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ABSTRACT. The Fox and Kleitman conjecture [4] regarding the maximum degree of regularity of
the equation z1 +---4+xr —y1 —---—yr = bg, as by runs over the positive integers, has recently
been confirmed [8]. A much simpler proof of the main result proved here gives information
regarding the degree of regularity for some precise values of by, namely by, = cx—1 = lem{i: i =
1,2,...,k —1}; in that process the result establishes the right order of magnitude of the degree
of regularity of the equation. While the proof in [8] is achieved by generalizing a theorem of
Eberhard, Green and Manners [3] on the sets with doubling less than 4, the proof of our main

result uses a result of Lev [10] in Additive Combinatorics.

1. INTRODUCTION

For given ay, ..., a; and b in the set Z of integers, we consider the linear Diophantine equation

L:
k
Zaixi = b.
i=1

Following [7], given n € N, the set of positive integers, equation L is said to be n-regular if,

for every m-coloring of N, there exists a monochromatic solution x = (z1,...,x) € Nﬁ to L.

The degree of reqularity of L is the largest integer n > 0, if any, such that L is n-regular. This
(possibly infinite) number is denoted by dor(L). If dor(L) = oo, then L is said to be regular.

A well-known and challenging conjecture (known as Rado’s Boundedness Conjecture) due to
Rado [7] states that there is a function r: Ny — N, such that, given any n € N, and any
equation ajx1 + - - - + apx, = 0 with integer coefficients, if this equation is not regular over N,
then it fails to be r(n)-regular. Even though there is a more general version, we state it here for
a single homogeneous equation, as it has been proved by Rado [7] that if the conjecture is true
for a single equation, then it is true for a system of finitely many linear equations, and as Fox
and Kleitman [4] have shown, if the conjecture is true for a linear homogeneous equation, then

it is true for any linear equation.

The first nontrivial case of the conjecture has been proved by Fox and Kleitman [4] by estab-
lishing the bound r(3) < 24. In the same paper [4], the authors made the following conjecture

for a very specific linear Diophantine equation.
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Conjecture 1.1. Let k > 1. There exists an integer by, > 1 such that the degree of reqularity of
the 2k-variable equation Ly (by),

Tittxp -y — o~y = b

1s exactly 2k — 1.
Fox and Kleitman [4] had proved the following.
Proposition 1.2. For any b € N, the equation Ly (b) is not 2k-regular.

When k = 2, Adhikari and Eliahou [1] proved the Fox-Kleitman conjecture by establishing
the following more general result:

Theorem 1.3 ([1]). For all positive integers b, we have

1 if b=1mod 2,
dor(La(b)) = 2 if b=2,4mod 6,
3 if b=0mod 6.

A shorter proof of the above has been given in [2].

Though the full conjecture of Fox and Kleitman has been very recently established by Schoen
and Taczala in [8] by generalizing a theorem of Eberhard, Green and Manners [3], in Theorem 3.3
of Section 3, we give a very short proof of the fact that, writing ¢y =lem{i: i =1,2,...,k—1},
the equation Ly(cg—1) is (k — 1)-regular. Apart from giving a lower bound for the degree of
regularity of Lg(by) for the particular value by = cg_1, our much simpler proof (which uses a
result of Lev [10]), nonetheless achieves the correct order of magnitude, with a linear constant of
1 rather than the precise value 2, which is much improved as compared to earlier knowledge (as
has been mentioned in [4], from a result of Strauss [9], it followed that, for an appropriate by,
the equation Ly(by) was Q(log k)-regular). We also show that, apart from the first few values
k <5, it suffices to color the first ¢;_1 + 1 positive integers to find a monochromatic solution to
L(cg—1), with the solution occurring in the densest color class.

We now state the following result which was established in [2].
Theorem 1.4 ([2]). We have dor(L3(24)) = 4.

Thinking that it is worth recording, a very simple proof of Theorem 1.4 needing only Kneser’s
Theorem will be given in the next section.

We observe that the proof of the Fox-Kleitman conjecture by Schoen and Taczala and our
proofs of Theorem 1.4 and Theorem 3.3 are by applications of results from Additive Combina-

torics.

In what follows, for integers a, b with a < b, the set of integers x with a < x < b will be denoted
by the integer interval [a,b]. For a finite set A C Z, we shall write diam A = max A — min A to
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denote the diameter of A. Given two subsets A and B from an additive abelian group, we let

A+B={a+b: a€ A, bec B} denote their sumset and A — B ={a—b: a € A, b e B}

denotes their difference set. If n > 0 is an integer, then nA = A + ...+ A denotes the n-fold
[ —

iterated sumset, where 0A := {0}, while n- A= {na: a € A} denotesnthe dilation of A.

Let G be an abelian group and let A, B C G be nonempty subsets. We let H(A) = {h € G :
h+ A = A} denote the stabilizer of A, which is a subgroup of G. Note H = H(A) is equivalent to
H being the maximal subgroup for which A is a union of H-cosets. The set A is called periodic
if H(A) is nontrivial, and otherwise is called aperiodic. We will make use of Kneser’s Theorem
(see [5, Chapter 6]), which states that |A+ B| > |A+ H|+ |B+ H| — |H| for H = H(A + B).
Equivalently, |A+ B| > |A|+|B|—1 when A+ B is aperiodic. Iterating Kneser’s Theorem gives

I> A > > |Ai+ H| — (n—1)|H| for H=H(>_A4,).
i=1 i=1 =1

2. dor(Ls3(24)) =4

For the sake of completeness, we now give an expanded version of the proof of Proposition
1.2 due to Fox and Kleitman [4].

Proof. If b is not a multiple of k, then considering the coloring given by the residue class modulo
k, there is no monochromatic solution to the equation Lg(b) and the equation not even being
k-regular, we are through.

So, we assume that b is a multiple of £ and consider the following 2k-coloring of N :
for 1 < i < 2k, the set of integers colored i is defined to be
Xi=J ([G = 1)b/k + 1,ib/k] + 2b5).
=0
Now, the set X; — X is independent of ¢. Since the set k(X1 —X1) = ez ([-0+k, b—k]+25b)
is a union of translates of [-b+k, b— k| by integer multiples of 2b, it cannot contain b. Therefore,
for any i, 1 <i <2k, k(X;—X;) does not contain b. This shows that L (b) is not 2k-regular. O

We proceed to prove that dor(L3(24)) = 4 using Kneser’s Theorem. Since 5 does not divide
24, considering the mod 5 coloring shows that L3(24) is not 5-regular, and hence we only have to
show that L3(24) is 4-regular, which in turn will follow from the result below and the pigeonhole
principle. That result was first stated and proved in [2].

Theorem 2.1. For any subset X C [0,32] of cardinality | X| =9,
24 € 3(X — X).

Proof. Suppose the result is not true and let X C [0,32] be a counter example.
Now, writing S = X — X, we have

24¢ 5+ S+,
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which forces that none of the numbers 8,12,24 are in S as 0 € S.
If 4 € S, then none of the numbers 16,20, 28,32 are in S. Therefore, 4 € S would imply
SNJ0,32)N4Z = {0,4}. Hence, 4 € S = X — X implies that, for all i =0, 1,2, 3,

1 X N (4N +4)| < 2

and hence | X| < 8, a contradiction to our assumption.

Therefore, none of the numbers 4, 8, 12 nor 24 are in S.

From the above observation, the difference between consecutive elements of X; := XN (4Z+1),
for any i € [0,3], is at least 16. Thus, if |X;| > 3, then this is only possible if i = 0 and
Xy ={0,16,32}. Since |X| > 9 ensures by the pigeonhole principle that | X;| > 3 for some i, we
must have |X;| = | Xz| = |X3| =2 and X, = {0, 16, 32}.

Now, Xy C X, and therefore it follows that {16,32} C S.

Since 24 = 20 + 20 — 16 = 28 + 28 — 32, it follows that 20, 28 ¢ S and hence

SN4NN[0,32] = {0,16,32}.

Therefore,

X ={0,16,32} U {a,a+ 16} U {b,b+ 16} U {c,c + 16},

where a =1 (mod 4), b=2 (mod 4), c=3 (mod 4) and 1 < a,b,c < 15.
Writing Y = X N[0, 15], we have Y = {0,a,b,c}. Let A= (Y -Y)+ (Y -Y)+ (Y —-Y).
Since Y —Y C [-15,15], we have
A C [-45,45].

Suppose there exists « € A with a = 8 (mod 16). Since A = —A, we can assume o €
{8,24,40}.

Ifao=24,then24 € AC S+ S+ S, and we are through.

If o= (y1 —yy) + (y2 — vh) + (y3 — ) = 8 with y;, y; € Y, then y; + 16 € X and

a+16=(p+16—yj)+ (y2—v5) + (ys —y3) =24 € S+ S+ S,

and once again we are through.
Finally, if & = 40, then observing that y; + 16 € X, we have

a—16=(y1 — (y1 +16)) + (y2 —v5) + (yz3 —y3) =24 € S+ S+ S.

Therefore, if we can show that A contains an element = 8 (mod 16), the theorem will be
proved.

For a subset Z C Z, let Z C 7Z/16Z denote its image modulo 16. Now, considering Y modulo
16, as a subset of Z/16Z, Y has 4 elements and 0 € A. If A is periodic, it must contain 8 as all
nontrivial subgroups of Z/16Z contain 8.



FOX-KLEITMAN CONJECTURE 5

Otherwise, A is aperiodic and hence Kneser’s Theorem (see remarks after the statement of
Kneser’s theorem in Section 6.1 in [5]) implies

A >6]Y|—6+1=24—6+1=19,

which is not possible. U

3. THE EQUATION Lg(ck—1)

Here we improve upon the result of Strauss mentioned in the introduction by establishing that,
for some integer by, the degree of regularity of the equation Ly (bg): (z1—y1)+. ..+ (zr—yr) = b
is at least k—1. Specifically, we show that this holds with by, = ¢x—1 =lem{i: i =1,2,...,k—1}.

The following is a result of Lev [Corollary, [10]]. Here, the case h =1 is trivial.

Theorem A. Let A C Z be a finite set of integers with |A| > 2 and ged(A — A) = 1, let
s = Ldiz"f"fglj (for |A] > 3), and set s = 1 for |A| = 2. Let hi, ha > 0 be integers with
h:=hy+hy > 1.

1. Ifh <s, then |hiA — hgA| > MWD 4] — p2 41,

2. Ifh > s, then |hiA — hyA] > EHU|A] — 62 41 4 (b — 5) diam A.

The following is a basic consequence of the pigeonhole principle [Lemma 1, [11]].
Lemma 3.1. Let A C7Z be a finite, nonempty set of integers with diam A < 2|A| — 2. Then
[—(2|A] — 2 —diam A),2|A] — 2 — diam A] C A — A.
Using the above, we can prove the following lemma.

Lemma 3.2. Let r > 1 and n > r be integers. Suppose X C Z is a subset of integers with
| X|>n+1, diam X <rn and d = ged(X — X). Then

dZ N [—rdn,rdn] C (r+1)X — (r+1)X.

Proof. Observing that the lemma is translation invariant, we may w.l.o.g. assume 0 = min X.
If r =1, then X = [0,rn] = [0,n], in which case (r +1)X — (r +1)X = 2X — 2X = [-2n,2n],
and the lemma holds. Therefore we may assume r > 2, and thus |[X| >n+1>r+2 > 4. Let
N =max X = diam X < rn.

Suppose d > 2. Then all elements of X will be divisible by d (in view of 0 € X). Let
X'=1.X={z/d: z € X} and observe that ged(X' — X’) = 1 with X’ C [0, |Z]] C [0,rn]
and |X'| = |X| > n + 1. Consequently, if we knew the lemma held whenever d = 1, then we
could apply this case to X’ to conclude that [—rn,rn] C (r + 1)X’ — (r + 1) X', implying (by
multiplying everything by d) that dZ N [—rdn,rdn] C (r +1)X — (r + 1)X, as desired. So we
see that it suffices to consider the case when d = 1, i.e., when ged(X — X) = 1, which we now

assume.
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Since | X| >n+ 1, N <rn,and n > r > 2, we have

N-—-1 N -1 N-1 _m-1
(1) 5= < < <

| X] —2 I X|—-2 7 n—-1 n—1
Consequently, applying Theorem A to X (using h = hy =r + 1 and hy = 0), we find that
s(s+1)

2

Note that diam ((r + 1)X) = (r + 1)N, (s+1)(|X|-2) > N, N >s(n—1)+1and r > s.
Thus

<r+1.

(r +1)X]| > |X|—s*+1+(r+1—s)N.

M

2|(r+1)X| -2 —diam ((r+ 1)X) =2|(r + )X| -2 — (r+ 1)N

> s(s+1)(|X]|—2)+2s+(r+1—-2s)N
> sN+2s+(r+1—-2s)N=2s+(r+1—-s)N
> 2s+(r+1—s)(s(n—1)+1).

The above bound is quadratic in s with the coefficient of s? negative (since n > 1). The bound
for M is thus minimized at a boundary value for s. As a result, since 1 < s < r in view of (1),
we conclude that M > rn 4+ 2 > 0. Hence we can apply Lemma 3.1 using A = (r + 1)X to
conclude that [—rn,rn] C [-M,M] C (r +1)X — (r + 1) X, completing the proof. O

The least common multiple of the first r integers has been well studied. Bounds from Hong
and Feng [6] give
cri=lem{i: i=1,2,...,7} > 21
for instance, while the first few values are easily computed to be ¢; =1, co =2, ¢35 =6, ¢4y = 12,
c5 = 60, cg = 60, and c7 = 420.

Theorem 3.3. Let k > 2 be a integer and let ¢y = lem{i : i = 1,2,...,k —1}. Then the
equation

(w1 —y1) + ..+ (T — k) = k-1
is (k — 1)-regular.

Proof. Let r=k—12>1,let c= ¢, for r > 5, let ¢ = 3¢, = 3¢9 when r = 2, and let ¢ = 2¢, for
r < 4 with 7 # 2. Thus ¢, is divisible by every integer from [1,7] and n := £ > (in view of the
basic lower bound mentioned above for ¢, as well as the first few explicit values given above).
Let x : [1,¢+1] — [1,7] be an arbitrary r-coloring. We will show that there is a monochromatic
solution to the equation (1 —y1) + ...+ (zx — yx) = ¢, which will show the equation to be
r-regular, as desired.

Observe that [1,c+ 1] = [1,7n 4 1] with n = £ > r. Thus, by the pigeonhole principle, there
is a monochromatic subset X C [1,rn + 1] with |[X| > n+1>r+2 > 3 and diam X < rn.
Let d = ged(X — X). Then X C [1,rn + 1] is contained in an arithmetic progression with
difference d. However, since |X| > n + 1, this is only possible if d € [1,7]. Thus d | ¢, by
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construction with ¢, < ¢ = rn, ensuring that ¢, € dZ N [1,rn]. Applying Lemma 3.2 to X now
yields ¢, € (r+1)X — (r+1)X = kX — kX. Thus there are z1, ..., Tk, y1,...,yr € X such that
(x1 —y1) + ...+ (& —yx) = & = cx—1, and since all elements in X are monochromatic, this

provides a monochromatic solution, completing the proof. ]
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