | x ∈ π(s1) and y ∈ π(s2)} ⊂ G′.
Thus we have Ĥ ⊂ {a ∈ F | π(a) ⊂ G′}.

(ii) In order to prove that {a ∈ F | π(a) ⊂ G′} ⊂
⋂

p∈X(H)Hp it suffices to verify that f ∈
⋂

p∈X(H)Hp

for every f ∈ G′. Since G′ = 〈ghg−1h−1 | g, h ∈ G〉, it is sufficient to show that ghg−1h−1 ∈
⋂

p∈X(H)Hp

for all g, h ∈ G. Let g, h ∈ G and f = ghg−1h−1. If f = 1, then f ∈
⋂

p∈X(H)Hp. Suppose f 6= 1. Since

f =
f · h[n] · g · g−1

h[n] · g · g−1
=
f · h · h−1 · g[n]

h · h−1 · g[n]
=
f · h · h−1 · (hg)[n]

h · h−1 · (hg)[n]
=
f · g · g−1 · (hg)[n]

g · g−1 · (hg)[n]
∈ q(H) ,

and f · h[n] · g · g−1, f · h · h−1 · g[n], f · h · h−1 · (hg)[n], f · g · g−1 · (hg)[n] ∈ H ,

we have f ∈ Hpx for all x ∈ G \
(
{g, g−1, h} ∩ {h, h−1, g} ∩ {h, h−1, hg} ∩ {g, g−1, hg}

)
= G. Thus the

assertion follows from 1.
(iii) Let a = s1

s2
∈
⋂

p∈X(H)Hp, where s1, s2 ∈ H. Then for every g ∈ G, a ∈ Hpg implies that

vg(s1) ≥ vg(s2). Therefore s2 |F s1 and hence a ∈ F . By the definition of n, we know that an ∈ H. Let
c = sn2 ∈ H. Then, for every k ∈ N and every r ∈ [0, n − 1], we have cakn+r = aknsr1s

n−r
2 ∈ H whence

a ∈ Ĥ. �

Lemma 3.2. Let G be a finite group and G0 ⊂ G a subset. Consider the following conditions :

(a) 1 + d(G0) < D(G0).
(b) There exist distinct U, V ∈ A(G0), 1 6= W ∈ B(G0) and m ∈ N such that Z(V [m])Z(W ) ⊂ Z(U [m]).
(c) G is not abelian.

Then (a) ⇒ (b) ⇔ (c).

Proof. (a) ⇒ (b) Let U = g0 · . . . · g` ∈ A(G0) with |U | = D(G0). Since 1 + d(G0) < D(G0) = 1 + `, it
follows that g1 · . . . · g` is not product-one free. Thus there is V ∈ A(G0) such that U = V · S for some
1 6= S ∈ F(G0). There is some m ∈ N≥2 such that W = S[m] ∈ B(G0), whence U [m] = V [m] ·W and

Z(V [m])Z(W ) ⊂ Z(U [m]).
(b)⇒ (c) Let U, V ∈ A(G0) and 1 6= W ∈ B(G0) with U [m] = V [m] ·W and assume to the contrary that

G is abelian. Then (V [−1] · U)[m] ∈ B(G) and since B(G) is root-closed, it follows that V [−1] · U ∈ B(G)
whence V = U , a contradiction to W 6= 1.

(c) ⇒ (b) There exist g, h ∈ G such that gh 6= hg. We consider the sequence

U = g · h · g−1 · (gh−1g−1) ∈ A(G)

and set m = ord(hgh−1g−1) ∈ N. Then V = (g · g−1) ∈ A(G), W = (h · (gh−1g−1))[m] ∈ B(G) \ {1}, and

U [m] = V [m] ·W . �

Theorem 3.3. Let G be a finite group.

1. The following statements are equivalent :
(a) G is abelian.
(b) B(G) is Krull.
(c) B(G) is transfer Krull.
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(d) B(G) is weakly Krull.
(e) If U, V ∈ A(G), W ∈ B(G), and m ∈ N such that Z(V [m])Z(W ) ⊂ Z(U [m]), then U = V and

W = 1.
2. B(G) is seminormal if and only if |G′| ≤ 2. In particular, a dihedral group of order 2n, where
n ≥ 3 is odd, is not seminormal.

Proof. 1. (a) ⇒ (b) ⇒ (c) This is obvious.
(c) ⇒ (a) See [29, Proposition 3.4].
(d) ⇔ (b) Every Krull monoid is weakly Krull. If B(G) is weakly Krull, then Proposition 3.1 implies

that

B(G) =
⋂

p∈X
(
B(G)

)B(G)p = B̂(G) ,

whence B(G) is completely integrally closed and so B(G) is Krull.
(e) ⇔ (a) This follows from Lemma 3.2 (with G0 = G).
2. See [30, Corollary 3.12]. �

4. On the omega invariant

Let H be an atomic monoid. For an element a ∈ H, let ω(H, a) be the smallest N ∈ N0 ∪ {∞} with
the following property:

If n ∈ N and a1, . . . , an ∈ H with a | a1 · . . . · an, then there exists a subset Ω ⊂ [1, n] such that
|Ω| ≤ N and a |

∏
ν∈Ω aν .

Furthermore, we set

ω(H) = sup{ω(H, a) : a ∈ A(H)} .
Thus ω(H, a) = 1 if and only if a ∈ H is a prime element, and for an atomic monoid H that is not a group
we have ω(H) = 1 if and only if H is factorial. If H satisfies the ascending chain condition on divisorial
ideals or if H is strongly primary, then ω(H, a) <∞ for all a ∈ H. Furthermore, ω(H) <∞ if and only
if H is globally tame ([14, Proposition 3.6]) whence ω(H) <∞ for all finitely generated monoids. If G is
a finite group, then we set ω(G) := ω(B(G)) and since B(G) is finitely generated, we have ω(G) <∞. If
G is abelian with |G| ≥ 3, then it is easy to see that ω(G) = D(G). But so far the precise value of ω(G)
has not been determined yet for any non-abelian group. We formulate the main result of this section.

Theorem 4.1. Let G be a dihedral group of order 2n, where n ≥ 3 is odd. Then ω(G) = D(G) = 2n.

The goal of this section is to prove Theorem 4.1. To do so, we make use of the following recent
strengthenings of the Partition Theorem, formulated as Propositions 4.2 and 4.3, as well as a basic
lemma from [21]. Their proofs are given in [21, Theorem 3.2, Theorem 3.3, Lemma 2.4] (for simplicity,
we state here only the cyclic case in Proposition 4.2). A setpartition A = A1 ·. . .·An is a sequence of finite
and nonempty subsets Ai ⊆ G. Then S(A) =

∏•
i∈[1,n]

∏•
g∈A g ∈ F(G) is the corresponding sequence of

terms from G partitioned by the sets Ai in A. Clearly,
n∑
i=1

Ai ⊂ Σn(S), where S = S(A).

Proposition 4.2. Let G be a cyclic group, let n ≥ 1, let X ⊂ G be a finite, nonempty subset, let
L ≤ H(X), let S ∈ F(G) be a sequence, and let S′ | S be a subsequence with h(φL(S′)) ≤ n ≤ |S′|.
Suppose |S′| ≤ 2n. Then there exists a setpartition A = A1 · . . . · An with S(A) | S, |S(A)| = |S′| and
|Ai| ≤ 2 for all i such that either

1. |X + Σn(S)| ≥ |X +
n∑
i=1

Ai| ≥ (|S′| − n)|L|+ |X|, or

2. there is a subgroup K ≤ H = H(X + Σn(S)) with L < K proper and α ∈ G such that
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(a) X + Σn(S) = X +
n∑
i=1

Ai,

(b) supp(S(A)[−1] · S) ⊂ α+K =
⋂n
i=1(Ai +K) and |Ai \ (α+K)| ≤ 1 for all i,

(c) |X + Σn(S)| ≥ |X +H|+ |SG\(α+H)| · |H| and |X + Σn(S)| ≥ |X +K|+ |SG\(α+K)| · |K|,
(d) L +

∑
i∈IK

Ai = α|IK | + K, where IK ⊂ [1, n] is the nonempty subset of all i ∈ [1, n] with

Ai ⊂ α+K.

Proposition 4.3. Let G be an abelian group, let n ≥ 1, and let S ∈ F(G) be a sequence with |S| > n.
Suppose |Σn(S)| ≤ m+ 1, where m = min{n, |S| − n, |S| − h(S)}. Then one of the following holds, with
Items 1–4 only possible if |Σn(S)| = m+ 1 or | supp(S)| = 1.

1. n = 2, |S| = | supp(S)|, and supp(S) = x+K for some K ≤ G and x ∈ G with K ∼= (Z/2Z)2.
2. m = 2 and supp(S) = x+K for some K ≤ G and x ∈ G with K ∼= Z/3Z.
3. | supp(S)| ≤ 2.
4. supp(S) ⊂ {x− d, x, x+ d} for some x, d ∈ G with vx(S) = h(S) ≥ |S| −m.

5. There exists x ∈ G and a setpartition A = A1·. . .·An with S(A) | S, |S(A)| = n+m,
n∑
i=1

Ai = Σn(S),

supp(S(A)[−1] · S) ⊂ x+H, |Ai| ≤ 2 and (x+H) ∩Ai 6= ∅ for all i ∈ [1, n], and |
n∑
i=1

Ai| = |
n∑
i=1
i 6=j

Ai|

for some j ∈ [1, n], where H = H(Σn(S)) is nontrivial.

Lemma 4.4. Let G be an abelian group, let n ≥ 0, let X ⊂ G be a finite, nonempty subset, let S ∈ F(G)
be a sequence, let H ≤ G, and let x ∈ G. Suppose A = A1 · . . . · An is a setpartition with S(A) | S,

supp(S(A)[−1] · S) ⊂ x+H ⊂
⋂n
i=1(Ai +H), |Ai \ (x+H)| ≤ 1 for all i, and H ≤ H(X +

n∑
i=1

Ai). Then

X + Σ`(S) = X +
n∑
i=1

Ai + (`− n)x for any ` ∈ [n, n+ |S(A)[−1] · S|].

Let G be a dihedral group of order 2n with n ≥ 3, say G = 〈α, τ : αn = τ2 = 1, τα = α−1τ〉. Then
〈α〉 is a cyclic subgroup of index 2. The commutator subgroup G′ = 〈α2〉 is a cyclic group of order n
(when n is odd) or order n

2 (when n is even). Let S ∈ F(G) be a sequence of terms from G. We have
a natural partition S = S〈α〉 · Sτ〈α〉, where S〈α〉 consists of all terms αx ∈ 〈α〉 and Sτ〈α〉 consists of all
terms ταy ∈ τ〈α〉, where x, y ∈ Z. For x ∈ Z/nZ, let αx be αx0 , where x0 is any integer representative
for x modulo n. The additive cyclic group Z/nZ and the multiplicative cyclic group 〈α〉 can be identified
via the isomorphism ·∗ : Z/nZ → 〈α〉 defined by x∗ = αx. The inverse isomorphism ·+ : 〈α〉 → Z/nZ is
defined by (αx)+ = x mod n. The notation is chosen so that x∗ lives in the multiplicative cyclic group
〈α〉, while g+ lies in the additive cyclic group Z/nZ. We extend the definition of ·+ to all of G by setting
(ταy)+ = y mod n. The definitions of ·∗ and ·+ depend on the fixed generating set {α, τ} for G, with the
map ·∗ only depending on α. If we exchange {α, τ} for an alternative generating set, then the definitions
of ·∗ and ·+ are implicitly altered as well. The maps ·∗ and ·+ are extended to sequences/sets in the usual
fashion of applying the corresponding map to each term/element. The effect of replacing the generator
τ by ταy is to translate all terms of (τ〈α〉)+ by −y. To avoid confusion, when dealing with the dihedral
group G, all subgroups of Z/nZ will be notated in the form K+ for the appropriate isomorphic subgroup
K ≤ 〈α〉. This will allow immediate visual recognition of whether a subgroup lies in the additive cyclic
group Z/nZ or in the multiplicative cyclic group 〈α〉, and provides a strong visual connection between
the linked subgroups K and K+. Additionally, the map ·+ provides a one-to-one correspondence between
the subgroups H ≤ G with H 6≤ 〈α〉 and all subgroup-coset pairs (K+, y +K+), where K+ ≤ Z/nZ and
y ∈ Z/nZ, as follows. For a subgroup K ≤ 〈α〉 and y ∈ Z/nZ, we let Ky = 〈K, ταy〉. Note every H ≤ G
with H 6≤ 〈α〉 has some ταy ∈ H, where y ∈ Z/nZ, and then H = 〈H ∩ 〈α〉, ταy〉, ensuring that H = Ky

with K = H ∩ 〈α〉. The subgroup K = H ∩ 〈α〉 = Ky ∩ 〈α〉 is uniquely defined. Since all ταz ∈ H with
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z ∈ Z/nZ have z ∈ y + (H ∩ 〈α〉)+ = y + K+, the element y ∈ Z/nZ is uniquely defined modulo K+.
Thus the map H 7→ ((H ∩ 〈α〉)+, y+ (H ∩ 〈α〉)+) is well-defined, and clearly bijective as its inverse is the
map (K+, y + K+) 7→ Ky. In light of this, we will often denote subgroups of G not contained in 〈α〉 in
the form Ky for some K ≤ 〈α〉 and y ∈ Z/nZ. Moreover, when this is the case, we note that

K+
y = K+ ∪ (Ky \K)+ = K+ ∪ (y +K+)

with K ′y = Ky ∩ 〈α〉 = K (if n is odd), and K ′y = K2 = (2K+)∗ (if n is even). When y = 0 (equivalently,
if we choose our generating set to be {α, ταy}), then

K0 \K = τK and K+
0 = K+.

To help lighten the notation, we also use φK : Z/nZ→ (Z/nZ)/K+ to denote the natural homomorphism
modulo K+.

The following proposition shows how the computation of π(S) reduces to an additive question in Z/nZ
combining ± weighted subsums alongside ordinary b`/2c-term subsums.

Proposition 4.5. Let G be a dihedral group of order 2n where n ≥ 3, say G = 〈α, τ : αn = τ2 =
1, τα = α−1τ〉, and let S ∈ F(G) with S〈α〉 = αx1 · . . . · αxs , where x1, . . . , xs ∈ Z/nZ.

1. If S ∈ F(〈α〉), then π(S) = {σ(S+)∗}.
2. If S /∈ F(〈α〉), then

π(S) = τ `
(
{x1,−x1}+ . . .+ {xs,−xs}+ (−1)`Σb`/2c(2S

+
τ〈α〉)− (−1)`σ(S+

τ〈α〉)
)∗
,

where ` = |Sτ〈α〉| ≥ 1.

Proof. Item 1 is clear as 〈α〉 is abelian. For Item 2, consider an arbitrary ordered product of all s+` terms
of S, say g1 · . . . · gs+` ∈ π(S). By the defining relations for the dihedral group, we have g1 · . . . · gs+` =
τ `(±g+

1 ± . . .± g
+
s+`)

∗, where the sign of each gi depends upon the number of terms from Sτ〈α〉 contained
in g1 · . . . · gi: if the number of terms from τ〈α〉 contained in g1 · . . . · gi is congruent to ` modulo 2, then
it is positive, while if it congruent to ` + 1, then it is negative. Since ` ≥ 1 (in view of the hypothesis
S /∈ F(〈α〉)), each term αxj from S〈α〉 can be placed either in an even or odd slot relative to the fixed
ordering of the sequence Sτ〈α〉 in the product, the even slots being those places i ∈ [1, s+ `] where there
are an even number of terms from τ〈α〉 contain in g1 · . . . · gi, and the odd slots i ∈ [1, s+ `] being those
for which the number of such terms is odd. The effect of moving αxj between an even and odd slot is
to simply change its sign in the sum. There must be exactly d`/2e terms from Sτ〈α〉 placed in odd slots,
and exactly b`/2c placed in even slots. Thus the elements of π(S) are those from the sets

τ `
(

(−1)`
(
σ(T+

even)− σ(T+
odd)

)
+ {x1,−x1}+ . . .+ {xs,−xs}

)∗
as we range over all partitions Sτ〈α〉 = Todd · Teven with |Teven| = b`/2c. Observing that σ(T+

odd) =

σ(S+
τ〈α〉)− σ(T+

even), we find that the elements of π(S) are those from the sets

τ `
(

(−1)`
(
σ(2T+

even)− σ(S+
τ〈α〉)

)
+ {x1,−x1}+ . . .+ {xs,−xs}

)∗
as we range over all subsequences T+

even | S+
τ〈α〉 with |T+

even| = b`/2c, which yields the desired result. �

Corollary 4.6. Let G be a dihedral group of order 2n where n ≥ 3, say G = 〈α, τ : αn = τ2 = 1, τα =
α−1τ〉, and let S ∈ F(G) with S〈α〉 = αx1 · . . . ·αxs , where x1, . . . , xs ∈ Z/nZ. Suppose S /∈ F(〈α〉). Then
S ∈ B(G) if and only if |Sτ〈α〉| = 2` is even and

0 ∈ {x1,−x1}+ . . .+ {xs,−xs}+ Σ`(2S
+
τ〈α〉)− σ(S+

τ〈α〉).

Proof. This follows immediately from Proposition 4.5. �
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Lemma 4.7. Let G be a dihedral group of order 2n where n ≥ 3, say G = 〈α, τ : αn = τ2 = 1, τα =
α−1τ〉. If U ∈ A(G) with |Uτ〈α〉| > 2, then h(Uτ〈α〉) ≤ 1

2 |Uτ〈α〉|.

Proof. Since U ∈ A(G) is product-one and |Uτ〈α〉| > 2, we have |Uτ〈α〉| = 2` even with ` ≥ 2. Assume

by contradiction that h(Uτ〈α〉) ≥ 1
2 |Uτ〈α〉| + 1 = ` + 1. By replacing the generator τ by an appropriate

alternative generator ταx, we can w.l.o.g. assume that vτ (U) = h(Uτ〈α〉) ≥ ` + 1. Then τ [2] | U is a

product-one subsequence. Since |U | ≥ |Uτ〈α〉| = 2` ≥ 4, it follows that V := U · τ [−2] is a nontrivial

sequence. Since vτ (U) ≥ `+1 = 1
2 |Uτ〈α〉|+1, every `-term subsequence of 2U+

τ〈α〉 must contain at least one

term equal to 0, and vτ (V ) ≥ `− 1. It follows that Σ`(2U
+
τ〈α〉) = Σ`−1(2V +

τ〈α〉) and σ(U+
τ〈α〉) = σ(V +

τ〈α〉).

Thus U ∈ A(G) combined with Corollary 4.6 applied to U and V (possible as U, V /∈ F(〈α〉) follows
from ` ≥ 2) shows that V ∈ B(G), and now U = (τ [2]) · V is a factorization of U into two nontrivial
product-one subsequences, contradicting that U ∈ A(G) is an atom. �

Lemma 4.8. Let G be an abelian group, let X, Y ⊂ G be finite subsets with H = H(X), K = H(Y ) and
X +H = Y +H. Then K ≤ H.

Proof. We have X+H+K = Y +H+K = Y +K+H = Y +H = X+H = X. Thus H+K ≤ H(X) = H,
implying K ≤ H. �

Lemma 4.9. Let G be a dihedral group of order 2n where n ≥ 3, say G = 〈α, τ : αn = τ2 = 1, τα =
α−1τ〉. If H ≤ 〈α〉 is a subgroup and U ∈ A(G) with |U | > 1, then |UH | ≤ 2|H| − 2.

Proof. As |U | > 1, we see that U is not the atom consisting of a single term equal to 1, which ensures
1 /∈ supp(U). Thus the lemma holds for H trivial, and we may assume |H| > 1. If U ∈ F(〈α〉), then
〈supp(U)〉 is abelian, whence |UH | ≤ D(H) = |H| ≤ 2|H| − 2, as desired. Therefore, we may assume
|Uτ〈α〉| > 0, allowing us to use Proposition 4.5.2. Then |Uτ〈α〉| ≥ 2 is even and there exists an ordering
of the terms of U whose product is one, say w.l.o.g. (as ταziταzi+1 ∈ 〈α〉 commutes with all terms
g, h ∈ 〈α〉)

U = g1 · . . . · gr · ταz1 · h1 · . . . · hs · ταz2 · . . . · ταz` ,
where ` = |Uτ〈α〉| and U〈α〉 = g1 · . . . · gr · h1 · . . . · hs with r, s ≥ 0. If |UH | ≥ 2|H| − 1, then the
pigeonhole principle ensures either g1 · . . . · gr or h1 · . . . · hs contains at least |H| = D(H) terms from H.
Thus, re-ordering the terms of g1 · . . . · gr or h1 · . . . · hs appropriately, we find a consecutive nontrivial
product-one sequence in g1 · . . .·gr or h1 · . . .·hs, forcing the complement of this sequence in U to also have
product-one, which contradicts that U is an atom in view of ` = |Uτ〈α〉| > 0. Therefore |UH | ≤ 2|H| − 2,
as desired. �

Lemma 4.10. Let G be an abelian group, let S ∈ F(G) be a sequence, let X ⊂ G be a finite, nonempty
set, let H ≤ G, and let U · V | S. Suppose supp(S · (U · V )[−1]) ⊂ H, |UH | ≥ |U |/2, |VH | ≥ |V |/2, and
X + Σb|U |/2c(U) + Σb|V |/2c(V ) is H-periodic. Then

X + Σb|S′|/2c(S
′) = X + Σb|U |/2c(U) + Σb|V |/2c(V ) = X + (Σ(S) ∪ {0})

for any subsequence S′ | S with U · V | S′ and either |U | even, |V | even or |U · V | < |S′|.

Proof. Let us begin by showing

(4.1) X + Σb|U |/2c(U) + Σb|V |/2c(V ) = X + (Σ(S) ∪ {0}).
The inclusion X + Σb|U |/2c(U) + Σb|V |/2c(V ) ⊂ X + (Σ(S) ∪ {0}) is trivial in view of U · V | S. Since
X + Σb|U |/2c(U) + Σb|V |/2c(V ) is H-periodic, it suffices to prove Σ(S) ∪ {0} ⊂ Σb|U |/2c(U) + Σb|V |/2c(V )
holds modulo H. Let T | S be an arbitrary (possibly trivial) subsequence such that all terms of T are
nonzero modulo H. In view of the hypotheses supp(S · (U ·V )[−1]) ⊂ H, |UH | ≥ |U |/2, and |VH | ≥ |V |/2,
we have T = TU · TV for some TU | U and TV | V with |TU | ≤ |U |/2 and |TV | ≤ |V |/2. Moreover,
|UH | ≥ |U |/2 and |VH | ≥ |V |/2 ensure there are at least |U |/2 terms in U which are zero modulo H, and
at least |V |/2 terms in V which are zero modulo H. It follows that we can extend the sequence TU | U
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to a subsequence T ′U | U of length |T ′U | = b|U |/2c by concatenating an additional b|U |/2c − |TU | terms

from U · T [−1]
U , each zero modulo H. Likewise, we can extend the sequence TV | V to a subsequence

T ′V | V of length |T ′V | = b|V |/2c by concatenating an additional b|V |/2c − |TV | terms from V , each zero
modulo H. Let T ′ = T ′U · T ′V . As we have only extended the sequences by terms zero modulo H, it
follows that σ(T ) ≡ σ(T ′) mod H. By construction, σ(T ′) ∈ Σb|U |/2c(U) + Σb|V |/2c(V ). Consequently,
since T | S was an arbitrary subsequence of terms nonzero modulo H, we conclude that the inclusion
Σ(S) ∪ {0} ⊂ Σb|U |/2c(U) + Σb|V |/2c(V ) holds modulo H, which establishes (4.1) as noted earlier.

For any subsequence S′ | S, the inclusion Σb|S′|/2c(S
′) ⊂ Σ(S)∪{0} holds trivially. For any subsequence

S′ | S with U · V | S and either |U | even, |V | even or |U · V | < |S′|, we have |S′| − |U | − |V | ≥ b |S
′|

2 c −
b |U |2 c − b

|V |
2 c ≥ 0, ensuring that the set Σb|S′|/2c(S

′) contains a translate of Σb|U |/2c(U) + Σb|V |/2c(V ).
Hence (4.1) implies

X + Σb|S′|/2c(S
′) = X + Σb|U |/2c(U) + Σb|V |/2c(V ) = X + (Σ(S) ∪ {0})

for any sequence S′ | S with U · V | S′ and either |U | even, |V | even or |U · V | < |S′|, completing the
proof. �

Proposition 4.11. Let G be a dihedral group of order 2n where n ≥ 3, say G = 〈α, τ : αn = τ2 =
1, τα = α−1τ〉, and let Hx = 〈H, ταx〉 ≤ G be a subgroup with H ≤ 〈α〉 and x ∈ Z/nZ.

1. Suppose V ∈ F(G) has a decomposition V +
τ〈α〉 = T1 · . . . · T` such that ` ≥ 1, |Ti| = 2 for all i,

X +
∑̀
i=1

Ai is H+-periodic, and Ai ∩ (2x + H+) 6= ∅ for all i, where Ai = supp(2Ti) for all i,

2` = |Vτ〈α〉|, V +
〈α〉 = x1 · . . . · xs and X = {x1,−x1}+ . . .+ {xs,−xs}. Then

π(V )+ = X + Σ`(2V
+
τ〈α〉)− σ(V +

τ〈α〉) = X +
∑̀
i=1

Ai − σ(V +
τ〈α〉)

is H+-periodic and |VHx\H | ≥ 1
2 |Vτ〈α〉| = `.

2. Suppose U, V ∈ F(G) with π(V )+ H+-periodic, |VHx\H | ≥ 1
2 |Vτ〈α〉| > 0 and supp(U) ⊂ Hx. Then

π(U · V ) is a translate of π(V ). In particular, if U is product-one, then π(U · V ) = π(V ).

Proof. 1. The hypotheses |Ti| = 2 and Ai ∩ (2x+H+) 6= ∅ for all i ensure |VHx\H | ≥ 1
2 |Vτ〈α〉|. Applying

Lemma 4.4 to the sub-sumset of
∑̀
i=1

Ai consisting of all cardinality two summands yields X +
∑̀
i=1

Ai =

X + Σ`(2V
+
τ〈α〉). Since ` ≥ 1, Item 1 now follows by Proposition 4.5.

2. By replacing the generating set {α, τ} by {α, ταx}, we can w.l.o.g. assume x = 0. We can also
assume U is nontrivial, else the item holds trivially. Let ` = |Vτ〈α〉|. It follows in view of Proposition 4.5

and the hypothesis ` > 0 that π(V )+ = (−1)`
(
X + Σb`/2c(2V

+
τ〈α〉)−σ(V +

τ〈α〉)
)

, where V +
τ〈α〉 = x1 · . . . ·xs

and X = {x1,−x1}+. . .+{xs,−xs}. Thus X+Σb`/2c(2V
+
τ〈α〉) is H+-periodic by hypothesis. Since x = 0,

we have |(2V +
τ〈α〉)H+ | = |VH0\H | ≥ 1

2 |Vτ〈α〉| =
1
2` > 0 by hypothesis. The hypothesis supp(U) ⊂ Hx = H0

ensures supp(U+) ⊂ H. Thus Lemma 4.10 (applied with V taken to be 2V +
τ〈α〉, U taken to be the trivial

sequence, and S′ = S = 2(U · V )+
τ〈α〉) yields

(4.2) X + Σb`/2c(2V
+
τ〈α〉) = X + Σb`′/2c(2(U · V )+

τ〈α〉),

where `′ = |(U · V )τ〈α〉|. Note the set in (4.2) is H+-periodic by hypothesis. Let U+
〈α〉 = y1 · . . . · yr and

Y = {y1,−y1} + . . . + {yr,−yr}. Since supp(U+) ⊂ H+, we have Y ⊂ H+, in whence it follows that
X + Σb`′/2c(2(U · V )+

τ〈α〉) = Y + X + Σb`′/2c(2(U · V )+
τ〈α〉) as this set is H+-periodic. As a result, in

view of (4.2), ` > 0 and Proposition 4.5, it follows that π(V ) and π(U · V ) are translates of each other,
as desired. �
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Lemma 4.12. Let G be a dihedral group of order 2n where n ≥ 3 is odd, say G = 〈α, τ : αn = τ2 =
1, τα = α−1τ〉, and let U ∈ F(G). Let Ky = 〈K, ταy〉 ≤ G be a subgroup with K ≤ 〈α〉, let V | U
be a subsequence, let `V = |Vτ〈α〉|, and let Z = XV + Σb`V /2c(2V

+
τ〈α〉), where V +

〈α〉 = x1 · . . . · xs and

XV = {x1,−x1}+ . . .+ {xs,−xs}. Suppose |VKy\K | ≥ 1
2 |Vτ〈α〉|, Z is K+-periodic,

|(U · V [−1])Ky | ≥ |K|+ 1 + |G′/K| − |φK(Z)| and |(U · V [−1])Ky\K | ≥ |G
′/K| − |φK(Z)|

with both above inequalities strict when K = G′. Then U is not an atom.

Proof. Let ε = 1 if K = G′ and ε = 0 otherwise. Assume by contradiction U ∈ A(G). By exchanging
the generating τ for ταy, we can w.l.o.g. assume y = 0, so that K0 = τK ∪ K and K+

0 = K+. Note
|φK(Z)| ≤ |G′/K| − 1 + ε, so

` := |G′/K| − |φK(Z)|+ ε > 0.

By hypothesis (note d(K0) = |K| as K0 is dihedral [12]),

(4.3) |(U · V [−1])K0
| ≥ d(K0) + 1 + ` and |(U · V [−1])τK | ≥ ` > 0.

In particular, U /∈ F(〈α〉), ensuring that U is not the atom consisting of a single term equal to 1, whence
1 /∈ supp(U). For a subsequence T | U , let

`T = |Tτ〈α〉| and XT = {x1,−x1}+ . . .+ {xt,−xt}, where T+
〈α〉 = x1 · . . . · xt,

and set XT = {0} if T〈α〉 is the trivial sequence.

CASE 1. |(U · V [−1])τ〈α〉\τK | ≤ `.
If `V = 0 and |(U · V [−1])τ〈α〉\τK | = 0, then U /∈ F(〈α〉) ensures |(U · V [−1])τK | = |Uτ〈α〉| ≥ 2 is even

(|Uτ〈α〉| must be even as U is product-one). In this case, it follows in view of (4.3) that there exists a

nontrivial product-one subsequence W0 | U · V [−1] with |W0| ≤ d(K0) + 1 and W0 ∈ F(K0) such that
W0 does not contain all terms from τK. This ensures that U · (V ·W0)[−1] contains an even positive
number of terms from τK (as `V = 0 and U and W0 are product-one), and we define W ∈ F(τK) to
be any length two subsequence of (U · (V ·W0)[−1])τK . In all other cases, we let W ∈ F(τ〈α〉) be a
sequence of length 2|(U · V [−1])τ〈α〉\τK | consisting of the terms from (U · V [−1])τ〈α〉\τK together with

|(U · V [−1])τ〈α〉\τK | ≤ ` ≤ |(U · V [−1])τK | additional terms from (U · V [−1])τK , which is possible in view

of (4.3) and the case hypothesis. Since all terms from (U · V [−1])τ〈α〉\τK lie outside K0, the first bound

in (4.3) ensures there is a nontrivial product-one subsequence W0 | U · (V ·W )[−1] with W0 ∈ F(K0) and
|W0| ≤ d(K0) + 1. In both cases, W ∈ F(τ〈α〉) is a sequence of even length `W ≤ 2` with |WτK | ≥ 1

2`W
and V ·W ·W0 | U , where W0 is a nontrivial product-one sequence. Moreover, |(V ·W )τ〈α〉| ≥ 1 and

supp
(
(U · (V ·W )[−1])τ〈α〉

)
⊂ τK.

By hypothesis, |VτK | = |VK0\K | ≥ 1
2 |Vτ〈α〉| = 1

2`V . We also have |WτK | ≥ 1
2`W = 1

2 |W | and

supp
(
(U · (V ·W )[−1])τ〈α〉

)
⊂ τK by definition of W , while Z = XV + Σb`V /2c(2V

+
τ〈α〉) is K+-periodic

by hypothesis. Thus Lemma 4.10 (applied with U taken to be 2V +
τ〈α〉, V taken to be 2W+, H taken to

be K+, S taken to be 2U+
τ〈α〉, and X taken to be XV ) implies

(4.4) XV + Σb`V /2c(2V
+
τ〈α〉) + Σ`W /2(2W+) = XV + Σb`S/2c(2S

+)

for any sequence S | Uτ〈α〉 with Vτ〈α〉 ·W | S, with this set being K+-periodic by hypothesis. Since
XV +XU·(V ·W0)[−1] = X

U·W [−1]
0

, we derive from (4.4) that

X
U·W [−1]

0
+ Σb`V /2c(2V

+
τ〈α〉) + Σ`W /2(2W+) = X

U·W [−1]
0

+ Σb`S/2c(2S
+)

for any sequence S | Uτ〈α〉 with Vτ〈α〉 ·W | S, with this set being K+-periodic by hypothesis. Considering

the cases S = (U ·W [−1]
0 )τ〈α〉 and S = Uτ〈α〉, we find

(4.5) X
U·W [−1]

0
+ Σb(`

U·W [−1]
0

)/2c(2(U ·W [−1]
0 )+

τ〈α〉) = X
U·W [−1]

0
+ Σb`U/2c(2U

+
τ〈α〉),
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with this being a K+-periodic set. By construction, the set XW0
consists of a sumset of sets {xi,−xi}

with xi ∈ supp(W+
0 ) ∈ K+. Thus, since the quantity in (4.5) is K+-periodic, we obtain

(4.6) X
U·W [−1]

0
+ Σb 12 `U·W [−1]

0

c(2(U ·W [−1]
0 )+

τ〈α〉) = XU + Σb`U/2c(2U
+
τ〈α〉).

Since V ·W | U ·W [−1]
0 and |(V ·W )τ〈α〉| ≥ 1, (4.6) and Proposition 4.5 imply that π(U) is a translate

of the set π(U ·W [−1]
0 ). However, since W0 is product-one, this forces them to be equal, in which case

1 ∈ π(U) = π(U ·W [−1]
0 ). Thus the factorization U = W0 · (U ·W [−1]

0 ) contradicts that U is an atom (as
W0 is nontrivial) unless U = W0. However, |W0| ≤ d(K0) + 1 by construction, while (4.3) ensures that
|U | ≥ |U · V [−1]| ≥ d(K0) + 1 + ` > d(K0) + 1, ensuring that W0 6= U , which completes CASE 1.

CASE 2. |(U · V [−1])τ〈α〉\τK | ≥ `.
Since ` > 0, the case hypothesis ensures that K < 〈α〉 = G′ is a proper subgroup, forcing ε = 0. Let

W ∈ F(τ〈α〉) be a sequence of length 2` consisting of ` > 0 terms from (U · V [−1])τ〈α〉\τK together with

` > 0 terms from (U · V [−1])τK , which exists in view of the case hypothesis and (4.3). Let

V ′ = V · (U · V [−1])〈α〉\K .

Since Z = XV + Σb`V /2c(2V
+
τ〈α〉) is K+-periodic by hypothesis, it follows that

X := XV ′ + Σb`V /2c(2V
+
τ〈α〉)

is also K+-periodic with |X| ≥ |Z|.
Apply Proposition 4.2 to X+Σ`

(
2(U ·V [−1])+

τ〈α〉

)
taking L to be K+ and using 2W+ | 2(U ·V [−1])+

τ〈α〉

(which has precisely ` terms equal to 0 modulo K+, and ` terms which are non-zero modulo K+). Let

H+ = H
(
X + Σ`(2(U · V [−1])+

τ〈α〉)
)
.

Note K+ ≤ H+ follows as X is K+-periodic. Since |X| + `|K| ≥ |Z| + (|G′/K| − |φK(Z)|)|K| ≥ |G′|,
Proposition 4.2 ensures that H/K is nontrivial (it it were trivial, then Proposition 4.2.1 must hold, in
which case the previous calculation combined with the bound in Proposition 4.2.1 forces H = G′, in which
case H/K = G′/K is nontrivial as K < G′ is a proper subgroup). Regardless of whether Item 1 or 2 holds
in Proposition 4.2, it follows that there is an H+-coset that contains all but at most ` − 1 of the terms
of 2(U · V [−1])+

τ〈α〉: in case Item 1 holds, then H+ = Z/nZ, while if Item 2 holds, then this conclusion

follows from Proposition 4.2.2(c)(d) with the desired coset equal to the coset α+H given by 2(c), which
fully contains all elements from some Ai by 2(d). Since there are at least ` terms from K+ ≤ H+

lying in 2(U · V [−1])+
τ〈α〉 by (4.3), this H+-coset must equal the subgroup H+. Thus Proposition 4.2

ensures that we can find a subsequence W1 | (U · V [−1])τ〈α〉 with |W1| = |W | = 2`, h
(
φK(2W+

1 )
)
≤ `,

|(2W+
1 )H+ | ≥ ` = 1

2 |W1| and supp
(
2
(
Uτ〈α〉 · (Vτ〈α〉 ·W1)[−1]

)+)
⊂ H+ such that

X + Σ`(2W
+
1 ) = X + Σ`

(
2(U · V [−1])+

τ〈α〉
)

= XV ′ + Σb`V /2c(2V
+
τ〈α〉) + Σ`

(
2(U · V [−1])+

τ〈α〉
)

is H+-periodic. Since h
(
φK(2W+

1 )
)
≤ `, it follows that at most ` terms of W1 lie in K0, while no terms in

V ′ · V [−1] lie in K0 by its definition. Thus (4.3) ensures that U · (V ′ ·W1)[−1] contains at least d(K0) + 1
terms from K0, meaning there exists a nontrivial product-one subsequence W0 | U · (V ′ ·W1)[−1] with
|W0| ≤ d(K0) + 1 and W0 ∈ F(K0). By hypothesis, |VτK | = |VK0\K | ≥ 1

2 |Vτ〈α〉|, meaning at least half

the terms of 2V +
τ〈α〉 lie in (τK)+ = K+ ≤ H+. As a result, we can apply Lemma 4.10 (taking U to be

2V +
τ〈α〉, taking V to be 2W+

1 , taking H to be H+, taking S to be 2U+
τ〈α〉, taking X to be XV ′ , and taking

S′ to be 2U+
τ〈α〉 as well as 2(Uτ〈α〉 ·W

[−1]
0 )+) to conclude

(4.7) XV ′ + Σb 12 `U·W [−1]
0

c
(
2(U ·W [−1]

0 )+
τ〈α〉

)
= XV ′ + Σb`U/2c(2U

+
τ〈α〉) = X + Σ`(2W

+
1 )
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is H+-periodic. By definition of V ′, all g ∈ supp(U · (V ′)[−1]) ∩ 〈α〉 lie in K, ensuring g+ ∈ K+ ≤ H+.
As a result, since the quantity in (4.7) is H+-periodic, it follows that

X
U·W [−1]

0
+ Σb 12 `U·W [−1]

0

c
(
2(U ·W [−1]

0 )τ〈α〉
)

= XU + Σb`U/2c(2U
+
τ〈α〉),

whence |π(U ·W [−1]
0 )| = |π(U)| by Proposition 4.5, forcing 1 ∈ π(U) = π(U ·W [−1]

0 ) since both U and W0

are product-one. It follows that U = W0 · (U ·W [−1]
0 ) is a factorization of U into product-one sequences,

with W0 nontrivial by definition. Since U is an atom, this forces W0 = U . However, |W0| ≤ d(K0) + 1
by definition, while |U | ≥ |U · V [−1]| ≥ d(K0) + 1 + ` > d(K0) + 1 ≥ |W0| by (4.3), whence W0 = U is
impossible, completing the proof. �

Lemma 4.13. Let G be an abelian group, let A1, . . . , A` ⊂ G be cardinality two subsets, let X =
∑̀
i=1

Ai,

and let H = H(X). Let IH ⊂ [1, `] be all those i ∈ [1, `] with |φH(Ai)| = 1. Then there exists a subset
J ⊂ [1, `] with |

∑
i∈J

Ai| = |X|, J \ IH = [1, `] \ IH , |J ∩ IH | ≤ |H| − 1, |J \ IH | ≤ |φH(X)| − 1 and

|J | ≤ |H|+ |φH(X)| − 2.

Proof. Note φH(Ai) has cardinality one or two depending on whether i ∈ IH or i ∈ [1, `] \ IH . Thus
Kneser’s Theorem implies |[1, `] \ IH | ≤ |φH(X)| − 1, while [22, Proposition 2.2] applied to

∑
i∈IH

Ai

ensures there is a subset I ′H ⊂ IH with |
∑
i∈I′H

Ai| = |
∑
i∈IH

Ai| and |I ′H | ≤ |
∑
i∈IH

Ai| − 1 ≤ |H| − 1. Setting

J = I ′H ∪ ([1, `] \ IH) now yields the desired index set. �

Proposition 4.14. Let G be a dihedral group of order 2n where n ≥ 3 is odd, say G = 〈α, τ : αn =
τ2 = 1, τα = α−1τ〉. If Hz = 〈H, ταz〉 < G is a proper subgroup with H ≤ 〈α〉, and U ∈ A(G), then
|UHz | ≤ n+ |H| − 1, with equality only possible if H is trivial.

Proof. By replacing the generator τ by ταz, we can w.l.o.g. assume z = 0. Assume by contradiction
U ∈ A(G) with

(4.8) |UH0 | = |UH |+ |UτH | ≥ n+ |H| − 1 + ε,

where ε = 1 if H is trivial and otherwise ε = 0. Since H0 < G is proper, it follows that H < G′ is
proper. By (4.8), we have |U | ≥ n+ 1 ≥ 4, ensuring that the atom U ∈ A(G) does not consist of a single
term equal to 1, forcing 1 /∈ supp(U). If U ∈ F(〈α〉), then 〈supp(U)〉 is abelian and UH0

= UH . Thus
|UH0

| = |UH | ≤ D(H) = |H|, again contradicting (4.8). Therefore |Uτ〈α〉| > 0.
Let K ≤ 〈α〉 be arbitrary. Lemma 4.9 implies

(4.9) |UK | ≤ 2|K| − 2 for every K ≤ 〈α〉, and ` := |UτH | ≥ n− |H|+ 1 + ε ≥ |G′/H|+ 1 ≥ 4,

with the latter inequality following from the former (taking K = H) combined with (4.8) (and recalling
that H < G′ is proper). Since n ≥ 3 is odd and 1

2 |Uτ〈α〉| ≥
1
2` ≥ 2, Lemma 4.7 gives

(4.10) h(2U+
τ〈α〉) = h(Uτ〈α〉) ≤

1

2
|Uτ〈α〉| ≤ n,

with the latter inequality in view of |Uτ〈α〉| ≤ |U | ≤ D(G) = 2n. If H is trivial, then H = {1} and
H0 = 〈τ〉 = {1, τ}, so UH is the trivial sequence (as 1 /∈ supp(U)) and supp(UH0) = {τ}. In such case,
(4.8) implies vτ (U) = |UH0 | ≥ n+ 1, contradicting (4.10). Therefore we may now assume H is nontrivial,
and thus ε = 0.

For a subsequence T | U , let `T = |Tτ〈α〉| and XT = {y1,−y1}+ . . .+{yt,−yt}, where T+
〈α〉 = y1 · . . .·yt.

Let X = XUH , ` = `UH0
and

L+ = H(X) ≤ H+.
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Since ` > 0, Proposition 4.5.2 implies that π(UH0
)+ is a translate of the set X + Σb`/2c(2U

+
τH). Let

mX = h
(
φL(2U+

τH)
)

= h
(
φL(U+

τH)
)

and let U ′τH | UτH be a maximal length subsequence with h
(
φL(2(U ′τH)+)

)
≤ d`/2e. Note φL(X) is

aperiodic as L+ is the stabilizer of X. As a result, applying Kneser’s Theorem to the aperiodic sumset
φL(X), which is a sumset of |UH\L| cardinality two sets and |UL| cardinality one sets, yields

(4.11) |φL(X)| ≥ |UH\L|+ 1.

Combining the above bound with (4.9), we obtain

(4.12) |UH | = |UL|+ |UH\L| ≤ 2|L|+ |φL(X)| − 3.

In view of (4.8), (4.12), |φL(X)| ≤ |H/L| (as X ⊂ H+) and H < G′ proper, we have

(4.13) ` = |UτH | = |UH0 | − |UH | ≥ n+ |H|+ 2− 2|L| − |φL(X)| ≥ n− |H|+ 1 ≥ 2|H|+ 1.

Lemma 4.12 and the following claim will complete the proof by contradicting that U is an atom.

Claim A. There is a subgroup Ky = 〈K, ταy〉 ≤ H0 with K ≤ 〈α〉 and a subsequence V | UH0

such that |VKy\K | ≥ 1
2 |VτH |, Z is K+-periodic, |(U · V [−1])Ky | ≥ |K| + 1 + |G′/K| − |φK(Z)| and

|(U · V [−1])Ky\K | ≥ |G′/K| − |φK(Z)|, where Z = XV + Σb`V /2c(2V
+
τH).

CASE 1. mX ≥ |UτH | − |H/L|+ 2.
Let y ∈ supp(U+

τH) be an element which modulo L+ has multiplicity mX in φL(U+
τH), and set Ly =

〈L, ταy〉. Lemma 4.13 applied to the sumset X finds a subsequence V | UH with VH\L = UH\L, |VL| ≤
|L| − 1, |V | ≤ |L|+ |φL(X)| − 2, and XV = XUH = X. Note

|(U · V [−1])Ly | ≥ mX + |UL| − |VL| ≥ |UH0
| − |UH\L| − |H/L|+ 2− |VL|

≥ |UH0 | − |φL(X)| − |L| − |H/L|+ 4 ≥ |UH0 | − |φL(X)| − |H|+ 3

≥ n− |φL(X)|+ 2 ≥ |L|+ |G′/L| − |φL(X)|+ 1,

with the first inequality as V | UH , with the second inequality by case hypothesis, the third in view
of |VL| ≤ |L| − 1 and (4.11), and the fifth in view of (4.8). The case hypothesis ensures there are
at most |H/L| − 2 terms of UτH lying outside Ly = 〈L, ταy〉. Consequently, if |(U · V [−1])Ly\L| =
|ULy\L| ≤ |G′/L| − 1 − |φL(X)|, then |UτH | ≤ (|G′/L| − 1 − |φL(X)|) + (|H/L| − 2), which combined

with (4.12) yields |UH0
| = |UH | + |UτH | ≤ 2|L| + n+|H|

|L| − 6 ≤ n + |H| − 4, contrary to (4.8). Therefore

|(U · V [−1])Ly\L| = |ULy\L| ≥ |G′/L| − |φL(X)|, meaning Claim A holds with Ky taken to be Ly and Z
taken to be X, contradicting that U is an atom.

CASE 2. |X + Σd`/2e(2U
+
τH)| ≥ min{|H|, (|U ′τH | − d`/2e)|L|+ |X|} and mX ≤ |UτH | − |H/L|+ 1.

Apply Proposition 4.2 to X+Σd`/2e(2U
+
τH) taking L to be L+ and using 2(U ′τH)+ | 2U+

τH . First suppose

that |X + Σd`/2e(2U
+
τH)| ≥ (|U ′τH | − d`/2e)|L| + |X|, so that Proposition 4.2.1 holds. Consequently, if

mX = h(2φL(U+
τH)) ≤ d`/2e, then U ′τH = UτH , in which case Proposition 4.5 implies that |π(UH0)| ≥

(|UτH | − d `2e)|L|+ |X| = b`/2c |L|+ |X| ≥ b`/2c ≥ |H|, with the final inequality by (4.13). On the other

hand, if mX = h(2φL(U+
τH)) > d`/2e, then there is a unique term with multiplicity greater than d`/2e in

φL(2U+
τH), and Proposition 4.5 instead implies |π(UH0)| ≥ (|U ′τH |−d `2e)|L|+ |X| ≥ (|U ′τH |−d `2e+1)|L| =

(|UτH |−mX +1)|L| ≥ |H|, with the final inequality holding by the upper bound mX ≤ |UτH |−|H/L|+1
in the hypothesis of CASE 2. In either case, we conclude that |π(UH0

)| = |H| (note |π(UH0
)| ≤ |H| holds

trivially as supp(U+
H0

) ⊆ H+
0 = H, ensuring the inequality in Proposition 4.2.1 must hold with equality),

and so Proposition 4.2 ensures there is a setpartition of cardinality two sets realizing X+Σd`/2e(2U
+
τH) as

a sumset. If instead |X+ Σd`/2e(2U
+
τH)| < (|U ′τH |− d`/2e)|L|+ |X| and |π(UH0)| = |H|, then Proposition

4.2.2 yields these same conclusions. Thus in both cases, Lemma 4.13 applied to U+
H and [22, Proposition

2.2] applied to φL(2U+
τH) (via the setpartition realizing X + Σd`/2e(2U

+
τH) considered modulo L+) give
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us a subsequence V | UH0
with |V | = |VH |+ |VτH | ≤ (|L|+ |φL(X)|− 2) + 2(|H/L|− |φL(X)|) ≤ 2|H|− 2

such that |π(V )| = |π(UH0
)| = |H|. Note [22, Proposition 2.2] (which is simply the greedy algorithm)

ensures we keep at most one cardinality two set for each element of φL
(
X + Σd`/2e(2U

+
τH)

)
in excess of

the original |φL(X)| elements from φL(X), and thus |VτH | ≤ 2
(
|φL
(
X + Σd`/2e(2U

+
τH)

)
| − |φL(X)|

)
≤

2(|H/L| − |φL(X)|). Hence (4.8) yields |(U · V [−1])H0 | ≥ n − |H| + 1 ≥ |H| + |G′/H|, with the latter
inequality following as H is a proper, nontrivial subgroup of the odd order group G′ (forcing |G′| ≥ 9),
while (4.13) then implies |(U · V [−1])τH | ≥ ` − 2(|H/L| − |φL(X)|) ≥ n + |H| + 3 − 2|L| − 2|H/L| ≥
n− |H|+ 1 ≥ |G′/H| − 1. Claim A now holds with Ky = H0, contradicting that U is an atom.

CASE 3. |X + Σd`/2e(2U
+
τH)| < min{|H|, (|U ′τH | − d`/2e)|L|+ |X|}.

In view of the case hypothesis, we can apply Proposition 4.2.2 to X + Σd`/2e(2U
+
τH) taking L to

be L+ and using 2(U ′τH)+ | 2U+
τH . Let y + K+ be the resulting coset with K/L < H/L proper and

nontrivial (so y +K+ is the coset α+H from Proposition 4.2.2; note K/L is proper in view of the case
hypothesis |X + Σd`/2e(2U

+
τH)| < |H|), and set Ky = 〈K, ταy〉 ≤ H0. In particular, K is nontrivial and

|G′| ≥ 33 = 27. In this case, Lemma 4.13 along with [22, Proposition 2.2] applied to the sumset given by
Proposition 4.2.2(d) yields a subsequence V | UH0 with

(4.14) |V | = |VH |+ |VτH | ≤ (|L|+ |φL(X)| − 2) + 2(|K/L| − 1) = |L|+ 2|K/L| − 4 + |φL(X)|
and π(V )+ being K+-periodic. Moreover, as the subsequence VτH is that partitioned by a sub-setpartition
of the one given by Proposition 4.2 (cf. [22, Proposition 2.2]), we have |VKy\K | ≥ 1

2 |VτH |, for each

cardinality two subset must contain at least one term from y+K+ = (Ky \K)+ by Proposition 4.2.2(b).
Proposition 4.2.2(c) ensures that at most |H/K| − 2 of the terms of UτH are not in Ky (as (Ky \K)+ =
y +K+). Thus

|(U · V [−1])Ky\K | ≥ |UτH | − (|H/K| − 2)− 2(|K/L| − 1) ≥ n− |H|+ 5− 2|K/L| − |H/K|

≥ n− |H|+ 5− 2|K| − |H/K| ≥ 2

3
|G′|+ 5− 2|K| − 1

3
|G′/K| ≥ |G′/K| − 1,

with the second inequality above in view of (4.13). By construction (cf. Lemma 4.13), VH contains all

terms of UH lying outside L, so all terms in UH · V [−1]
H lie in L ≤ K ≤ Ky. Combining this with (4.14),

(4.8) and the already observed fact that there are at most |H/K| − 2 terms from UτH lying outside Ky

implies

|(U · V [−1])Ky | ≥ |UH0 | − |H/K|+ 2− |V | ≥ |UH0 | − |H/K| − |L| − 2|K/L|+ 6− |H/L|
≥ n+ |H| − |H/K| − |L| − 2|K/L| − |H/L|+ 5

≥ n+ |H| − |H/K| − 2|K| − |H|+ 4 ≥ |G′| − 1

3
|G′/K| − 2|K|+ 4

≥ |K|+ |G′/K|,
where the final inequality follows as K is nontrivial with K < H < G′. Therefore Claim A holds with
Ky as defined above, contradicting that U is an atom. This completes CASE 3 and the proof. �

Proof of Theorem 4.1. Let G be a dihedral group of order 2n where n ≥ 3 is odd, say G = 〈α, τ : αn =
τ2 = 1, τα = α−1τ〉.

To see ω(G) ≥ 2n, let U = ((τα) · τ)[n] ∈ A(G). Then U · U = (τ · τ)[n] · (τα · τα)[n] is a factorization
into 2n length two atoms. Suppose U divides (in B(G)) a sub-product S ∈ B(G) of these length two
atoms. Then S must have an even number of copies of both τα and τ , ensuring that S · U [−1] ∈ B(G)
contains an odd number of both τα and τ (as n is odd). However, it is readily seen (cf. Lemma 4.7)
that τ [2], (τα)[2] and U are the only atoms with support contained in {τα, τ}. In particular, U is the
only atom with support contained in {τα, τ} having an odd number of copies of both τ and τα. Thus
S · U [−1] = U , ensuring S must be the sub-product of all 2n length two atoms, which shows ω(G) ≥ 2n.
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It remains to show ω(G) ≤ 2n. To this end, suppose U,U1, . . . , Uw ∈ A(G) are atoms with U |B(G)

U1 · . . . ·Uw, i.e., U | U1 · . . . ·Uw and (U1 · . . . ·Uw) ·U [−1] ∈ B(G). We need to show there exists a subset
J ⊂ [1, w] with U |B(G)

∏•
i∈J Ui and |J | ≤ 2n.

Since U | U1 · . . . · Uw, let I∅ ⊂ [1, w] be a minimal cardinality subset with U |
∏•
∈I∅ Ui. In view of

the minimality of |I∅|, we have |I∅| ≤ |U | ≤ D(G) = 2n. Thus, if V∅ := U [−1] ·
∏•
i∈I∅ Ui is product-one,

then the proof is complete taking J to be I∅. Therefore we may assume

1 /∈ π(V∅).

Since both U and
∏•
i∈I∅ Ui are product-one sequences, it follows that 2`∅ := |(V∅)τ〈α〉| must be even

with π(V∅) ⊂ G′. Since U |B(G)

∏•
i∈[1,w] Ui, we have 1 ∈ π(U [−1] ·

∏•
i∈[1,w] Ui) = π(V∅ ·

∏•
i∈[1,w]\I∅ Ui).

In consequence, if supp(V∅ ·
∏•
i∈[1,w]\I∅ Ui) ⊆ 〈α〉, then 1 ∈ π(V∅), contrary to assumption. As a result,

if `∅ > 0, then set I∅ = I∅, and otherwise set I∅ = I∅ ∪ {i∅}, where i∅ ∈ [1, w] \ I∅ is an index with
supp(Ui∅) ∩ τ〈α〉 nonempty.

Let I ⊂ [1, w] be an arbitrary subset with I∅ ⊂ I. Set V∅ = U [−1] ·
∏•
∈I∅ Ui ∈ F(G) and V =

U [−1] ·
∏•
∈I Ui ∈ F(G). Since U ,

∏•
i∈I Ui and

∏•
i∈I0 Ui are product-one sequences, 2` := |Vτ〈α〉| and

2`∅ = |(V∅)τ〈α〉| must both be even with π(V ) ⊂ G′. Let

X = {x1,−x1}+ . . .+ {xs,−xs},

where V +
〈α〉 = x1 · . . . · xs. By construction, ` ≥ `∅ > 0. Thus Proposition 4.5 ensures that

π(V )+ = X + Σ`(2V
+
τ〈α〉)− σ(V +

τ〈α〉).

Let H+ = H(π(V )+) and L+ = H(X) (set L+ = X = {0} if s = 0). Note L ≤ H. If h(Vτ〈α〉) ≤ `,
let `′ = `. Otherwise, let `′ = 2` − h(Vτ〈α〉). Note `′ ≥ 0 is the maximal integer for which there is a

decomposition V +
τ〈α〉 = T1 · . . . ·T` with |Ti| = 2 for all i ∈ [1, `] and | supp(Ti)| = 2 for all i ≤ `′. Likewise,

if h(φL(V +
τ〈α〉)) ≤ `, let `L = `. Otherwise, let `L = 2` − h(φL(V +

τ〈α〉)). Since U |
∏•
∈I∅ Ui, we have

decompositions Ui = Wi ·WU
i , for i ∈ I∅, with

∏•
i∈I∅ Wi = V∅ and

∏•
i∈I∅ W

U
i = U . Note |WU

i | > 0 for

all i ∈ I∅ in view of the minimality of |I∅|. Let WU
i be the trivial sequence with Wi = Ui for i ∈ I \ I∅.

Partition I = I2
∅∪Iα∪Iατ ∪Iτ , where I2

∅ ⊂ I∅ consist of all i ∈ I∅ with |WU
i | ≥ 2, where Iα ⊂ I consists

of all i ∈ I \ I2
∅ with supp(Wi) ⊂ 〈α〉, where Iτ ⊂ I consists of all i ∈ I \ I2

∅ with supp(Wi) ⊂ τ〈α〉, and
where Iατ ⊂ I consists of all i ∈ I \ I2

∅ with supp(Wi) ∩ 〈α〉 and supp(Wi) ∩ τ〈α〉 both nonempty. Let
I1
∅ = I∅ \ I2

∅. Let I∅ = I2
∅ ∪ Iα∅ ∪ Iατ∅ ∪ Iτ∅ and I∅ = I2

∅ ∪ Iα∅ ∪ I
ατ
∅ ∪ I

τ
∅ be the analogous partitions for I∅

and I∅. To simplify notation, we have suppressed the dependency on I of V , `, X, s, H, L, and `′ from
the notation. In the case when I = I∅, we denote these parameters by V∅, `∅, X∅, s∅, H∅, L∅ and `′∅.

Since U |
∏•
i∈I∅ Ui and 1 /∈ π(V∅), it follows that supp(

∏•
i∈I∅ Ui) ∩ τ〈α〉 is nonempty. In particular,

if I∅ 6= I∅, then there must be some Ui with supp(Ui) ∩ τ〈α〉 nonempty and i ∈ I∅. Moreover, as Ui is
product-one, it must then have an even number of terms from τ〈α〉, all of which are not contained in V∅
as I∅ 6= I∅, whence i ∈ I2

∅, ensuring I2
∅ is nonempty. In summary, I2

∅ 6= ∅ when I∅ 6= I∅. In particular,
if I∅ 6= I∅, then |I∅| = |I∅|+ 1 ≤ (|U | − |I2

∅|) + 1 ≤ |U | ≤ 2n. Thus we can also assume

(4.15) 1 /∈ π(V∅),

for otherwise the proof is complete taking J = I∅.

Claim A. `′∅ ≥ min{`∅, |Iτ∅|} ≥ 1
2 |I

τ
∅|.

Proof. If I∅ 6= I∅, then `∅ = `′∅ = |Iτ∅| = 0, and the claim is true. Therefore we now assume I∅ = I∅.

Let j ∈ Iτ∅ be arbitrary. Then |WU
j | = 1 and supp(Wj) ⊂ τ〈α〉. Let us consider the various possibilities

that can occur for Wj . If |Wj | = 1, then Uj is a length two atom, forcing Uj = w
[2]
j for some wj ∈ τ〈α〉.

However, in such case, we must have vwj (V∅) = 1, for if wj ∈ supp(Wj′) for some j′ ∈ I∅ \ {j}, then,
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since WU
j = {wj}, this means U |

∏•
i∈I∅\{j} Ui, contradicting the minimality of |I∅|. If |Wj | = 2, then

|Uj | = 3. Consequently, since the number of terms from τ〈α〉 in a product-one sequence must be even, we
conclude that Uj = gj · hj · αz for some gj = ταx, hj = ταy ∈ τ〈α〉 and z ∈ Z/nZ. Since Uj is an atom,
we cannot have αz = 1 while either x + z = y or y + z = x. Thus gj 6= hj . If |Wj | ≥ 3, then Lemma
4.7 ensures that there are distinct gj , hj ∈ supp(Wj). Partition Iτ∅ = J1 ∪ J2, with J1 ⊂ Iτ∅ consisting
of all j ∈ Iτ∅ with |Wj | = 1, and J2 ⊂ Iτ∅ consisting of all j ∈ Iτ∅ with |Wj | ≥ 2. By the above work,∏•
j∈J1 wj ·

∏•
j∈J2(gj ·hj) | (V∅)τ〈α〉 with gj 6= hj for all j ∈ J2, and the wj for j ∈ J1 all distinct. Suppose

`′∅ < `∅. Then there is a unique g ∈ τ〈α〉 with vg(V∅) ≥ `∅ + 1 = `∅ + 1 ≥ 2 (the equality follows from
the assumption I∅ = I∅). Since vwj (V∅) = 1 for all j ∈ J1, we have g 6= wj for all j ∈ J1. Since gj 6= hj ,
each j ∈ J2 has g 6= gj or g 6= hj . Thus, swapping the roles of each gj and hj as need by, we may w.l.o.g.
assume

∏•
j∈J1 wj ·

∏•
j∈J2 gj | (V∅)τ〈α〉 is a sequence of |J1|+ |J2| = |Iτ∅| terms all distinct from g. Since

vg(V∅) ≥ `∅ + 1 > 1
2 |(V∅)τ〈α〉|, each of these terms can be paired up with a distinct term equal to g,

showing `′∅ ≥ |Iτ∅|. Thus `′∅ ≥ min{`∅, |Iτ∅|}. Since each Wi with i ∈ Iτ∅ contains at least one term from
τ〈α〉, we have 2`∅ = |(V∅)τ〈α〉| ≥ |Iτ∅|, and the claim follows. �

We say the set I ⊂ [1, w] (containing I∅) is ample if the following hold:

A1. |π(V )| ≥
⌊

1
2 |I

1
∅|
⌋

+ 1 + |I \ I∅|.
A2. |X| ≥ |X∅|+ |Iα \ Iα∅|.

We will say the set I (containing I∅) is constrained or (more specifically) Hx-constrained if there exists
a subgroup Hx = 〈H, ταx〉 ≤ G, as well as a decomposition V +

τ〈α〉 = T1 · . . . · T` with |Ti| = 2 for all

i ∈ [1, `] such that, letting Ai = supp(2Ti) for i ∈ [1, `], the following hold:

C1. X +
∑̀
i=1

Ai is H+-periodic.

C2. Ai ∩ (2x+H+) 6= ∅ for all i ∈ [1, `].

C3. There is a j ∈ [1, `] with |X +
∑̀
i=1
i 6=j

Ai| = |X +
∑̀
i=1

Ai|.

C4. |X| ≥ |X∅|+ |Iα \ Iα∅|.

Conditions C1 and C2 allow us to apply Proposition 4.11.1 to conclude X+
∑̀
i=1

Ai = X+Σ`(2V
+
τ〈α〉) =

π(V )+ + σ(V +
τ〈α〉), in which case H+ = H(X +

∑̀
i=1

Ai) = H(π(V )+) by definition of H. Note that

φH(X +
∑̀
i=1

Ai) = φH({x1,−x1}) + . . . + φH({xs,−xs}) +
∑̀
i=1

φH(Ai) is a sumset of cardinality at most

two sets. Since n is odd, the set {xi,−xi} considered modulo H+ has cardinality two precisely when
xi /∈ H+, while the set φH(Ai) has cardinality two (in view of C2) precisely when Ti consists of one
term from x+H+ with its other term lying outside x+H+. As a result, |VG\Hx | equals the number of

cardinality two summands in the sumset φH({x1,−x1})+ . . .+φH({xs,−xs})+
∑̀
i=1

φH(Ai), in which case

Kneser’s Theorem implies |X +
∑̀
i=1

Ai| ≥ (|VG\Hx |+ 1)|H|. In summary, Conditions C1 and C2 imply

(4.16) X +
∑̀
i=1

Ai = X + Σ`(2V
+
τ〈α〉) = π(V )+ + σ(V +

τ〈α〉) and |X +
∑̀
i=1

Ai| ≥ (|VG\Hx |+ 1)|H|.
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Kneser’s Theorem (applied modulo H+) ensures that Aj ⊂ 2x+H+ for any j ∈ [1, `] satisfying C3. As

we trivially have |X +
∑̀
i=1

Ai| ≤ n, with equality only possible when H+ = Z/nZ, (4.16) implies

(4.17) |VG\Hx | ≤ |G
′/H| − 2 + ε,

where ε = 0 if H+ < Z/nZ is proper, and ε = 1 if H+ = Z/nZ.

Claim B. If |π(V )| ≤
⌊

1
2 |I

1
∅|
⌋

+ 1 + |I \ I∅| and C4 holds but I is not constrained, then ` = `′, |I1
∅| is

even, |π(V )| = 1
2 |I

1
∅|+ 1 + |I \ I∅| = `+ 1, L is trivial, |Iατ | = |Iα| = 0, X = {0}, and |Ui| = 2 for every

i ∈ Iτ . Moreover, supp(V +
τ〈α〉) ⊂ {x − d, x, x + d} with vx(V +

τ〈α〉) = h(V +
τ〈α〉) = ` ≤ ord(d) − 1, for some

x, d ∈ Z/nZ.

Proof. By definition of `L and `′, there is a decomposition V +
τ〈α〉 = T1 · . . .·T` with |Ti| = 2 for all i ∈ [1, `],

|Ai| = 2 for all i ≤ `′, |φL(Ai)| = 2 for all i ≤ `L, and |φL(Ai)| = 1 for all i > `L, where Ai = supp(2T ′i )
for i ∈ [1, `].

Suppose `L < `, i.e., h(φL(V +
τ〈α〉)) ≥ ` + 1, and let x ∈ Z/nZ be an element with φL(x) a maximum

multiplicity term in φL(V +
τ〈α〉). Since `L < `, we have Ai∩(2x+L+) 6= ∅ and |Ai \(2x+L+)| ≤ 1 for all i.

Hence, since L+ = H(X), Proposition 4.11.1 implies that X+
∑̀
i=1

Ai = X+Σ`(2V
+
τ〈α〉) = π(V )++σ(V +

τ〈α〉),

which is H+-periodic by definition. Thus C1 holds. Additionally, since L ≤ H, it follows that C2 holds
(in view of Ai ∩ (2x + L+) 6= ∅ for all i), while C3 holds for any j > `L as these sets are subsets of the
same L+-coset with H(X) = L+. As C4 holds by hypothesis, we conclude that I is constrained, which is
contrary to hypothesis. So we instead assume `L = `, i.e., h(φL(V +

τ〈α〉)) ≤ `, which also forces `′ = `.

Suppose |X + Σ`(2V
+
τ〈α〉)| < `|L| + |X| = (|Vτ〈α〉| − `)|L| + |X|. Then, in view of `L = ` (which is

equivalent to h(φL(V +
τ〈α〉)) ≤ `), we can apply Proposition 4.2.2 to X + Σ`(2V

+
τ〈α〉) taking L to be L+

and using 2V +
τ〈α〉 | 2V +

τ〈α〉. But now C1–C2 all hold for the resulting setpartition B1 · . . . · B` given by

Proposition 4.2.2, and C4 holds by hypothesis. Moreover, if C3 fails, then |X+
j∑
i=1

Bi| ≥ |X+
j−1∑
i=1

Bi|+ |L|

for all j ∈ [1, `], which implies |X+Σ`(2V
+
τ〈α〉)| ≥ `|L|+ |X|, contrary to assumption. Thus C3 also holds,

meaning I is constrained, which is contrary to hypothesis. So we now instead assume

(4.18) |X + Σ`(2V
+
τ〈α〉)| ≥ `|L|+ |X| ≥ |X|+ `+ |L| − 1.

Let eα ≥ 0 be the number of indices i ∈ Iα∅ for which Wi contains some term lying outside L∅. Kneser’s
Theorem implies |X∅| ≥ (eα + 1)|L∅|. Combined with C4, we find that

(4.19) |X| ≥ (eα + 1)|L∅|+ |Iα| − |Iα∅|.

For each of the |Iα∅| − eα indices i ∈ Iα∅ not counted by eα, we have supp(Wi) ⊂ L∅. Thus, since Ui is

an atom with WU
i = Ui ·W [−1]

i a single term, it follows that the unique term from WU
i must also lie in

L∅. It follows that |UL∅ | ≥ |Iα∅| − eα. Hence Lemma 4.9 applied to U implies |Iα∅| ≤ 2|L∅| − 2 + eα.
Combined with (4.19), we obtain

(4.20) |X| ≥ |Iα|+ (eα − 1)(|L∅| − 1) + 1 ≥ |Iα| − |L∅|+ 2,

with equality only possible if |Iα∅| = 2|L∅| − 2 + eα. Since each Wi with i ∈ I1
∅ \ Iα∅ contains at least one

term from τ〈α〉, and since each Wi = Ui with i ∈ I \ (Iα ∪ I∅) = (I \ I∅) \ (Iα \ Iα∅) contains at least two
terms from τ〈α〉, we have

(4.21) ` ≥ (|I \ I∅| − |Iα|+ |Iα∅|) +

⌈
1

2
(|I1

∅| − |Iα∅|)
⌉

= |I \ I∅| − |Iα|+
⌈

1

2
|I1

∅|+
1

2
|Iα∅|

⌉
,
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with equality only possible if |(Ui)τ〈α〉| = 2 for all i ∈ Iατ and |Ui| = 2 for all i ∈ Iτ (since each |(Ui)τ〈α〉|
must be even). Combining (4.18), (4.20) and (4.21), we obtain

(4.22) |X + Σ`(2V
+
τ〈α〉)| ≥

⌈
1

2
|I1

∅|+
1

2
|Iα∅|

⌉
+ |I \ I∅|+ 1 + |L| − |L∅| ≥

⌈
1

2
|I1

∅|
⌉

+ |I \ I∅|+ 1.

Since |X + Σ`(2V
+
τ〈α〉)| ≤

⌊
1
2 |I

1
∅|
⌋

+ |I \ I∅| + 1 holds by hypothesis, we are left to conclude equality

holds in (4.22) as well as in the estimates (4.18), (4.20) and (4.21) used to derive (4.22), and that |I1
∅|

is even, |Iα∅| = 0 and L = L∅ (lest the second inequality in (4.22) be strict). Equality in (4.20) implies
|Iα∅| = 2|L∅| − 2 + eα, which combined with |Iα∅| = 0 forces |L∅| = 1 and eα = 0. Since L = L∅ is trivial,
Kneser’s Theorem implies |X| ≥ |V〈α〉| + 1 ≥ 2|Iα \ Iα∅| + |Iα∅| + |Iατ | + 1 ≥ 2|Iα| − |Iα∅| + |Iατ | + 1 =
2|Iα|+|Iατ |+1. As a result, since equality holds in (4.20), we are left to conclude |V〈α〉| = |Iα| = |Iτα| = 0.
Thus supp(V ) ⊂ τ〈α〉 and X = {0}. As equality holds in (4.21), we have |Ui| = 2 for all i ∈ Iτ . It
remains to show supp(V +

τ〈α〉) ⊂ {x − d, x, x + d} with vx(V +
τ〈α〉) = h(V +

τ〈α〉) = ` ≤ ord(d) − 1, for some

x, d ∈ Z/nZ.
Since equality holds in (4.22) and (4.21) with X = {0}, |Iα∅| ≤ |Iα| = 0 and |I1

∅| even, we have

|Σ`(2V +
τ〈α〉)| =

1
2 |I

1
∅|+ |I \ I∅|+ 1 = `+ 1 = `′+ 1, allowing us to apply Proposition 4.3 (with m = n = `)

to Σ`(2V
+
τ 〈α〉). If Proposition 4.3.5 holds, then I is constrained in view of C4 holding by hypothesis,

which is contrary to hypothesis. If Proposition 4.3.4 holds, then supp(V +
τ〈α〉) ⊂ {x − d, x, x + d} with

vx(V +
τ〈α〉) = h(V +

τ〈α〉) = `, for some x, d ∈ Z/nZ. Thus the claim is complete unless ` ≥ ord(d). However,

in this case, each Ai is an arithmetic progression with difference 2d, so that |
j∑
i=1

Ai| = min{ord(d), j + 1}

for all j ∈ [1, `]. Thus ` ≥ ord(d) implies that |
`−1∑
i=1

Ai| = |
∑̀
i=1

Ai| = ord(d), whence C3 holds as well as C1

with H+ = 〈d〉. Since there is some term 2x ∈ 2V +
τ〈α〉 with multiplicity `, we obtain 2x ∈ Ai for all i,

whence C2 holds. Hence I is constrained as C4 holds by hypothesis, a contradiction. If Proposition 4.3.3
holds, then each Ai = {2x, 2x+ 2d} for some x, x+ d ∈ Z/nZ. If ` ≤ ord(d)− 1, the claim is complete.
Otherwise, arguing as in the previous case, we conclude that I is constrained, contrary to hypothesis. If
Proposition 4.3.2 holds, then ` = 2 and supp(V +

τ〈α〉) = x + 〈d〉 for some x, d ∈ Z/nZ with ord(d) = 3.

In this case, the pigeonhole principle ensures there is some y ∈ x + 〈d〉 with vy(V +
τ〈α〉) = 2, so the claim

follows as 〈d〉 is trivially an arithmetic progression with difference d and length ord(d) = 3. Finally, we
note that Proposition 4.3.1 cannot hold since this requires Z/nZ to contain a subgroup isomorphic to
(Z/2Z)2. As this exhausts all possibilities, the claim is complete. �

CASE 1. There exists an ample subset I ⊂ [1, w].
We may w.l.o.g. assume |I| is maximal among all ample subsets. By definition of I2

∅, we have

2n ≥ |U | ≥ 2|I2
∅|+ |I1

∅|. Hence, by A1, we have n ≥ |π(V )| ≥ 1
2 |I

1
∅|+ 1

2 + |I \I∅| = |I|+ 1
2−

1
2 |I

1
∅|−|I2

∅| ≥
|I| + 1

2 − n, implying |I| ≤ 2n − 1. If |π(V )| = n, then π(V ) = G′ follows. In particular, 1 ∈ π(V ),

ensuring that U |B(G)

∏•
i∈I Ui with |I| ≤ 2n − 1, and the proof is complete. Therefore we may assume

|π(V )| ≤ n − 1, in which case the above estimates improve to |I| ≤ 2n − 2. We must have I ⊂ [1, w]
proper; otherwise U |B(G)

∏•
i∈[1,w] Ui =

∏•
i∈I Ui with |I| ≤ 2n− 2, and the proof is again complete.

Let j ∈ [1, w] \ I be arbitrary. The maximality of |I| ensures that Ij = I ∪ {j} is not ample,
meaning either A1 or A2 fails. Let Vj , `j , Xj , sj , Hj , Lj , `

′
j and Iτj be the respective quantities V ,

`, X, s, H, L, `′ and Iτ for the set Ij . Suppose there is some j ∈ [1, w] \ I and g ∈ supp(Uj) ∩ 〈α〉
with g /∈ H. Since H+ = H(X + Σ`(2V

+
τ〈α〉)), it follows that φH(X) and φH(X + Σ`(2V

+
τ〈α〉)) are

both aperiodic. Thus Kneser’s Theorem implies that |Xj | ≥ |{g+,−g+} + X| > |X| and |π(Vj)| ≥
|{g+,−g+}+X+ Σ`(2V

+
τ〈α〉)| > |X+ Σ`(2V

+
τ〈α〉)| = |π(V )|, so that A1 and A2 holding for I ensures they
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hold for Ij , contradicting the maximality of |I|. So we instead conclude that

(4.23) supp
(∏•

i∈[1,w]\I
Ui
)
∩ 〈α〉 ⊂ H.

As a result, if supp(Ui) ⊂ 〈α〉 for all i ∈ [1, w] \ I, then π(U [−1] ·
∏
i∈[1,w] Ui)

+ = π(V ·
∏•
i∈[1,w]\I Ui)

+ =

π(V )+ follows from Proposition 4.5.2. Thus, since 1 ∈ π(U [−1] ·
∏
i∈[1,w] Ui) in view of the hypothesis

that U |B(G)

∏
i∈[1,w] Ui, we conclude that 1 ∈ π(V ), so that U |B(G)

∏
i∈I Ui with |I| ≤ 2n− 2, and then

the proof is complete taking J = I. Therefore let Jτ ⊂ [1, w] \ I be the nonempty set of all i ∈ [1, w] \ I
with supp(Ui)∩ τ〈α〉 6= ∅. Note that Iαj = Iα for all j ∈ Jτ , so that A2 holds for any Ij with j ∈ Jτ since
it holds for I. This means A1 fails for every Ij with j ∈ Jτ , which in view of A1 holding for I implies

(4.24) |π(V )| =
⌊

1

2
|I1

∅|
⌋

+ 1 + |I \ I∅|.

CASE 1.1. I is not constrained.
In this case, (4.24) and A2 holding for I allow us to apply Claim B yielding ` = `′, |I1

∅| is even, L

is trivial, |Iατ | = |Iα| = 0, X = {0}, |Ui| = 2 for every i ∈ Iτ , |π(V )| = ` + 1 and supp(V +
τ〈α〉) ⊂

{x − d, x, x + d} for some x, d ∈ Z/nZ with ` ≤ ord(d) − 1 and v2x(2V +
τ〈α〉) = h(2V +

τ〈α〉) = `. Thus we

have a decomposition V +
τ〈α〉 = T1 · . . . · T` with |Ai| = |Ti| = 2 for all i, where each Ai = supp(2Ti) is an

arithmetic progression with difference 2d containing 2x, for all i ∈ [1, `], in which case Lemma 4.4 (with

H taken to be trivial) ensures Σ`(2V
+
τ〈α〉) =

∑̀
i=1

Ai ⊂ 2`x+ 〈d〉 is an arithmetic progression of length `+1.

In particular, either ` < ord(d)− 1 and H is trivial, or ` = ord(d)− 1 and H+ = 〈d〉.
Consider an arbitrary index j ∈ Jτ , in which case `j > `. Since Vj = V ·Uj , we have Σ`j−`(2(Uj)

+
τ〈α〉)+

Σ`(2V
+
τ〈α〉) ⊂ Σ`j (2(Vj)

+
τ〈α〉). Consequently, since A1 fails for Ij (as j ∈ Jτ ), it then follows from (4.24)

that |π(V )| = |π(Vj)| = b 1
2 |I

1
∅|c+1+|I\I∅|, and hence |Σ`(2V +

τ〈α〉)| = |π(V )| = |π(Vj)| = |Σ`j (2(Vj)
+
τ〈α〉)|

and

(4.25) Σ`j−`(2(Uj)
+
τ〈α〉) + Σ`(2V

+
τ〈α〉) = Σ`j (2(Vj)

+
τ〈α〉) = β + Σ`(2V

+
τ〈α〉),

for any β ∈ Σ`j−`(2(Uj)
+
τ〈α〉). In particular, since |(Uj)τ〈α〉| = 2(`j − `) ≥ 2, we conclude that all terms

of 2(Uj)
+
τ〈α〉 are congruent to each other modulo the stabilizer H+ = H(Σ`(2V

+
τ〈α〉)).

Suppose H+ is nontrivial. Then H+ = 〈d〉 with Σ`(2V
+
τ〈α〉) =

∑̀
i=1

Ai = 2`x + H+, in which case

Σ`j (2(Vj)
+
τ〈α〉) = β + Σ`(2V

+
τ〈α〉) = β + 2`x + H+ is also an H+-coset. However, as `j < |(Vj)τ〈α〉|,

this is only possible if all terms of (Vj)
+
τ〈α〉 lie in the same H+-coset, ensuring that supp((Vj)

+
τ〈α〉) ⊂

x+H+ = x+ 〈d〉. This must be true for any j ∈ Jτ , so supp
(

(
∏•
i∈[1,w]\I Ui)

+
τ〈α〉

)
⊂ x+H+. Combined

with (4.23), we conclude supp
(∏•

i∈[1,w]\IUi
)
⊂ Hx, and now Proposition 4.11.2 implies that π(V ) is a

translate of π
(
U [−1] ·

∏•
i∈[1,w] Ui

)
= π(V ·

∏•
i∈[1,w]\I Ui). However, since

∏•
i∈[1,w]\I Ui is product-one,

we have 1 ∈ π
(
U [−1] ·

∏•
i∈[1,w] Ui

)
= π(V ). Thus U |B(G)

∏•
i∈I Ui with |I| ≤ 2n − 2, and the proof is

complete taking J = I. So we now instead assume H is trivial and ` < ord(d)− 1.
Combining H trivial with (4.23) implies supp(Ui) ⊂ τ〈α〉 for all i ∈ [1, w] \ I (as we can assume no

Ui is the atom consisting of a single term equal to 1). We showed above that all terms of Uj = (Uj)τ〈α〉

are equal (as H is trivial), for any j ∈ Jτ = [1, w] \ I. Thus Lemma 4.7 ensures each Uj = g
[2]
j for some

gj ∈ τ〈α〉. Suppose, for some j ∈ [1, w] \ I, that supp(U+
j ) = {y} with 2y /∈ Aj′ for some j′ ∈ [1, `],

say w.l.o.g. 2y /∈ A`. Observe that (`j − `)2y +
`−1∑
i=1

Ai + (A` ∪ {2y}) ⊂ Σ`j (2(Vj)
+
τ〈α〉). Since

∑̀
i=1

Ai is
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aperiodic (as H+ is trivial and X = {0}) and 2y /∈ A`, Kneser’s Theorem and [21, Lemma 2.6] imply

|
`−1∑
i=1

Ai + (A` ∪ {2y})| >
∑̀
i=1

|Ai| − `+ 1 = `+ 1 = |
∑̀
i=1

Ai|. Thus |Σ`j (2(Vj)
+
τ〈α〉)| > |

∑̀
i=1

Ai| = |Σ`(2V +
τ〈α〉)|,

contrary to (4.25). So we are left to conclude that, for any j ∈ [1, w]\ I, all terms of Uj are equal to some
multiplicity ` term in Vτ〈α〉. If it always the same multiplicity ` term for each Uj with j ∈ [1, w] \ I, then

Proposition 4.11 (taking H to be trivial) implies π(V ) = π(V ·
∏•
i∈[1,w]\I Ui) = π

(
U [−1] ·

∏•
i∈[1,w] Ui

)
,

and the proof is complete as before.
It remains to consider the case when there are two multiplicity ` terms in V +

τ〈α〉, so w.l.o.g. Ai =

{x, x + d} for all i ∈ [1, `], and (Vj)
+
τ〈α〉 = x[2] and (Vj′)

+
τ〈α〉 = (x + d)[2] for some j, j′ ∈ [1, w] \ I. Set

A`+1 = A`+2 = {2x, 2x + d}. Define J = I ∪ {j, j′} and let VJ , `J , IαJ and `′J be the corresponding
quantities V , `, Iα and `′ for the set J . Then `′J = `′ + 2 = ` + 2 = `J and Iα = IαJ , ensuring that A2
holds for J since it held for I. Observe (in view of (4.23) and Proposition 4.5) that

π(VJ)+ + σ(V +
τ〈α〉) =

`+2∑
i=1

Ai = {2x, 2x+ 2d}+ . . .+ {2x, 2x+ 2d}︸ ︷︷ ︸
`+2

.

If |X+
`+2∑
i=1

Ai| ≥ |X+
∑̀
i=1

Ai|+2, then A1 holding for I will imply it holds for J , in which case |J | contradicts

the maximality of |I|. Therefore |X +
`+2∑
i=1

Ai| ≤ |X +
∑̀
i=1

Ai| + 1, which is only possible if 2d ∈ H+
J :=

H(
`+1∑
i=1

Ai) = H(
`+2∑
i=1

Ai) = H(Σ`+2(VJ)) = 〈d〉. As a result, since supp((Uj)
+
τ〈α〉) ⊂ {x, x+ d} ⊂ x+H+

J for

all j ∈ Jτ , we conclude via Proposition 4.11 that 1 ∈ π(U [−1] ·
∏•
i∈[1,w] Ui) = π(VJ ·

∏•
i∈[1,w]\J Ui) = π(VJ).

Thus U |B(G)

∏•
i∈J Ui with |J | = |I|+ 2 ≤ 2n, completing the proof and subcase.

CASE 1.2. I is Hx-constrained.
Let 2x+H+ and A = A1 · . . .·A` be the coset and setpartition showing I is constrained, and let w.l.o.g.

j = ` be the index from C3. Consider an arbitrary index k ∈ Jτ . Then A1 fails for Ik, which in view of
(4.24) implies that |π(V )| = |π(Vk)|. Indeed, since |π(V )| = |X + Σ`(2V

+
τ〈α〉)| ≤ |X + Σ`k(2(Vk)+

τ〈α〉)| ≤
|Xk + Σ`k(2(Vk)+

τ〈α〉)| = |π(Vk)|, we obtain that |X + Σ`(2V
+
τ〈α〉)| = |X + Σ`k(2(Vk)+

τ〈α〉)|. Moreover,

arguing as we did when establishing (4.25), we conclude that

(4.26) X + Σ`k−`(2(Uk)+
τ〈α〉) + Σ`(2V

+
τ〈α〉) = X + Σ`k(2(Vk)+

τ〈α〉) = β +X + Σ`(2V
+
τ〈α〉),

for any β ∈ Σ`k−`(2(Uk)+
τ〈α〉), and that all terms of (Uk)+

τ〈α〉 are congruent to each other modulo the

stabilizer H+ = H(X + Σ`(2V
+
τ〈α〉)). We claim that they are, in fact, all congruent to x modulo H+. If

this fails, then there is some z ∈ supp((Uk)+
τ〈α〉) with z /∈ x+H+, whence (4.26) yields

(4.27) X + Σ`k(2(Vk)+
τ〈α〉) = (`k − `)2z +X + Σ`(2V

+
τ〈α〉).

Recall that j = ` is the index given by C3 and define a new setpartition B = B1 · . . . · B` by setting
B` = {2y, 2z}, where 2y ∈ A` = Aj ⊂ 2x + H+ is any element, and setting Bi = Ai for i < `.

In view of C3 and (4.16), we have (`k − `)2z + X + Σ`(2V
+
τ〈α〉) = (`k − `)2z + X +

∑̀
i=1

Ai ⊂ (`k −

`)2z + X +
∑̀
i=1

Bi ⊂ X + Σ`k(2(Vk)+
τ〈α〉), whence X +

∑̀
i=1

Ai = X +
∑̀
i=1

Bi follows in view of (4.27). In

particular, since X +
`−1∑
i=1

Ai is a translate of X +
∑̀
i=1

Ai by C3, and thus has stabilizer H+, Kneser’s

Theorem implies that all terms of B` = {2y, 2z} are congruent modulo H+, contradicting the assumption
z /∈ x + H+ = y + H+. So we conclude that supp((Uk)+

τ〈α〉) ⊂ x + H+, as claimed. However, as j ∈ Jτ
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was arbitrary, combining this with (4.23) and Proposition 4.11 (as V is Hx-constrained) once more yields
1 ∈ π(U [−1] ·

∏•
i∈[1,w] Ui) = π(V ·

∏•
i∈[1,w]\I Ui) = π(V ), showing that U |B(G)

∏•
i∈I Ui with |I| ≤ 2n− 2.

Thus the proof is complete taking J = I, which completes CASE 1.

CASE 2. There is no ample subset I ⊂ [1, w].
As a particular instance of the case hypothesis, I∅ is not ample. Since A2 holds trivially for I∅ (as

i∅ ∈ Iτ ∪ Iτα when I∅ 6= I∅), this means A1 must fail:

(4.28) |X∅ + Σ`∅(2(V∅)
+
τ〈α〉)| = |π(V∅)| ≤

1

2
|I1

∅|+ |I∅ \ I∅|.

Thus Claim B ensures that I∅ is (H∅)x0
-constrained for some x0 ∈ Z/nZ, and we use the abbreviation

H̃∅ = (H∅)x0
.

Suppose H∅ is trivial. Then X∅+ Σ`∅(2(V∅)
+
τ〈α〉) is aperiodic. Moreover, from the definitions involved,

X∅ is a sumset of |(V∅)〈α〉| ≥ |Iα∅ |+ |I
ατ
∅ | cardinality two sets, while in view of (4.16) and the definition

of `′∅, it follows that Σ`∅(2(V∅)
+
τ〈α〉) is a sumset of `′∅ cardinality two sets (as well as several cardinality

one sets). Hence it follows from Kneser’s Theorem that

(4.29) |X∅ + Σ`∅(2(V∅)
+
τ〈α〉)| ≥ |(V∅)〈α〉|+ 1 + `′∅ ≥ |I

α
∅ |+ |I

ατ
∅ |+ 1 + `′∅.

If I∅ 6= I∅, then |I∅ \ I∅| = 1, `′∅ ≥ 0, (V∅)〈α〉 = V∅, and |(V∅)〈α〉| ≥ |(V∅)〈α〉| = |V∅| ≥ max{1, |I1
∅|}, in

which case (4.29) contradicts (4.28). On the other hand, if I∅ = I∅, then |I∅ \ I∅| = 0, and (4.29) implies
|X∅ + Σ`∅(2(V∅)

+
τ〈α〉)| ≥ |I

α
∅| + |Iατ∅ | + 1 + `′∅ ≥ |Iα∅| + |Iατ∅ | + 1 + 1

2 |I
τ
∅| ≥ 1

2 |I
1
∅| + 1, with the second

inequality in view of Claim A. However, this also contradicts (4.28). So we instead conclude that H∅ is
nontrivial. We must also have H∅ proper, else 1 ∈ π(V∅), contradicting (4.15). Since n = |G′| is odd, this
forces 3 ≤ |H∅| ≤ n

3 .

Let Ie∅ ⊂ I∅ consist of all indices i ∈ I∅ such that Wi contains some term from |G \ H̃∅|. Then

supp(Wi) ⊂ H̃∅ for all i ∈ I∅ \ Ie∅ , while Ui ·W [−1]
i = WU

i is a single term if we additionally have i ∈ I1
∅.

It follows that the remaining term from WU
i in the product-one sequence Ui must also be from H̃∅ for

i ∈ I1
∅ \ Ie∅ . As a result, the atom U contains at least |I1

∅ \ Ie∅ | terms from the subgroup H̃∅, in which case
Proposition 4.14 ensures that

(4.30) |I1
∅ \ Ie∅ | ≤ n+ |H∅| − 2.

In view of (4.17), we have |(V∅)G\H̃∅ | ≤ |G
′/H∅| − 2, in which case

(4.31) |Ie∅ | ≤ |(V∅)G\H̃∅ | ≤ |G
′/H∅| − 2.

Thus |I1
∅| ≤ n+ |H∅| − 2 + |(V∅)G\H̃∅ |. Averaged with the inequality 2|I2

∅|+ |I1
∅| ≤ |U | ≤ 2n, we obtain

(4.32) |I∅| ≤ |I∅|+ 1 ≤ 1

2

(
3n− 2 + |H∅|+ |(V∅)G\H̃∅ |

)
+ 1 < 2n−

(
|G′/H∅| − 1− |(V∅)G\H̃∅ |

)
,

with the final inequality making use of 3 ≤ |H∅| ≤ n
3 .

Let I ⊂ [1, w] be a subset containing I∅ with |I| maximal subject to A2 holding,

(4.33) H∅ ≤ H and |π(V )| ≥ |π(V∅)|+ |I \ I∅||H∅|.
Thus our case hypothesis ensures that A1 fails, allowing us to apply Claim B to conclude I is Hx-
constrained. Let 2x + H+ and A = A1 · . . . · A` be the coset and setpartition exhibiting that I is

constrained, so X +
∑̀
i=1

Ai = X + Σ`(2V
+
τ〈α〉) by (4.16). In view of the second condition in (4.33) and

(4.16) (applied to I∅), we have |I\I∅| ≤ |G′/H∅|−1−|(V∅)G\H̃∅ |, with equality only possible ifH+ = Z/nZ.

Thus (4.32) implies |I| = |I∅|+ |I \ I∅| ≤ 2n− 1. Consequently, if 1 ∈ π(V ), then taking J = I completes
the proof as |I| ≤ 2n− 1. Therefore we may assume 1 /∈ π(V ). In particular, H is proper, in which case
the previous estimate improves by one: |I| ≤ 2n− 2.
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If supp(Uk) ⊂ Hx for all i ∈ [1, w] \ I, then Proposition 4.11 again ensures 1 ∈ π(U [−1] ·
∏•
i∈[1,w] Ui) =

π(V ·
∏•
i∈[1,w]\I Ui) = π(V ) (as V is Hx-constrained), contrary to assumption. Therefore there must be

some k ∈ [1, w] \ I with supp(Uk) * Hx. Let Ik = I ∪ {k}, and let Vk, `k, Xk, sk, Hk, Lk, `′k and Iτk be

the respective quantities V , `, X, s, H, L, `′ and Iτ for Ik. If supp((Uk)+
τ〈α〉) ⊂ x+H+, then (4.16) and

Lemma 4.4 imply that X + Σ`(2V
+
τ〈α〉) is a translate of X + Σ`k(2(Vk)+

τ〈α〉). In particular, H∅ ≤ H ≤ Hk

(the first inclusion follows from (4.33)). Moreover, there must be be some g ∈ supp((Uk)〈α〉) with g /∈ H,

and now Kneser’s Theorem ensures that Xk+Σ`k(2(Vk)+
τ〈α〉) is strictly larger in size than X+Σ`(2V

+
τ〈α〉).

Since both these sets are H∅-periodic in view of H∅ ≤ H ≤ Hk, it follows from Proposition 4.5 that
|π(Vk)| = |Xk + Σ`k(2(Vk)+

τ〈α〉)| ≥ |X + Σ`(2V
+
τ〈α〉)|+ |H∅| = |π(V )|+ |H∅| ≥ |π(V∅)|+ |Ik \ I∅| |H∅|, with

the final inequality from (4.33). Since g /∈ H, we also have g /∈ L ≤ H, so that Kneser’s Theorem implies
|Xk| > |X|, ensuring A2 holds for Ik (as it holds for I). It follows that Ik satisfies (4.33), contradicting
the maximality of |I|. Therefore we instead conclude that

(4.34) supp((Uk)+
τ〈α〉) * x+H+.

In particular, (Uk)+
τ〈α〉 is not trivial, and hence supp(Uk) 6⊂ 〈α〉. Thus Iα = (Ik)α, ensuring that A2 holds

for Ik (as it holds for I).
Let S | (Vk)τ〈α〉 be a subsequence with Vτ〈α〉 | S, so S = Vτ〈α〉 · T ′ for some T ′ | (Uk)τ〈α〉, for which

|S| = 2r is maximal subject to there existing a decomposition S+ = S1 · . . . · Sr with |Si| = 2 for all
i ∈ [1, r] and the following holding, where Bi = supp(2Si) for i ∈ [1, r]:

D1. H ≤ HS , where H+
S = H(X +

r∑
i=1

Bi).

D2. Bi ∩ (2x+H+
S ) 6= ∅ for i ∈ [1, r].

D3. There is a j ∈ [1, r] with |X +
r∑
i=1
i 6=j

Bi| = |X +
r∑
i=1

Bi|.

D4. φHS (Ai) = φHS (Bi) for all i ∈ IS , where IS ⊂ [1, `] is the subset of all i ∈ [1, `] with |φHS (Ai)| = 2.

Note S = Vτ〈α〉 satisfies the above conditions with Ai = Bi for all i in view of I being Hx-constrained,
so S exists.

Claim C. S = (Vk)τ〈α〉

Proof. Assume by contradiction that T := S[−1] · (Vk)τ〈α〉 = (T ′)[−1] · (Uk)τ〈α〉 is nontrivial. Let H+
S =

H(X +
r∑
i=1

Bi). Since |(Vk)τ〈α〉| = 2`k and |S| = 2r are both even, it follows that |T | is even, so |T | ≥ 2.

If there is some y ∈ supp(T+) ∩ (x + H+
S ), then setting Sr+1 = y · z and Br+1 = supp(2Sr+1), where

z is any other term from T , we find that D1–D4 hold for S · y · z, contradicting the maximality of |S|.
Therefore we instead conclude that supp(T+) is disjoint from x + H+

S . As a result, there is a two-term

subsequence z1 · z2 | T+ with z1, z2 /∈ x+H+
S . Let j ∈ [1, r] be an index given by D3. Let y ∈ supp(Sj)

be any element, and define a decomposition S+ ·z1 ·z2 = S′1 · . . . ·S′r+1 and sets B′i = supp(2S′i) as follows:

S′j = Sj · y[−1] · z1, S′r+1 = z2 · y, and S′i = Si for i 6= j, r + 1. In view of D1 and D3 holding for the

original decomposition, it follows that H ≤ HS ≤ HS′ , where H+
S′ = H(X +

r+1∑
i=1

B′i), so D1 holds for the

new decomposition. Since |Bi| ≤ 2 for all i, Kneser’s Theorem and D3 imply that |φHS (Bj)| = 1, which
combined with D2 ensures supp(Sj) ⊂ x+H+

S . Thus D4 holds for the new decomposition as it held for

the original decomposition (in view of HS ≤ HS′), and both terms from Sj lie in x + H+
S ⊂ x + H+

S′ ,
ensuring that D2 also holds for the new decomposition. In order not to contradict the maximality of |S|,

we are left to conclude that D3 fails for the new decomposition. As a result, |X +
m∑
i=1

B′i| > |X +
m−1∑
i=1

B′i|
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for all m, ensuring that

(4.35) |X +

r+1∑
i=1

B′i| ≥ |X|+ r + 1 ≥ |X|+ `+ 1 ≥ |X|+ 1

2
|Iτ∅|+ |Iτ \ Iτ∅|+

1

2
|Iατ∅ |+ |Iατ \ Iατ∅ |+ 1.

Let eα ≥ 0 be the number of indices i ∈ Iα∅ for which Wi contains some term lying outside L∅. Since
A2/C4 holds for I, arguing as in Claim B when establishing (4.20), we conclude that |X| ≥ |Iα| +
(eα − 1)(|L∅| − 1) + 1 ≥ |Iα| − |L∅| + 2. In view of A2/C4 and X∅ being L∅-periodic, we trivially
have |X| ≥ |X∅| + |Iα \ Iα∅| ≥ |L∅| + |Iα \ Iα∅|, which averaged with the previous bound implies |X| ≥
1
2 |I

α
∅|+ |Iα \ Iα∅|+ 1. Combined with (4.35), we find

|X +

r+1∑
i=1

B′i| ≥
1

2
|I1

∅|+ |I \ I∅|+ 2 =
1

2
|I1

∅|+ |Ik \ I∅|+ 1.

Since a translate of X +
r+1∑
i=1

B′i lies contained in X + Σ`k(2(Vk)+
τ〈α〉), it follows from Proposition 4.5 that

|π(Vk)| ≥ |X + Σ`k(2(Vk)+
τ〈α〉)| ≥

1
2 |I

1
∅| + |Ik \ I∅| + 1, ensuring that A1 holds for Ik. However, since

A2/C4 holds for I with Iα = Iαk , it follows that A2 holds for Ik, implying that Ik is ample, contrary to
case hypothesis. This completes Claim C. �

In view of Claim C, we have S = (Vk)τ〈α〉. In particular, r = `k. In view of D1 and D2, we can apply

Proposition 4.11.1 (with H taken to be H+
S ) to conclude

(4.36) X +

`k∑
i=1

Bi = X + Σ`k(2(Vk)+
τ〈α〉).

In particular, HS ≤ Hk. In view of (4.36), D1 and D4, we see that X +
`k∑
i=1

Bi = X + Σ`k(2(Vk)+
τ〈α〉),

and thus also Xk + Σ`k(2(Vk)+
τ〈α〉), is H+-periodic and contains a translate of the H+-periodic set

X +
∑̀
i=1

Ai = X + Σ`(2V
+
τ〈α〉). If this translate is a proper subset, then

|π(Vk)| = |Xk + Σ`k(2(Vk)+
τ〈α〉)| ≥ |X + Σ`(2V

+
τ〈α〉)|+ |H| = |π(V )|+ |H|.

Thus (4.33) holds for Ik = I∪{k} as it held for I, with H∅ ≤ H ≤ HS ≤ Hk following from D1. We already
noted above D1–D4 that A2 holds for Ik, so |Ik| contradicts the maximality of |I| in such case. Therefore

we instead conclude that Xk +
`k∑
i=1

Bi is equal to a translate of X +
∑̀
i=1

Ai. Consequently, since a translate

of X + Σ`(2V
+
τ〈α〉) = X +

∑̀
i=1

Ai is trivially contained in X + Σ`k(2(Vk)+
τ〈α〉) = X +

`k∑
i=1

Bi ⊂ Xk +
`k∑
i=1

Bi

(the equalities follows from (4.16) and (4.36)), it follows that X +
`k∑
i=1

Bi is also equal to a translate of

X +
∑̀
i=1

Ai, whence HS = H.

Since S = (Vk)τ〈α〉, we have S = Vτ〈α〉 ·(Uk)τ〈α〉. Since H = HS is the stabilizer of both X+
`k∑
i=1

Bi and

X+
∑̀
i=1

Ai, which are simply translates of each other, Kneser’s Theorem combined with D4 ensures this is

only possible if the cardinality two sets among φH(B1), . . . , φH(B`k) are the same as the cardinality two
sets among φH(A1), . . . , φH(A`). Combined with D2, we conclude that φH(B1), . . . , φH(B`k) consists
of the cardinality two sets from φH(A1), . . . , φH(A`) with all other sets equal to {φH(2x)}. Hence
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supp((Uk)+
τ〈α〉) = supp((S · V [−1]

τ〈α〉 )
+) ⊂ x + H+, contradicting (4.34), which completes the case and

proof. �

5. On the set of distances and the set of catenary degrees

In this section we study the set of distances and the set of catenary degrees. Our main result is
Theorem 5.1 which substantially uses Theorem 4.1. We recall the definition of catenary degrees and
summarize some basic properties of distances and catenary degrees.

Let H be an atomic monoid. For an element a ∈ H, let c(a) be the smallest N ∈ N0 ∪ {∞} with the
following property:

If z, z′ ∈ Z(a) are two factorizations of a, then there exist factorizations z = z0, z1, . . . , zk = z′ ∈
Z(a) such that d(zi−1, zi) ≤ N for each i ∈ [1, k].

Then c(a) = 0 if and only if |Z(a)| = 1 (i.e., a has unique factorization) and if |Z(a)| > 1, then 2 ≤ c(a) <
sup L(a) + 1. Then

Ca(H) = {c(a) | a ∈ H with c(a) > 0} ⊂ N0

denotes the set of (positive) catenary degrees and its supremum c(H) = supCa(H) is called the catenary
degree of H (we use the convention that sup ∅ = 0). It is easy to see that ([14, Proposition 3.6])

(5.1) 2 + max ∆(H) ≤ c(H) ≤ ω(H) .

Each of the inequalities can be strict and the structure of the sets ∆(H) and Ca(H) can be quite arbitrary.
We mention a couple of results. For every finite set ∆ ⊂ N with min ∆ = gcd ∆ (recall property (2.2))
there is a finitely generated Krull monoid H with ∆(H) = ∆ ([16]). For every finite set C ⊂ N, there
is a finitely generated Krull monoid H1 and a numerical monoid H2 such that Ca(H1) = Ca(H2) = C
([34, 10]). On the other hand, sets of distances and sets of catenary degrees are intervals for transfer
Krull monoids over finite groups and for classes of seminormal weakly Krull monoids ([20, 17]).

The main result (Theorem 5.1) of the present section states that the set of distances and the set of
catenary degrees of B(D2n) are intervals. By Theorem 3.3, B(D2n) is neither transfer Krull nor weakly
Krull nor seminormal nor does it have the property studied in [29, Theorem 5.5] enforcing that sets of
distances are intervals.

Theorem 5.1. Let G be a dihedral group of order 2n, where n ≥ 3 is odd. Then ∆(D2n) = [1, 2n− 2]
and Ca(G) = [2, 2n].

We start with a simple lemma.

Lemma 5.2. Let n ∈ N≥3 be an odd, and G = 〈α, τ |αn = τ2 = 1G and τα = α−1τ〉. Then

A
(
{α, τ, ατ}

)
=
{
α[j] · τ [n−j] · (ατ)[n−j] : j ∈ [0, n]

} ⋃
{
α[2j−1] · τ · ατ : j ∈ [1, n− 1]

}⋃{
α[2j] · τ [2], α[2j] · (ατ)[2] : j ∈ [0, n− 1]

}
.

Proof. First, it is easy to check that the product-one sequences on the right hand side are indeed atoms.
Let S = α[k1] · τ [k2] · (ατ)[k3] ∈ A

(
{α, τ, ατ}

)
, where k1, k2, k3 ∈ N0. It is easily checked that S must have

one of the listed forms if k2+k3 ≤ 2. For k2+k3 > 2, Lemma 4.7 implies k2 = k3, say k2 = k3 = n−j with
j ∈ [0, n−2]. Then w.l.o.g. S = α[k1−x] ·ατ ·α[x] ·τ ·(ατ ·τ)[n−j−1] with 1 = αk1−x ·ατ ·αx ·τ ·(ατ ·τ)n−j−1,
0 ≤ x ≤ min{n− 1, k1} and k1 − x ≤ n− 1. Since 1 = αk1−x · ατ · αx · τ · (ατ · τ)n−j−1 = αk1−2x−j , we
must have k1− 2x− j ≡ 0 mod n. If x ≥ 1, then α[k1−x] ·ατ ·α[x−1] · τ · (ατ · τ)[n−j−2] and α · τ ·ατ are
both product-one, contradicting that S is an atom. If x = 0, then k1 − 2x− j ≡ 0 mod n forces k1 ≡ j
mod n. However, as 0 ≤ k1 = k1 − x ≤ n− 1 and j ∈ [0, n− 2], this implies k1 = j, and now S has the
desired form. �
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Proof of Theorem 5.1. Let n ∈ N≥3 be odd and let G = 〈α, τ |αn = τ2 = 1G and τα = α−1τ〉 be a
dihedral group of order 2n. Clearly, we have that [1, n− 2] = ∆(Cn) ⊂ ∆(G) ([13, Theorem 6.7.1]) and
[2, n] ⊂ Ca(G). We assert that

(5.2) [n− 2, 2n− 2] ⊂ ∆(G) and [n, 2n] ⊂ Ca(G) .

Then Equation (5.1) and Theorem 4.1 imply that

2n ≤ 2 + max ∆(G) ≤ c(G) ≤ ω(G) = 2n .

Thus it remains to verify the inclusions (5.2).
Let U = τ [n] · (ατ)[n] ∈ A(G). For every k ∈ [0, n], we let Uk = α[k] · τ [n−k] · (ατ)[n−k]. We claim that

L(U · Uk) = {2, 2n− k} for all k ∈ [0, n], and the assertions then follow by definition.
Let k ∈ [0, n]. Since U ·Uk = (α·τ ·ατ)[k]·(τ [2])[n−k]·((ατ)[2])[n−k], we obtain that {2, 2n−k} ⊂ L(U ·Uk).

Suppose
U · Uk =

(
τ [n] · (ατ)[n]

)
·
(
α[k] · τ [n−k] · (ατ)[n−k]

)
= V1 · . . . · V` ,

where ` ≥ 3 and V1, . . . , V` ∈ A(G). If there exists i ∈ [1, `] such that Vi = α[j] · τ [n−j] · (ατ)[n−j] for
some j ∈ [1, k], then the remaining sequence is α[k−j] ·τ [n−k+j] · (ατ)[n−k+j], which is an atom, and hence
` = 2, a contradiction. Thus we may assume by Lemma 5.2 that, for every i ∈ [1, `], vτ (Vi)+vατ (Vi) = 2.
Therefore ` = n+n+n−k+n−k

2 = 2n− k, and hence L(U · Uk) = {2, 2n− k}. �

6. On the structure of sets of lengths

For an atomic monoid H, unions of sets of lengths Uk(H), where k ∈ N, and sets of elasticities
R(H) = {ρ(L) : L ∈ R(H)} are well-studied invariants. Under very mild conditions, unions of sets of
lengths are almost arithmetical progressions (e.g., [39]). For monoids of product-one sequences, both
invariants, unions and sets of elasticities, are as simple as possible, and this is not difficult to obtain.
Recall that ρk(H) = supUk(H) and set λk(H) = minUk(H). If G is a finite group with |G| ≤ 2, then
B(G) is half-factorial, whence

L(G) =
{
{k} : k ∈ N0

}
.

Thus, whenever convenient, we will assume that |G| ≥ 3.

Proposition 6.1. Let G be a finite group with |G| ≥ 3.

1. For every k ∈ N, Uk(G) is an interval, ρ2k(G) = kD(G), kD(G)+1 ≤ ρ2k+1(G) ≤ (2k+1)D(G)/2,
and if |G| > 1, then ρ(G) = D(G)/2. If G is dihedral of order 2n for some odd n ≥ 3, then, for
every k ≥ 2 and every ` ∈ N0, ρk(G) = kn and

λ2`n+j(G) =


2`+ j for j ∈ [0, 1] ,

2`+ 2 for j ≥ 2 and ` = 0 ,

2`+ 1 for j ∈ [2, n] and l ≥ 1 ,

2`+ 2 for j ∈ [n+ 1, 2n− 1] and ` ≥ 1 ,

provided that 2`n+ j ≥ 1.
2. {ρ(L) : L ∈ L(G)} = {q ∈ Q : 1 ≤ q ≤ D(G)/2}.

Proof. 1. See [29, Theorem 5.5 and Proposition 5.6] and [32, Theorem 5.4].
2. By 1., we have ρ(G) = D(G)/2. By definition of the elasticity ρ(G) (see Equation (2.4)), we have

{ρ(L) : L ∈ L(G)} ⊂ {q ∈ Q : 1 ≤ q ≤ ρ(G)} .
In order to show that equality holds, we use [41, Theorem 1.2]. By that result, it is sufficient to verify
that

inf{ρ(A) : 1 6= A ∈ B(G)} = 1 , where ρ(A) = lim
n→∞

ρ(L(A[n])) .

If g ∈ G and A = g[ord(g)], then L(A[n]) = {n} for every n ∈ N whence ρ(A) = 1 and inf{ρ(B) : 1 6= B ∈
B(G)} = 1. �
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In this section, we study the structure of sets of lengths over dihedral groups G. In order to do so, we
consider two distinguished subsets of ∆(G), namely ∆∗(G) and ∆∗ρ(G), which play a crucial role in all
structural descriptions of sets of lengths. We start with the definitions of generalizations of arithmetical
progressions.

Let d ∈ N, `, M ∈ N0, and {0, d} ⊂ D ⊂ [0, d]. A subset L ⊂ Z is called an

• almost arithmetical multiprogression (AAMP) with difference d, period D, length l, and bound
M , if

L = y + (L′ ∪ L∗ ∪ L′′) ⊂ y +D + dZ where

– minL∗ = 0, L∗ = (D + dZ) ∩ [0,maxL∗], and ` is maximal such that `d ∈ L∗,
– L′ ⊂ [−M,−1], L′′ ⊂ maxL∗ + [1,M ], and
– y ∈ Z.

• almost arithmetical progression (AAP) with difference d, bound M , and length `, if it is an AAMP
with difference d, period {0, d}, bound M , and length `.

Let H be an atomic monoid. Following [13, Definition 4.3.12], we define

• ∆1(H) to be the set of all d ∈ N having the following property:
For every k ∈ N, there is some Lk ∈ L(H) that is an AAP with difference d and length at
least k.

• ∆∗(H) to be the set of all min ∆(S) for some divisor-closed submonoid S ⊂ H with ∆(S) 6= ∅.
If H is finitely generated, then by [13, Corollary 4.3.16]

(6.1) ∆∗(H) ⊂ ∆1(H) ⊂ {d1 ∈ ∆(H) : d1 divides some d ∈ ∆∗(H)} ⊂ ∆(H) .

The significance of the sets ∆∗(H) and ∆1(H) stem from the following result ([13, Theorem 4.4.11]).

Lemma 6.2. Let H be a finitely generated monoid. Then there is a constant M ∈ N0 such that every
L ∈ L(H) is an AAMP with difference d ∈ ∆∗(H) and bound M .

Let G be a finite group. By [29, Lemma 3.3], a submonoid S ⊂ B(G) is divisor-closed if and only if
S = B(G0) for some subset G0 ⊂ G. As usual, we set ∆∗(G) := ∆∗(B(G)). Thus it follows that

∆∗(G) = {min ∆(G0) : G0 ⊂ G such that ∆(G0) 6= ∅} .

If G1 ⊂ G0 with ∆(G1) 6= ∅, then ∆(G1) ⊂ ∆(G0) whence

min ∆(G0) = gcd ∆(G0) | gcd ∆(G1) = min ∆(G1) .

Thus there exists a minimal non-half-factorial subset G0 ⊂ G with max ∆∗(G) = min ∆(G0). The set of
minimal distances ∆∗(G) has found much attention in the literature. If G is finite abelian with |G| > 2,
then (by [18])

(6.2) max ∆∗(G) = max{exp(G)− 2, r(G)− 1} ,

and [1, r(G)− 1] ⊂ ∆∗(G) (here r(G) denotes the rank of G). In contrast to ∆(G), the set ∆∗(G) is not
an interval in general, but there is a characterization when this is the case ([40, Theorem 1.1]). Cross
numbers are a crucial tool in the study of half-factorial and minimal non-half-factorial sets. We start
with a simple lemma whose proof runs along the same lines as the proof in the abelian case.

Lemma 6.3. Let G be a finite group and G0 ⊂ G a subset. Then the following statements are equivalent :

(a) G0 is half-factorial.
(b) k(U) = 1 for every U ∈ A(G0).
(c) L(A) = {k(A)} for every A ∈ B(G0).
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Proof. (a) =⇒ (b) Let U = g1 · . . . · g` ∈ A(G0) and suppose that ord(gi) = mi for every i ∈ [1, `]. For

every i ∈ [1, `], we have Ui = g
[mi]
i ∈ A(G0). We set m = lcm(m1, . . . ,m`) and m = mim

′
i for every

i ∈ [1, `]. Then U [m] = U
[m′1]
1 · . . . · U [m′`]

` and L(U [m]) = m imply that

m = m′1 + . . .+m′` = mk(U), whence k(U) = 1 .

(b) =⇒ (c) If A = U1 · . . . · Um ∈ B(G0), where m ∈ N and U1, . . . , Um ∈ A(G0), then m =
k(U1) + . . .+ k(Um) = k(A), whence L(A) = {k(A)}.

(c) =⇒ (a) Obvious. �

A subset G0 ⊂ G is called an LCN-set if k(U) ≥ 1 for each U ∈ A(G0). We define

m(G) = max{min ∆(G0) : G0 ⊂ G is a non-half-factorial LCN-set} .

Let G be a finite cyclic group and let g ∈ G with ord(g) = |G| ≥ 2. For every product-one sequence
S = g[n1] · . . . · g[n`] ∈ F(G), where ` ∈ N and n1, . . . , n` ∈ [1, |G|], we define its g-norm

‖S‖g =
n1 + . . .+ n`

|G|
∈ N .

Lemma 6.4. Let G be a finite group, G0 ⊂ G a non-half-factorial subset, and e ∈ N such that ord(g) | e
for all g ∈ G0.

1.

min ∆(G0) | gcd
(
e(k(U)− 1) : U ∈ A(G0)

)
.

In particular, if there is some U ∈ A(G0) with k(U) < 1, then min ∆(G0) ≤ e− 2.
2. min ∆(G0) ≤ max{e− 2,m(G)}.
3. If 〈G0〉 = 〈g〉 for some g ∈ G0, then min ∆(G0) = gcd

{
‖V ‖g − 1 : V ∈ A(G0)

}
.

4. Let g ∈ G with ord(g) = n > 3 and let a ∈ [2, n − 1]. If [a0, . . . , am] is the continued fraction
expansion of n/a with odd length (i.e. m is even), then min ∆({g, ag}) = gcd(a1, a3, . . . , am−1).

Proof. 1. We set d = min ∆(G0) = gcd(∆(G0) and choose some U ∈ A(G0). It is sufficient to show that

d | e(k(U)− 1). We set U = g1 · . . . · g`. Then Ui = g
[ord(gi)]
i ∈ A(G0) for all i ∈ [1, `] and

U [e] =
∏•

i∈[1,`]
U

[e/ ord(gi)]
i implies that ek(U) =

∑̀
i=1

e

ord(gi)
∈ L(U [e]) .

Since e ∈ L(U [e]), we infer that d divides ek(U)− e.
If k(U) < 1, then ek(U) ∈ [2, e− 1] whence e− ek(U) ∈ [1, e− 2] and thus d ≤ e− 2.
2. This follows immediately from 1.
3. follows from [13, Lemma 6.8.5] and 4. from [5, Theorem 2.1]. �

Lemma 6.5. Let G be a dihedral group of order 2n where n ≥ 3 is odd, say G = 〈α, τ : αn = τ2 =
1 and ατ = τα−1〉. For U ∈ F(〈α〉), define

φ(U) =
∏•

g∈〈α〉
(gτ · τ)[vg(U)].

Then U is an atom if and only if φ(U) is an atom.

Proof. If φ(U) is an atom, then there is an ordering of the terms of U with product-one such that no two
consecutive terms equal τ . Since vτ (φ(U)) ≥ 1

2 |φ(U)| = |U |, this is only possible if every second term in
the ordering is equal to τ , meaning the ordering w.l.o.g. has the form g1τ · τ · g2τ · τ · . . . · g`τ · τ = 1,
where U = g1 · . . . · g`. It is now clear that U must be an atom, as the sequence formed by replacing each
pair of terms in the ordering with their product must yield an atom.
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For the other direction, assume U is atom and let vαx(U) = sx for x ∈ [1, n]. Then

n∑
x=1

sxx ≡ 0 mod n and

n∑
x=1

s′xx 6≡ 0 mod n

for any s′x ∈ [0, sx] with 0 <
n∑
x=1

s′x <
n∑
i=1

sx. If we take an arbitrary ordering of the terms of φ(U),

then its product equals αz with z ≡
n∑
x=1

(
(sx − s′x)x − s′xx

)
mod n, where s′x ∈ [0, x] is the number of

terms equal to αxτ occurring as the j-th term in the ordering with j even (making sx − s′x the number
of terms occurring as the j-th term in the ordering with j odd). Thus, in any ordering whose product

is one, we must have 0 ≡
n∑
x=1

sxx− 2
n∑
x=1

s′xx ≡ −2
n∑
x=1

s′xx mod n. Since n is odd, this forces
n∑
x=1

s′xx ≡ 0

mod n, which is only possible if s′x = 0 for all x, or if s′x = sx for all x (as U is an atom). We are left
to conclude that, in any ordering of the terms of φ(U) having product-one, either all terms equal to gτ
with g ∈ supp(U) occur at odd places in the ordering, or all occur at even places. From this conclusion,
it is now rather immediate that φ(U) is an atom, completing the proof. �

Proposition 6.6. Let G be a dihedral group of order 2n where n ≥ 3 is odd, say G = 〈α, τ : αn =
τ2 = 1 and ατ = τα−1〉, and let G0 = {τ, ατ, αiτ}, where i ∈ [2, n − 1]. Then min ∆∗(G0) divides
gcd

(
min ∆({α, αi}),min ∆({α, α1−i}),min ∆({αi, αi−1})

)
.

Proof. We set d = min ∆(G0). Clearly, it is sufficient to show d | min ∆({α, αi}), d | min ∆({α, α1−i})
and d | min ∆({αi, αi−1}). Let d1 = min ∆({α, αi}) and let U1, . . . , Uk, V1, . . . , Vk+d1 ∈ A({α, αi}) be
atoms with U1 · . . . · Uk = V1 · . . . · Vk+d1 . Letting φ be as in Lemma 6.5, we have

φ(U1) · . . . · φ(Uk) = φ(V1) · . . . · φ(Vk+d1) ,

with each of the φ(Uj) and φ(Vj) atoms over {τ, ατ , αiτ} (by Lemma 6.5). Since d = gcd
(
∆({τ, ατ, αiτ})

)
,

this shows d | d1. As the cases d | min ∆({α, α1−i})) and d | min ∆({αi, αi−1}) follow by a near identical
argument (using the generating sets {α−1, ατ} and {α−1, αiτ} in place of {α, τ} when applying Lemma
6.5), the proof is complete. �

Theorem 6.7. Let G be a finite group with |G| ≥ 3.

1. 1 ∈ ∆∗(G) and {ord(g)− 2: g ∈ G with ord(g) ≥ 3} ⊂ ∆∗(G).
2. max ∆∗(G) ≤ D(G)− 2.
3. max ∆∗(G) = |G|−2 if and only if G is cyclic or a dihedral group of order 2n for some odd n ≥ 3.
4. If G is a dihedral group of order 2n for some odd n ≥ 3, then {1, 2, n − 2, 2n − 2} ⊂ ∆∗(G) and

max ∆∗(G) \ {2n− 2} = max{2, n− 2}.
5. If max ∆∗(G) = D(G)−2, then G is cyclic or there is a subgroup G1 ⊂ G such that D(G1) = D(G)

and G1 is generated by elements of order two.

Proof. 1. Suppose there is g ∈ G with ord(g) = n ≥ 3. Since 1 ∈ ∆∗(Cn) by [13, Proposition 6.8.2], it
follows that 1 ∈ ∆∗(G). Since ∆({g, g−1}) = {ord(g)− 2}, we infer that ord(g)− 2 = min ∆({g, g−1}) ∈
∆∗(G). Suppose that all elements of G have order two. Then G is an elementary 2-group and since
|G| ≥ 3, G has a subgroup isomorphic to C2⊕C2. Then, again by [13, Proposition 6.8.2], we obtain that
1 ∈ ∆∗(C2 ⊕ C2) ⊂ ∆∗(G).

2. Let G0 ⊂ G be a non half-factorial subset. Suppose there exists an atom A ∈ A(G0) such that
k(A) < 1. We assume that k(A) is minimal. Let A = g1 · . . . · g`, where ` ∈ N≥2 and g1, . . . , g` ∈ G0.

Then g
[ord(g1)]
1 divides A[ord(g1)], so A[ord(g1)] = U1 ·U2 · . . . ·U`0 for some Ui ∈ A(G0) with U1 = g

[ord(g1)]
1 .

But then k(U1) = 1 and k(Ui) ≥ k(A) (in view of the minimality of k(A)), whence ord(g1)k(A) =
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k(A[ord(g1)]) ≥ 1 + (`0 − 1)k(A) > `0k(A), implying `0 < ord(g1). It follows that there exists `0 ∈ N with
2 ≤ `0 < ord(g1) such that {ord(g1), `0} ⊂ L(A[ord(g1)]), which implies that

(6.3) min ∆(G0) ≤ ord(g1)− `0 ≤ ord(g1)− 2 ≤ D(G)− 2 .

Suppose k(A) ≥ 1 for all A ∈ A(G0). Since G0 is not half-factorial, Lemma 6.3 implies there exists
A ∈ A(G0) with k(A) > 1. Let A = g1 · . . . · g`, where ` ∈ N≥2 and g1, . . . , g` ∈ G0, and let B =

g
[ord(g1)]
1 · . . . · g[ord(g`)]

` . Then B ∈ B(G0) and A divides B in B(G0), so B = A · U2 · . . . · U`0 for some
Ui ∈ A(G0). But now ` = k(B) = k(A) + k(U2) + . . .+ k(U`0) > `0. Therefore there exists `0 ∈ [2, `− 1]
such that {`, `0} ⊂ L(B), which implies that

(6.4) min ∆(G0) ≤ `− `0 ≤ |A| − 2 ≤ D(G)− 2 .

Since G0 is arbitrary, we obtain max ∆∗(G) ≤ D(G)− 2.
3.(a). If G is a cyclic group, then max ∆∗(G) = |G| − 2 by (6.2). Let G be a dihedral group of order

2n where n ≥ 3 is odd, say G = 〈α, τ | αn = τ2 = 1 and ατ = τα−1〉, and set G0 = {ατ, τ}. Then
min ∆(G0) = 2n− 2 = |G| − 2 which, together with 2., implies that max ∆∗(G) = |G| − 2.

3.(b). Suppose max ∆∗(G) = |G| − 2. Then Item 2. implies that |G| ≤ D(G) whence the assertion
follows from Proposition 2.3.

4. Let G be a dihedral group of order 2n, where n ≥ 3 is odd, say say G = 〈α, τ |αn = τ2 =
1G and τα = α−1τ〉.

4.(a). Items 1 implies that {1, n− 2} ⊂ ∆∗(Cn) ⊂ ∆∗(G) and Item 3 implies that 2n− 2 = |G| − 2 ∈
∆∗(G). We assert that 2 = min ∆({α, τ}). Note that A({τ, α}) = {α[n]} ∪ {α[2i] · τ [2] : i ∈ [0, n − 1]}.
Since (α[n])[2] · (τ [2])[2] = (α[2n−2] · τ [2]) · (α[2] · τ [2]), we obtain that min ∆({τ, α}) ≤ 4− 2 = 2. Suppose
U1, . . . , Uk, V1, . . . , V` ∈ A({τ, α}), where k, ` ∈ N with k < `, such that U1 · . . . · Uk = V1 · . . . · V`
and {U1, . . . , Uk} ∩ {V1, . . . , V`} = ∅. If α[n] 6∈ {U1, . . . , Uk, V1, . . . , V`}, then k = ` = vτ (U1·...·Uk)

2 , a

contradiction. Thus α[n] ∈ {U1, . . . , Uk, V1, . . . , V`}. Since ` > k, we obtain α[n] ∈ {V1, . . . , V`} and

k = vτ (U1 · . . . · Uk)/2 and ` = |{j ∈ [1, `] : Vj = α[n]}|+ vτ (V1 · . . . · V`)/2 .

Since vα(U1·. . .·Uk) is even, we infer that `−k = |{j ∈ [1, `] : Vj = α[n]}| is even whence min ∆({α, τ}) ≥ 2.
4.(b) By 4.(a), it remains to verify max ∆∗(G) \ {2n − 2} ≤ max{2, n − 2}. Let G0 ⊂ G \ {1} with

|G0| ≥ 2. If G0 ⊂ 〈α〉, then min ∆(G0) ≤ max ∆∗(Cn) = n − 2 by Item 3. Suppose there exists
i ∈ [0, n− 1] such that αiτ ∈ G0. If there exists j ∈ [1, n− 1] such that αj ∈ G0, then

((αj)[n/ gcd(j,n)])[2] · ((αiτ)[2])[2] =
(
(αj)[2n/ gcd(j,n)−2] · (αiτ)[2]

)
·
(
(αj)[2] · (αiτ)[2]

)
implies that min ∆(G0) ≤ 2. Suppose G0 ∩ 〈α〉 = ∅ and hence there exist distinct i, j ∈ [0, n − 1] such
that {αiτ, αjτ} ⊂ G0. If gcd(i− j, n) > 1, then min ∆(G0) ≤ min ∆({αiτ, αjτ}) ≤ 2n

gcd(i−j,n) − 2 < n− 2.

If gcd(i − j, n) = 1, then choosing a different basis if necessary, we may assume that τ, ατ ∈ G0. If
G0 = {τ, ατ}, then min ∆(G0) = 2n − 2. Suppose there exists r ∈ [2, n − 1] such that αrτ ∈ G0. By
Proposition 6.6 and Lemma 6.4.3, we obtain that min ∆(G0) ≤ ‖(αr)[n]‖α − 1 = r − 1 ≤ n− 2.

5. Let G0 ⊂ G be a non half-factorial subset such that min ∆(G0) = D(G)− 2. If there exists an atom
A ∈ A(G0) such that k(A) < 1, then (6.3) implies that there is g ∈ G0 with ord(g) = D(G) and hence G
is cyclic.

Suppose k(A) ≥ 1 for all A ∈ A(G0). Then (6.4) implies that there exists A = g1 · . . . · gD(G) ∈ A(G0)

such that g
[ord(g1)−1]
1 ·. . .·g[ord(gD(G))−1]

D(G) is an atom. Hence ord(gi) = 2 for all i ∈ [1,D(G)], else |B| > D(G).

Then G1 = 〈g1, . . . , gD(G)〉 is a subgroup satisfying the assertion. �

If G is a dihedral group of order 2n, then G has a cyclic subgroup of order n whence ∆∗(Cn) ⊂ ∆∗(G).
The set ∆∗(G) for finite cyclic groups is studied in detail in [35]. If G is finite cyclic, then, by Theorem
6.7, we have max ∆∗(G) = |G| − 2. The second largest value of ∆∗(G) equals b|G|/2c − 1.
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Next we look at the structure of (long) sets of lengths having maximal elasticity. To do so, we define
two further subsets of the set of distances. Let H be an atomic monoid. Following ([19, Definition 2.1
and Lemma 2.2], we define

• ∆ρ(H) to be the set of all d ∈ N having the following property:
For every k ∈ N, there is some Lk ∈ L(H) that is an AAP with difference d and length at
least k.

• ∆∗ρ(H) = {min ∆( [[a]]) : a ∈ H with ρ(L(a)) = ρ(H)}.
If H is finitely generated and ∆(H) 6= ∅, then by [19, Lemma 2.4]

(6.5) ∆∗ρ(H) ⊂ ∆ρ(H) ⊂ {d1 ∈ ∆(H) : d1 divides some d ∈ ∆∗ρ(H)} .

Let G be a finite group. Every divisor-closed submonoid of B(G) is generated by one element and all
divisor-closed submonoids S ⊂ B(G) are of the form S = B(G0) for a subset G0 ⊂ G. Consistent with
our conventions, we set ∆ρ(G) := ∆ρ(B(G)) and ∆∗ρ(G) := ∆∗ρ(B(G)), and we have (by using [19, Lemma
2.2.3] and that ρ(G) = D(G)/2)

∆∗ρ(G) = {min ∆(G0) : G0 ⊂ G with ρ(G0) = D(G)/2} ⊂ ∆∗(G) .

Before we formulate our main result on ∆∗ρ(G) for dihedral groups G, we briefly summarize what
is known on ∆∗ρ(G) for abelian groups. Let G be a finite abelian group with |G| ≥ 3. If G is an
elementary 2-group of rank r, then ∆∗ρ(G) = ∆ρ(G) = {1, r− 1}. If G is neither cyclic nor an elementary
2-group, then the standing conjecture states that ∆ρ(G) = {1}. If G is cyclic with |G| > 10, then
{1, |G| − 2} ⊂ ∆∗ρ(G) = ∆ρ(G) and the precise form of ∆ρ(G) depends on number theoretic properties of
the group order |G| ([19]). Thus it is no surprise that the similar phenomena occur for dihedral groups.

Theorem 6.8. Let G be a dihedral group of order 2n, where n ≥ 3 is odd, say G = 〈α, τ : αn = τ2 =
1 and ατ = τα−1〉.

1. {1, 2n− 2} ⊂ ∆∗ρ(G) and max ∆∗ρ(G) \ {2n− 2} ≤ max{1, n−1
4 }.

2. If there exists i ∈ [2, n− 1] with gcd(i, n) = 1 such that

gcd
(
min ∆({α, αi}), min ∆({α, α1−i}), min ∆({αi, αi−1})

)
is even, (∗)

then ∆∗ρ(G) ) {1, 2n− 2}, and (∗) holds, for example, if n = m2 −m+ 1 for some odd m ≥ 3.

Proof. 1.(i) Let U1 = α[2n−2] ·τ [2], U2 = (ατ)[n] ·τ [n]. Then U1, U2 ∈ A(G) with |U1| = |U2| = 2n = D(G).

Since ρ(U1 · U−1
1 ) = ρ(U

[2]
2 ) = ρ(G), we obtain min ∆(supp(U1 · U−1

1 )) = min ∆({α, α−1, τ}) ∈ ∆∗ρ(G)

and min ∆(supp(U
[2]
2 )) = min ∆({ατ, τ}) = 2n− 2 ∈ ∆∗ρ(G)

Since α[n] · (α−1)[n] = (α ·α−1)[n] and α[n] ·α[n] · τ [2] · τ [2] = (α[2n−2] · τ [2]) · (α[2] · τ [2]), we obtain that
min ∆({α, α−1, τ}) | gcd(n− 2, 2) = 1 which implies that min ∆({α, α−1, τ}) = 1 ∈ ∆∗ρ(G).

1.(ii) Let d = max ∆∗ρ(G) \ {2n − 2}. Then there exist G0 ⊂ G and W ∈ B(G0) with d = min ∆(G0)

and G0 = supp(W ) such that ρ(W ) = D(G)
2 = n. Therefore there are atoms U1, . . . , Uk of length 2n and

atoms V1, . . . , Vkn of length 2 such that W = U1 · . . . · Uk = V1 · . . . · Vkn. Thus if a ∈ supp(W ), then
a−1 ∈ supp(W ).

If there exists i ∈ [1, k] such that Ui = (αk1)[2n−2]·(αk2τ)[2], where gcd(k1, n) = 1, then {αk1 , α−k1 , αk2τ} ⊂
G0 and hence d | min ∆({αk1 , α−k1 , αk2τ}) = min ∆({α, α−1, τ}) = 1. By Proposition 2.4, we may
assume that for all i ∈ [1, k], there are ki, ti ∈ [0, n − 1] with gcd(ki − ti, n) = 1 such that Ui =
(αkiτ)[n] · (αtiτ)[n]. Changing a different basis if necessary, we may assume that U1 = τ [n] · (ατ)[n].
If Ui = U1 for all i ∈ [2, k], then G0 = {τ, ατ} and d = 2n − 2, a contradiction. Otherwise there
is r ∈ [2, n − 1] such that {τ, ατ, αrτ} ⊂ G0. By Proposition 6.6 and Lemma 6.4.3, we obtain that
d | gcd(‖(αr)[n]‖α − 1, ‖(αn+1−r)[n]‖α − 1) = gcd(r− 1, n− r) and hence d < n− 1. If d = n−1

2 ≥ 2, then

r − 1 = n − r = n−1
2 . Since the continued fraction of n/r is [1; 1, r − 1], it follows by Lemma 6.4.4 that
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min ∆({α, αr}) = 1 and hence d = 1, a contradiction. Suppose d = n−1
3 ≥ 2. Then r−1 = 2(n−r) = 2n−1

3

or n− r = 2(r − 1) = 2n−1
3 .

If r− 1 = 2(n− r), then 2n = 3r− 1 and hence the continued fraction of n/(n+ 1− r) is [2; 1, r−3
4 ] or

[2; 1, r−5
4 , 1, 1]. It follows by Lemma 6.4.4 that min ∆({α, α1−r}) = 1 and hence d = 1, a contradiction.

If n−r = 2(r−1), then n = 3r−2 and hence the continued fraction of n/r is [2; 1, r−3
2 , 1, 1]. It follows

by Lemma 6.4.4 that min ∆({α, αr}) = 1 and hence d = 1, a contradiction.
Therefore, we obtain that d ≤ n−1

4 .
2.(i) Let i ∈ [2, i− 1] with gcd(i, n) = 1 such that

gcd
(
min ∆({α, αi}), min ∆({α, α1−i}), min ∆({αi, αi−1})

)
is even. Since U = (ατ · τ)[n] and V = (αiτ · τ)[n] are atoms of length D(G), then ρ(U [2] · V [2]) = ρ(G)
and hence d = min ∆({τ, ατ, αiτ}) ∈ ∆∗ρ(G). By 1., it suffices to show d 6= 1 and d 6= 2n− 2.

Let W = (ατ ·τ [n−i])·αiτ ·τ . Then W is an atom of Type III. Since W [n] = ((ατ ·τ)[n])[n−i] ·(αiτ ·τ)[n],
we obtain that d |n− (n− i+ 1) = i− 1 which implies that i < 2n− 2.

Assume to the contrary that d = 1. Then there are atoms U1, . . . , Uk, V1, . . . , Vk+1 over {τ, ατ, αiτ}
such that

U1 · . . . · Uk = V1 · . . . · Vk+1 .

We assert that if A ∈ A({τ, ατ, αiτ}), then |A| ≡ 2 (mod 4). Suppose this holds. Then 2k ≡ 2(k + 2)
(mod 4), a contradiction. Thus we only need to show the assertion. Note that (αi)[n] is an atom. Since
min ∆({α, αi}) is even, it follows by Lemma 6.4.3 that i = ‖(αi)[n]‖α is odd. If A is of Type I or
Type II, the assertion follows by n is odd. If A is of Type III, say A = (ατ · τ)[x] · (αiτ · τ)[y], then

α[x] · (α1−i)[y] is an atom and by Lemma 6.4.3 that ‖α[x] · (α1−i)[y]‖α = x+iy
n is odd. Therefore x+ y ≡ 1

(mod 2) and |A| = 2x + 2y ≡ 2 (mod 4). If A is of Type IV, say A = (ατ · τ)[x] · (ατ · αiτ)[y], then
α[x]·(α1−i)[y] is an atom. Since min ∆({1, 1−i}) is even, it follows by Lemma 6.4.3 that ‖α[x]·(α1−i)[y]‖α =
x+(n+1−i)y

n is odd. Therefore x + y ≡ 1 (mod 2) and |A| = 2x + 2y ≡ 2 (mod 4). If A is of Type V,

say A = (αiτ · ατ)[x] · (αiτ · τ)[y], then (αi−1)[x] · (α1−i)[y] is an atom. Let j ∈ [1, n − 1] such that
ij ≡ 1 (mod n). Then j is odd, min ∆({αi, αi−1}) = min ∆({α, αn+1−j}) is even, and α[x] · (α1−j)[y],

(α1−j)[n/ gcd(1−j,n)] are both atoms. Thus Lemma 6.4.3 implies that ‖α[x] · (αn+1−j)[y]‖α = x+(n+1−j)y
n

and ‖(α1−j)[n/ gcd(1−j,n)]‖α = n(n + 1 − j)/ gcd(1 − j, n) are odd. Therefore x + y ≡ 1 (mod 2) and
|A| = 2x+ 2y ≡ 2 (mod 4).

2.(ii) For the ”in particular” part, let n = x2 − x + 1 for some odd x ∈ N. Then gcd(n, x) = 1.
Since αx−1 = (αx)x, we have min ∆({αx, αx−1}) = min ∆({α, αx}). Since the continued fraction of
n/x with odd length is [x − 1;x − 1, 1] and the continued fraction of n/(n + 1 − x) with odd length is
[1;x − 1, x − 1], it follows by Lemma 6.4.4 that gcd(min ∆({α, αx}),min ∆({α, α1−x})) = x − 1 is even.
Therefore ∆∗ρ(G0) ) {1, 2n− 2}. �

Remark 6.9. Let G be a dihedral group of order 2n, where n ≥ 3 is odd, say G = 〈α, τ : αn = τ2 =
1 and ατ = τα−1〉. If, for all i ∈ [2, n− 1], we have

(6.6) gcd(min ∆({α, αi}),min ∆({α, α1−i}),min ∆({αi−1, αi})) = 1 ,

then a similar proof as that of Theorem 6.8.1 shows that max ∆∗ρ(G) \ {2n− 2} = 1 and hence ∆∗ρ(G) =
{1, 2n− 2}. By Lemma 6.4, we can use continued fraction expansions to check Condition 6.6 and (within
a few minutes of computer calculations) one gets the list of all n ∈ [5, 10000] with ∆∗ρ(G) = {1, 2n− 2}.

Corollary 6.10. Let G be a dihedral group of order 2n where n ≥ 3 is odd. Then

2 + max ∆∗ρ(G) = 2 + max ∆∗(G) = 2 + max ∆(G) = c(G) = ω(G) = 2n = D(G) = |G| .

Proof. We have ∆∗ρ(G) ⊂ ∆∗(G) ⊂ ∆(G). Proposition 6.8 implies that 2n ≤ 2 + max ∆∗ρ(G). Thus the
assertion follows from Theorems 4.1 and 5.1. �
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********************************************************************************************

OPEN PROBLEM: A main motivation for working on all these invariants was the following conjecture.

Conjecture 6.11. If G is a finite group with L(G) = L(D2n) for some odd n ≥ 3, then G is isomorphic
to D2n.

Note that the conjecture is true for abelian groups (more precisely, if G is finite abelian, then L(G) 6=
L(D2n); see [30, Theorem 4.4]). First we thought that by doing just a little bit better than in the proof
of Theorem 4.4 in [30], we should be able to prove that

If G is a finite nilpotent group, then L(G) 6= L(D2n) (∗)
But we could only establish the much weaker result given in Theorem 6.13.

Can you prove (∗), or even the full conjecture, as given above? If we cannot make any further progress
beyond what can be found in Theorem 6.13, then I am not even sure if we should include it at all. In its
present form Theorem 6.13 could be too weak to be published at all.

What do you think?

***********************************************************************************************

Lemma 6.12. Let G1 and G2 be finite groups such that L(G1) = L(G2).

1. ∆(G1) = ∆(G2), Uk(G1) = Uk(G2) for all k ∈ N.
2. For every k ∈ N we have ρk(G1) = ρk(G2) and D(G1) = D(G2).
3. max ∆∗(G1) = max ∆∗(G2) and max ∆∗ρ(G1) = max ∆∗ρ(G1).

Proof. 1. Since L(G1) = L(G2), this follows from Equations (2.1) and (2.3).
2. This follows from 1. and from Proposition 6.1.1.
3. Since L(G1) = L(G2), it follows that ∆1(G1) = ∆2(G2) and ∆ρ(G1) = ∆ρ(G2). Thus (6.1) and

(6.5) imply that

max ∆∗(G1) = max ∆1(G1) = max ∆1(G2) = max ∆∗(G2) and

max ∆∗ρ(G1) = max ∆ρ(G1) = max ∆ρ(G2) = max ∆∗ρ(G2) . �

Theorem 6.13. If G is a finite nilpotent group with L(G) = L(D2n), where n ≥ 3 is odd, then G is a
non-abelian 2-group.

Proof. Let G be a finite nilpotent group such that L(G) = L(D2n). Then G is not abelian by [30,
Theorem 4.4]. Thus Theorem 6.7 implies max ∆∗(G) = max ∆∗(D2n) = D(D2n) − 2 = D(G) − 2 and
hence G has a subgroup G1 with D(G1) = D(G) such that G1 is generated by elements of order 2. Since
G1 is also a nilpotent group, it follows that G1 is a 2-group by [28, Corollary 2.4]. Thus Lemma 2.2.2
implies that G is a 2-group. �
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