ON A CONJECTURE OF FOX-KLEITMAN AND ADDITIVE COMBINATORICS

S. D. ADHIKARI, R. BALASUBRAMANIAN, S. ELIAHOU, AND D. J. GRYNKIEWICZ

ABSTRACT. The Fox and Kleitman conjecture [4] regarding the maximum degree of regularity of the equation $x_1 + \dots + x_k - y_1 - \dots - y_k = b_k$, as b_k runs over the positive integers, has recently been confirmed [8]. A much simpler proof of the main result proved here gives information regarding the degree of regularity for some precise values of b_k , namely $b_k = c_{k-1} = \text{lcm}\{i : i = 1, 2, \dots, k-1\}$; in that process the result establishes the right order of magnitude of the degree of regularity of the equation. While the proof in [8] is achieved by generalizing a theorem of Eberhard, Green and Manners [3] on the sets with doubling less than 4, the proof of our main result uses a result of Lev [10] in Additive Combinatorics.

1. Introduction

For given a_1, \ldots, a_k and b in the set \mathbb{Z} of integers, we consider the linear Diophantine equation L:

$$\sum_{i=1}^{k} a_i x_i = b.$$

Following [7], given $n \in \mathbb{N}_+$, the set of positive integers, equation L is said to be n-regular if, for every n-coloring of \mathbb{N}_+ , there exists a monochromatic solution $x = (x_1, \ldots, x) \in \mathbb{N}_+^k$ to L.

The degree of regularity of L is the largest integer $n \ge 0$, if any, such that L is n-regular. This (possibly infinite) number is denoted by dor(L). If $dor(L) = \infty$, then L is said to be regular.

A well-known and challenging conjecture (known as Rado's Boundedness Conjecture) due to Rado [7] states that there is a function $r: \mathbb{N}_+ \to \mathbb{N}_+$ such that, given any $n \in \mathbb{N}_+$ and any equation $\alpha_1 x_1 + \cdots + \alpha_n x_n = 0$ with integer coefficients, if this equation is not regular over \mathbb{N}_+ , then it fails to be r(n)-regular. Even though there is a more general version, we state it here for a single homogeneous equation, as it has been proved by Rado [7] that if the conjecture is true for a single equation, then it is true for a system of finitely many linear equations, and as Fox and Kleitman [4] have shown, if the conjecture is true for a linear homogeneous equation, then it is true for any linear equation.

The first nontrivial case of the conjecture has been proved by Fox and Kleitman [4] by establishing the bound $r(3) \leq 24$. In the same paper [4], the authors made the following conjecture for a very specific linear Diophantine equation.

Conjecture 1.1. Let $k \ge 1$. There exists an integer $b_k \ge 1$ such that the degree of regularity of the 2k-variable equation $L_k(b_k)$,

$$x_1 + \dots + x_k - y_1 - \dots - y_k = b_k$$

is exactly 2k-1.

Fox and Kleitman [4] had proved the following.

Proposition 1.2. For any $b \in \mathbb{N}_+$, the equation $L_k(b)$ is not 2k-regular.

When k = 2, Adhikari and Eliahou [1] proved the Fox-Kleitman conjecture by establishing the following more general result:

Theorem 1.3 ([1]). For all positive integers b, we have

$$dor(L_2(b)) = \begin{cases} 1 & if \ b \equiv 1 \bmod 2, \\ 2 & if \ b \equiv 2, 4 \bmod 6, \\ 3 & if \ b \equiv 0 \bmod 6. \end{cases}$$

A shorter proof of the above has been given in [2].

Though the full conjecture of Fox and Kleitman has been very recently established by Schoen and Taczala in [8] by generalizing a theorem of Eberhard, Green and Manners [3], in Theorem 3.3 of Section 3, we give a very short proof of the fact that, writing $c_{k-1} = \text{lcm}\{i: i = 1, 2, ..., k-1\}$, the equation $L_k(c_{k-1})$ is (k-1)-regular. Apart from giving a lower bound for the degree of regularity of $L_k(b_k)$ for the particular value $b_k = c_{k-1}$, our much simpler proof (which uses a result of Lev [10]), nonetheless achieves the correct order of magnitude, with a linear constant of 1 rather than the precise value 2, which is much improved as compared to earlier knowledge (as has been mentioned in [4], from a result of Strauss [9], it followed that, for an appropriate b_k , the equation $L_k(b_k)$ was $\Omega(\log k)$ -regular). We also show that, apart from the first few values $k \leq 5$, it suffices to color the first $c_{k-1} + 1$ positive integers to find a monochromatic solution to $L(c_{k-1})$, with the solution occurring in the densest color class.

We now state the following result which was established in [2].

Theorem 1.4 ([2]). We have $dor(L_3(24)) = 4$.

Thinking that it is worth recording, a very simple proof of Theorem 1.4 needing only Kneser's Theorem will be given in the next section.

We observe that the proof of the Fox-Kleitman conjecture by Schoen and Taczala and our proofs of Theorem 1.4 and Theorem 3.3 are by applications of results from Additive Combinatorics.

In what follows, for integers a, b with $a \leq b$, the set of integers x with $a \leq x \leq b$ will be denoted by the integer interval [a, b]. For a finite set $A \subseteq \mathbb{Z}$, we shall write diam $A = \max A - \min A$ to

denote the diameter of A. Given two subsets A and B from an additive abelian group, we let $A+B=\{a+b:\ a\in A,\ b\in B\}$ denote their sumset and $A-B=\{a-b:\ a\in A,\ b\in B\}$ denotes their difference set. If $n\geq 0$ is an integer, then $nA=\underbrace{A+\ldots+A}_n$ denotes the n-fold

iterated sumset, where $0A := \{0\}$, while $n \cdot A = \{na : a \in A\}$ denotes the dilation of A.

Let G be an abelian group and let $A, B \subseteq G$ be nonempty subsets. We let $\mathsf{H}(A) = \{h \in G : h + A = A\}$ denote the stabilizer of A, which is a subgroup of G. Note $H = \mathsf{H}(A)$ is equivalent to H being the maximal subgroup for which A is a union of H-cosets. The set A is called periodic if $\mathsf{H}(A)$ is nontrivial, and otherwise is called aperiodic. We will make use of Kneser's Theorem (see [5, Chapter 6]), which states that $|A + B| \ge |A + H| + |B + H| - |H|$ for $H = \mathsf{H}(A + B)$. Equivalently, $|A + B| \ge |A| + |B| - 1$ when A + B is aperiodic. Iterating Kneser's Theorem gives $|\sum_{i=1}^n A_i| \ge \sum_{i=1}^n |A_i + H| - (n-1)|H|$ for $H = \mathsf{H}(\sum_{i=1}^n A_i)$.

2.
$$dor(L_3(24)) = 4$$

For the sake of completeness, we now give an expanded version of the proof of Proposition 1.2 due to Fox and Kleitman [4].

Proof. If b is not a multiple of k, then considering the coloring given by the residue class modulo k, there is no monochromatic solution to the equation $L_k(b)$ and the equation not even being k-regular, we are through.

So, we assume that b is a multiple of k and consider the following 2k-coloring of \mathbb{N}_+ : for $1 \leq i \leq 2k$, the set of integers colored i is defined to be

$$X_i = \bigcup_{j \ge 0} \left(\left[(i-1)b/k + 1, ib/k \right] + 2bj \right).$$

Now, the set $X_i - X_i$ is independent of i. Since the set $k(X_1 - X_1) = \bigcup_{j \in \mathbb{Z}} ([-b + k, b - k] + 2jb)$ is a union of translates of [-b + k, b - k] by integer multiples of 2b, it cannot contain b. Therefore, for any i, $1 \le i \le 2k$, $k(X_i - X_i)$ does not contain b. This shows that $L_k(b)$ is not 2k-regular. \square

We proceed to prove that $dor(L_3(24)) = 4$ using Kneser's Theorem. Since 5 does not divide 24, considering the mod 5 coloring shows that $L_3(24)$ is not 5-regular, and hence we only have to show that $L_3(24)$ is 4-regular, which in turn will follow from the result below and the pigeonhole principle. That result was first stated and proved in [2].

Theorem 2.1. For any subset $X \subset [0,32]$ of cardinality |X| = 9,

$$24 \in 3(X - X)$$
.

Proof. Suppose the result is not true and let $X \subset [0, 32]$ be a counter example. Now, writing S = X - X, we have

$$24 \notin S + S + S$$
,

which forces that none of the numbers 8, 12, 24 are in S as $0 \in S$.

If $4 \in S$, then none of the numbers 16, 20, 28, 32 are in S. Therefore, $4 \in S$ would imply $S \cap [0, 32] \cap 4\mathbb{Z} = \{0, 4\}$. Hence, $4 \in S = X - X$ implies that, for all i = 0, 1, 2, 3,

$$|X \cap (4\mathbb{N} + i)| \le 2$$

and hence $|X| \leq 8$, a contradiction to our assumption.

Therefore, none of the numbers 4, 8, 12 nor 24 are in S.

From the above observation, the difference between consecutive elements of $X_i := X \cap (4\mathbb{Z} + i)$, for any $i \in [0,3]$, is at least 16. Thus, if $|X_i| \geq 3$, then this is only possible if i = 0 and $X_0 = \{0,16,32\}$. Since $|X| \geq 9$ ensures by the pigeonhole principle that $|X_i| \geq 3$ for some i, we must have $|X_1| = |X_2| = |X_3| = 2$ and $X_0 = \{0,16,32\}$.

Now, $X_0 \subset X$, and therefore it follows that $\{16, 32\} \subset S$.

Since 24 = 20 + 20 - 16 = 28 + 28 - 32, it follows that $20, 28 \notin S$ and hence

$$S \cap 4\mathbb{N} \cap [0,32] = \{0,16,32\}.$$

Therefore,

$$X = \{0, 16, 32\} \cup \{a, a + 16\} \cup \{b, b + 16\} \cup \{c, c + 16\},\$$

where $a \equiv 1 \pmod{4}$, $b \equiv 2 \pmod{4}$, $c \equiv 3 \pmod{4}$ and $1 \leq a, b, c \leq 15$.

Writing $Y = X \cap [0, 15]$, we have $Y = \{0, a, b, c\}$. Let A = (Y - Y) + (Y - Y) + (Y - Y). Since $Y - Y \subset [-15, 15]$, we have

$$A \subset [-45, 45].$$

Suppose there exists $\alpha \in A$ with $\alpha \equiv 8 \pmod{16}$. Since A = -A, we can assume $\alpha \in \{8, 24, 40\}$.

If $\alpha = 24$, then $24 \in A \subset S + S + S$, and we are through.

If $\alpha = (y_1 - y_1') + (y_2 - y_2') + (y_3 - y_3') = 8$ with $y_i, y_i' \in Y$, then $y_1 + 16 \in X$ and

$$\alpha + 16 = (y_1 + 16 - y_1') + (y_2 - y_2') + (y_3 - y_3') = 24 \in S + S + S,$$

and once again we are through.

Finally, if $\alpha = 40$, then observing that $y'_1 + 16 \in X$, we have

$$\alpha - 16 = (y_1 - (y_1' + 16)) + (y_2 - y_2') + (y_3 - y_3') = 24 \in S + S + S.$$

Therefore, if we can show that A contains an element $\equiv 8 \pmod{16}$, the theorem will be proved.

For a subset $Z \subseteq \mathbb{Z}$, let $\overline{Z} \subseteq \mathbb{Z}/16\mathbb{Z}$ denote its image modulo 16. Now, considering Y modulo 16, as a subset of $\mathbb{Z}/16\mathbb{Z}$, \overline{Y} has 4 elements and $0 \in \overline{A}$. If \overline{A} is periodic, it must contain 8 as all nontrivial subgroups of $\mathbb{Z}/16\mathbb{Z}$ contain 8.

Otherwise, \overline{A} is aperiodic and hence Kneser's Theorem (see remarks after the statement of Kneser's theorem in Section 6.1 in [5]) implies

$$|\overline{A}| \ge 6|\overline{Y}| - 6 + 1 = 24 - 6 + 1 = 19,$$

which is not possible.

3. The Equation
$$L_k(c_{k-1})$$

Here we improve upon the result of Strauss mentioned in the introduction by establishing that, for some integer b_k , the degree of regularity of the equation $L_k(b_k)$: $(x_1-y_1)+\ldots+(x_k-y_k)=b_k$ is at least k-1. Specifically, we show that this holds with $b_k = c_{k-1} = \text{lcm}\{i: i = 1, 2, \dots, k-1\}$.

The following is a result of Lev [Corollary, [10]]. Here, the case h = 1 is trivial.

Theorem A. Let $A \subseteq \mathbb{Z}$ be a finite set of integers with $|A| \geq 2$ and gcd(A - A) = 1, let $s=\lfloor \frac{\operatorname{diam} A-1}{|A|-2} \rfloor$ (for $|A|\geq 3$), and set s=1 for |A|=2. Let $h_1,\,h_2\geq 0$ be integers with $h:=h_1+h_2\geq 1.$

- 1. If $h \le s$, then $|h_1A h_2A| \ge \frac{h(h+1)}{2}|A| h^2 + 1$. 2. If $h \ge s$, then $|h_1A h_2A| \ge \frac{s(s+1)}{2}|A| s^2 + 1 + (h-s)\operatorname{diam} A$.

The following is a basic consequence of the pigeonhole principle [Lemma 1, [11]].

Lemma 3.1. Let $A \subseteq \mathbb{Z}$ be a finite, nonempty set of integers with diam $A \leq 2|A| - 2$. Then

$$[-(2|A|-2-\operatorname{diam} A), 2|A|-2-\operatorname{diam} A] \subseteq A-A.$$

Using the above, we can prove the following lemma.

Lemma 3.2. Let $r \geq 1$ and n > r be integers. Suppose $X \subseteq \mathbb{Z}$ is a subset of integers with $|X| \ge n+1$, diam $X \le rn$ and $d = \gcd(X-X)$. Then

$$d\mathbb{Z} \cap [-rdn, rdn] \subseteq (r+1)X - (r+1)X.$$

Proof. Observing that the lemma is translation invariant, we may w.l.o.g. assume $0 = \min X$. If r = 1, then X = [0, rn] = [0, n], in which case (r + 1)X - (r + 1)X = 2X - 2X = [-2n, 2n], and the lemma holds. Therefore we may assume $r \geq 2$, and thus $|X| \geq n+1 \geq r+2 \geq 4$. Let $N = \max X = \operatorname{diam} X \le rn.$

Suppose $d \geq 2$. Then all elements of X will be divisible by d (in view of $0 \in X$). Let $X' = \frac{1}{d} \cdot X = \{x/d : x \in X\}$ and observe that $\gcd(X' - X') = 1$ with $X' \subseteq [0, \lfloor \frac{rn}{d} \rfloor] \subseteq [0, rn]$ and $|X'| = |X| \ge n + 1$. Consequently, if we knew the lemma held whenever d = 1, then we could apply this case to X' to conclude that $[-rn, rn] \subseteq (r+1)X' - (r+1)X'$, implying (by multiplying everything by d) that $d\mathbb{Z} \cap [-rdn, rdn] \subseteq (r+1)X - (r+1)X$, as desired. So we see that it suffices to consider the case when d=1, i.e., when gcd(X-X)=1, which we now assume.

Since $|X| \ge n+1$, $N \le rn$, and $n > r \ge 2$, we have

(1)
$$s := \left| \frac{N-1}{|X|-2} \right| \le \frac{N-1}{|X|-2} \le \frac{N-1}{n-1} \le \frac{rn-1}{n-1} < r+1.$$

Consequently, applying Theorem A to X (using $h = h_1 = r + 1$ and $h_2 = 0$), we find that

$$|(r+1)X| \ge \frac{s(s+1)}{2}|X| - s^2 + 1 + (r+1-s)N.$$

Note that diam ((r+1)X) = (r+1)N, $(s+1)(|X|-2) \ge N$, $N \ge s(n-1)+1$ and $r \ge s$. Thus

$$M: = 2|(r+1)X| - 2 - \operatorname{diam}((r+1)X) = 2|(r+1)X| - 2 - (r+1)N$$

$$\geq s(s+1)(|X|-2) + 2s + (r+1-2s)N$$

$$\geq sN + 2s + (r+1-2s)N = 2s + (r+1-s)N$$

$$\geq 2s + (r+1-s)(s(n-1)+1).$$

The above bound is quadratic in s with the coefficient of s^2 negative (since n > 1). The bound for M is thus minimized at a boundary value for s. As a result, since $1 \le s \le r$ in view of (1), we conclude that $M \ge rn + 2 > 0$. Hence we can apply Lemma 3.1 using A = (r + 1)X to conclude that $[-rn, rn] \subseteq [-M, M] \subseteq (r + 1)X - (r + 1)X$, completing the proof.

The least common multiple of the first r integers has been well studied. Bounds from Hong and Feng [6] give

$$c_r := \operatorname{lcm}\{i : i = 1, 2, \dots, r\} \ge 2^{r-1},$$

for instance, while the first few values are easily computed to be $c_1 = 1$, $c_2 = 2$, $c_3 = 6$, $c_4 = 12$, $c_5 = 60$, $c_6 = 60$, and $c_7 = 420$.

Theorem 3.3. Let $k \geq 2$ be a integer and let $c_{k-1} = \text{lcm}\{i : i = 1, 2, ..., k-1\}$. Then the equation

$$(x_1 - y_1) + \ldots + (x_k - y_k) = c_{k-1}$$

is (k-1)-regular.

Proof. Let $r = k - 1 \ge 1$, let $c = c_r$ for $r \ge 5$, let $c = 3c_r = 3c_2$ when r = 2, and let $c = 2c_r$ for $r \le 4$ with $r \ne 2$. Thus c_r is divisible by every integer from [1, r] and $n := \frac{c}{r} > r$ (in view of the basic lower bound mentioned above for c_r as well as the first few explicit values given above). Let $\chi : [1, c+1] \to [1, r]$ be an arbitrary r-coloring. We will show that there is a monochromatic solution to the equation $(x_1 - y_1) + \ldots + (x_k - y_k) = c_r$, which will show the equation to be r-regular, as desired.

Observe that [1, c+1] = [1, rn+1] with $n = \frac{c}{r} > r$. Thus, by the pigeonhole principle, there is a monochromatic subset $X \subseteq [1, rn+1]$ with $|X| \ge n+1 \ge r+2 \ge 3$ and diam $X \le rn$. Let $d = \gcd(X - X)$. Then $X \subseteq [1, rn+1]$ is contained in an arithmetic progression with difference d. However, since $|X| \ge n+1$, this is only possible if $d \in [1, r]$. Thus $d \mid c_r$ by

construction with $c_r \leq c = rn$, ensuring that $c_r \in d\mathbb{Z} \cap [1, rn]$. Applying Lemma 3.2 to X now yields $c_r \in (r+1)X - (r+1)X = kX - kX$. Thus there are $x_1, \ldots, x_k, y_1, \ldots, y_k \in X$ such that $(x_1 - y_1) + \ldots + (x_k - y_k) = c_r = c_{k-1}$, and since all elements in X are monochromatic, this provides a monochromatic solution, completing the proof.

References

- S. D. Adhikari, S. Eliahou, On a conjecture of Fox and Kleitman on the degree of regularity of a certain linear equation, To appear in Combinatorial and Additive Number Theory II: CANT, New York, NY, USA, 2015 and 2016, Springer, New York, 2017.
- [2] S. D. Adhikari, L. Boza, S. Eliahou, M. P. Revuelta, M. I. Sanz, Equation-regular sets and the Fox-Kleitman conjecture, Discrete Math. 341, 287–298 (2018).
- [3] S. Eberhard, B. Green and F. Manners, Sets of integers with no large sum-free subset, Annals of Math. 180, 621–652 (2014).
- [4] J. Fox and D. J. Kleitman, On Rado's Boundedness Conjecture, J. Combin. Theory Ser. A, 113, 84–100 (2006).
- [5] David J. Grynkiewicz, Structural Additive Theory, (Springer, 2013).
- [6] S. Hong and W. Feng, Lower bounds for the least common multiple of finite arithmetic progressions, C. R. Math. Acad. Sci. Paris, 343, no. 11-12, 695-698 (2006).
- [7] Rado, R., Studien zur Kombinatorik, Math. Z., 36, 424–480 (1933).
- [8] T. Schoen, and K. Taczala, The degree of regularity of the equation $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i + b$, Moscow J. Combin. and Number Th. 7, 74–93 [162–181] (2017).
- [9] E. G. Straus, A Combinatorial Theorem in Group Theory, Math Comput. 29, 303–309 (1975).
- [10] V. F. Lev, Addendum to: "Structure Theorem for Multiple Addition", J. Number Theory, 65, 96–100 (1997).
- [11] V. F. Lev, Large Sum-Free Sets in $\mathbb{Z}/p\mathbb{Z}$, Israel J. Math., 154, 221–233 (2006).
- (S. D. Adhikari) (Formerly at HRI, Allahabad) Department of Mathematics, Ramakrishna Mission Vivekananda University, Belur Math, Howrah 711202, W.B., INDIA

E-mail address: adhikari@hri.res.in

(R. Balasubramanian) Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India

E-mail address: balu@imsc.res.in

(S. Eliahou) Univ. Littoral Côte d'Opale, EA 2597 - LMPA - Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville, F-62228 Calais, France and CNRS, FR 2956, France

E-mail address: eliahou@univ-littoral.fr

(D. J. Grynkiewicz) University of Memphis, Department of Mathematical Sciences, Memphis, TN 38152, USA

 $E ext{-}mail\ address: djgrynkw@memphis.edu}$