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Abstract. The Fox and Kleitman conjecture [4] regarding the maximum degree of regularity of

the equation x1 + · · ·+xk−y1−· · ·−yk = bk, as bk runs over the positive integers, has recently

been confirmed [8]. A much simpler proof of the main result proved here gives information

regarding the degree of regularity for some precise values of bk, namely bk = ck−1 = lcm{i : i =

1, 2, . . . , k− 1}; in that process the result establishes the right order of magnitude of the degree

of regularity of the equation. While the proof in [8] is achieved by generalizing a theorem of

Eberhard, Green and Manners [3] on the sets with doubling less than 4, the proof of our main

result uses a result of Lev [10] in Additive Combinatorics.

1. Introduction

For given a1, . . . , ak and b in the set Z of integers, we consider the linear Diophantine equation

L:
k∑

i=1

aixi = b.

Following [7], given n ∈ N+, the set of positive integers, equation L is said to be n-regular if,

for every n-coloring of N+, there exists a monochromatic solution x = (x1, . . . , x) ∈ Nk
+ to L.

The degree of regularity of L is the largest integer n ≥ 0, if any, such that L is n-regular. This

(possibly infinite) number is denoted by dor(L). If dor(L) =∞, then L is said to be regular.

A well-known and challenging conjecture (known as Rado’s Boundedness Conjecture) due to

Rado [7] states that there is a function r : N+ → N+ such that, given any n ∈ N+ and any

equation α1x1 + · · ·+αnxn = 0 with integer coefficients, if this equation is not regular over N+,

then it fails to be r(n)-regular. Even though there is a more general version, we state it here for

a single homogeneous equation, as it has been proved by Rado [7] that if the conjecture is true

for a single equation, then it is true for a system of finitely many linear equations, and as Fox

and Kleitman [4] have shown, if the conjecture is true for a linear homogeneous equation, then

it is true for any linear equation.

The first nontrivial case of the conjecture has been proved by Fox and Kleitman [4] by estab-

lishing the bound r(3) ≤ 24. In the same paper [4], the authors made the following conjecture

for a very specific linear Diophantine equation.
1
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Conjecture 1.1. Let k ≥ 1. There exists an integer bk ≥ 1 such that the degree of regularity of

the 2k-variable equation Lk(bk),

x1 + · · ·+ xk − y1 − · · · − yk = bk

is exactly 2k − 1.

Fox and Kleitman [4] had proved the following.

Proposition 1.2. For any b ∈ N+, the equation Lk(b) is not 2k-regular.

When k = 2, Adhikari and Eliahou [1] proved the Fox-Kleitman conjecture by establishing

the following more general result:

Theorem 1.3 ([1]). For all positive integers b, we have

dor(L2(b)) =


1 if b ≡ 1 mod 2,

2 if b ≡ 2, 4 mod 6,

3 if b ≡ 0 mod 6.

A shorter proof of the above has been given in [2].

Though the full conjecture of Fox and Kleitman has been very recently established by Schoen

and Taczala in [8] by generalizing a theorem of Eberhard, Green and Manners [3], in Theorem 3.3

of Section 3, we give a very short proof of the fact that, writing ck−1 = lcm{i : i = 1, 2, . . . , k−1},
the equation Lk(ck−1) is (k − 1)-regular. Apart from giving a lower bound for the degree of

regularity of Lk(bk) for the particular value bk = ck−1, our much simpler proof (which uses a

result of Lev [10]), nonetheless achieves the correct order of magnitude, with a linear constant of

1 rather than the precise value 2, which is much improved as compared to earlier knowledge (as

has been mentioned in [4], from a result of Strauss [9], it followed that, for an appropriate bk,

the equation Lk(bk) was Ω(log k)-regular). We also show that, apart from the first few values

k ≤ 5, it suffices to color the first ck−1 + 1 positive integers to find a monochromatic solution to

L(ck−1), with the solution occurring in the densest color class.

We now state the following result which was established in [2].

Theorem 1.4 ([2]). We have dor(L3(24)) = 4.

Thinking that it is worth recording, a very simple proof of Theorem 1.4 needing only Kneser’s

Theorem will be given in the next section.

We observe that the proof of the Fox-Kleitman conjecture by Schoen and Taczala and our

proofs of Theorem 1.4 and Theorem 3.3 are by applications of results from Additive Combina-

torics.

In what follows, for integers a, b with a ≤ b, the set of integers x with a ≤ x ≤ b will be denoted

by the integer interval [a, b]. For a finite set A ⊆ Z, we shall write diamA = maxA−minA to
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denote the diameter of A. Given two subsets A and B from an additive abelian group, we let

A + B = {a + b : a ∈ A, b ∈ B} denote their sumset and A − B = {a − b : a ∈ A, b ∈ B}
denotes their difference set. If n ≥ 0 is an integer, then nA = A+ . . .+A︸ ︷︷ ︸

n

denotes the n-fold

iterated sumset, where 0A := {0}, while n ·A = {na : a ∈ A} denotes the dilation of A.

Let G be an abelian group and let A, B ⊆ G be nonempty subsets. We let H(A) = {h ∈ G :

h+A = A} denote the stabilizer of A, which is a subgroup of G. Note H = H(A) is equivalent to

H being the maximal subgroup for which A is a union of H-cosets. The set A is called periodic

if H(A) is nontrivial, and otherwise is called aperiodic. We will make use of Kneser’s Theorem

(see [5, Chapter 6]), which states that |A + B| ≥ |A + H| + |B + H| − |H| for H = H(A + B).

Equivalently, |A+B| ≥ |A|+ |B|−1 when A+B is aperiodic. Iterating Kneser’s Theorem gives

|
n∑

i=1
Ai| ≥

n∑
i=1
|Ai +H| − (n− 1)|H| for H = H(

n∑
i=1
Ai).

2. dor(L3(24)) = 4

For the sake of completeness, we now give an expanded version of the proof of Proposition

1.2 due to Fox and Kleitman [4].

Proof. If b is not a multiple of k, then considering the coloring given by the residue class modulo

k, there is no monochromatic solution to the equation Lk(b) and the equation not even being

k-regular, we are through.

So, we assume that b is a multiple of k and consider the following 2k-coloring of N+:

for 1 ≤ i ≤ 2k, the set of integers colored i is defined to be

Xi =
⋃
j≥0

([
(i− 1)b/k + 1, ib/k

]
+ 2bj

)
.

Now, the set Xi−Xi is independent of i. Since the set k(X1−X1) =
⋃

j∈Z([−b+k, b−k]+2jb)

is a union of translates of [−b+k, b−k] by integer multiples of 2b, it cannot contain b. Therefore,

for any i, 1 ≤ i ≤ 2k, k(Xi−Xi) does not contain b. This shows that Lk(b) is not 2k-regular. �

We proceed to prove that dor(L3(24)) = 4 using Kneser’s Theorem. Since 5 does not divide

24, considering the mod 5 coloring shows that L3(24) is not 5-regular, and hence we only have to

show that L3(24) is 4-regular, which in turn will follow from the result below and the pigeonhole

principle. That result was first stated and proved in [2].

Theorem 2.1. For any subset X ⊂ [0, 32] of cardinality |X| = 9,

24 ∈ 3(X −X).

Proof. Suppose the result is not true and let X ⊂ [0, 32] be a counter example.

Now, writing S = X −X, we have

24 6∈ S + S + S,
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which forces that none of the numbers 8, 12, 24 are in S as 0 ∈ S.

If 4 ∈ S, then none of the numbers 16, 20, 28, 32 are in S. Therefore, 4 ∈ S would imply

S ∩ [0, 32] ∩ 4Z = {0, 4}. Hence, 4 ∈ S = X −X implies that, for all i = 0, 1, 2, 3,

|X ∩ (4N + i)| ≤ 2

and hence |X| ≤ 8, a contradiction to our assumption.

Therefore, none of the numbers 4, 8, 12 nor 24 are in S.

From the above observation, the difference between consecutive elements of Xi := X∩(4Z+i),

for any i ∈ [0, 3], is at least 16. Thus, if |Xi| ≥ 3, then this is only possible if i = 0 and

X0 = {0, 16, 32}. Since |X| ≥ 9 ensures by the pigeonhole principle that |Xi| ≥ 3 for some i, we

must have |X1| = |X2| = |X3| = 2 and X0 = {0, 16, 32}.
Now, X0 ⊂ X, and therefore it follows that {16, 32} ⊂ S.

Since 24 = 20 + 20− 16 = 28 + 28− 32, it follows that 20, 28 6∈ S and hence

S ∩ 4N ∩ [0, 32] = {0, 16, 32}.

Therefore,

X = {0, 16, 32} ∪ {a, a+ 16} ∪ {b, b+ 16} ∪ {c, c+ 16},

where a ≡ 1 (mod 4), b ≡ 2 (mod 4), c ≡ 3 (mod 4) and 1 ≤ a, b, c ≤ 15.

Writing Y = X ∩ [0, 15], we have Y = {0, a, b, c}. Let A = (Y − Y ) + (Y − Y ) + (Y − Y ).

Since Y − Y ⊂ [−15, 15], we have

A ⊂ [−45, 45].

Suppose there exists α ∈ A with α ≡ 8 (mod 16). Since A = −A, we can assume α ∈
{8, 24, 40}.

If α = 24, then 24 ∈ A ⊂ S + S + S, and we are through.

If α = (y1 − y′1) + (y2 − y′2) + (y3 − y′3) = 8 with yi, y
′
i ∈ Y , then y1 + 16 ∈ X and

α+ 16 = (y1 + 16− y′1) + (y2 − y′2) + (y3 − y′3) = 24 ∈ S + S + S,

and once again we are through.

Finally, if α = 40, then observing that y′1 + 16 ∈ X, we have

α− 16 = (y1 − (y′1 + 16)) + (y2 − y′2) + (y3 − y′3) = 24 ∈ S + S + S.

Therefore, if we can show that A contains an element ≡ 8 (mod 16), the theorem will be

proved.

For a subset Z ⊆ Z, let Z ⊆ Z/16Z denote its image modulo 16. Now, considering Y modulo

16, as a subset of Z/16Z, Y has 4 elements and 0 ∈ A. If A is periodic, it must contain 8 as all

nontrivial subgroups of Z/16Z contain 8.
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Otherwise, A is aperiodic and hence Kneser’s Theorem (see remarks after the statement of

Kneser’s theorem in Section 6.1 in [5]) implies

|A| ≥ 6|Y | − 6 + 1 = 24− 6 + 1 = 19,

which is not possible. �

3. The Equation Lk(ck−1)

Here we improve upon the result of Strauss mentioned in the introduction by establishing that,

for some integer bk, the degree of regularity of the equation Lk(bk): (x1−y1)+. . .+(xk−yk) = bk

is at least k−1. Specifically, we show that this holds with bk = ck−1 = lcm{i : i = 1, 2, . . . , k−1}.

The following is a result of Lev [Corollary, [10]]. Here, the case h = 1 is trivial.

Theorem A. Let A ⊆ Z be a finite set of integers with |A| ≥ 2 and gcd(A − A) = 1, let

s = bdiamA−1
|A|−2 c (for |A| ≥ 3), and set s = 1 for |A| = 2. Let h1, h2 ≥ 0 be integers with

h := h1 + h2 ≥ 1.

1. If h ≤ s, then |h1A− h2A| ≥ h(h+1)
2 |A| − h2 + 1.

2. If h ≥ s, then |h1A− h2A| ≥ s(s+1)
2 |A| − s2 + 1 + (h− s) diamA.

The following is a basic consequence of the pigeonhole principle [Lemma 1, [11]].

Lemma 3.1. Let A ⊆ Z be a finite, nonempty set of integers with diamA ≤ 2|A| − 2. Then

[−(2|A| − 2− diamA), 2|A| − 2− diamA] ⊆ A−A.

Using the above, we can prove the following lemma.

Lemma 3.2. Let r ≥ 1 and n > r be integers. Suppose X ⊆ Z is a subset of integers with

|X| ≥ n+ 1, diamX ≤ rn and d = gcd(X −X). Then

dZ ∩ [−rdn, rdn] ⊆ (r + 1)X − (r + 1)X.

Proof. Observing that the lemma is translation invariant, we may w.l.o.g. assume 0 = minX.

If r = 1, then X = [0, rn] = [0, n], in which case (r + 1)X − (r + 1)X = 2X − 2X = [−2n, 2n],

and the lemma holds. Therefore we may assume r ≥ 2, and thus |X| ≥ n+ 1 ≥ r + 2 ≥ 4. Let

N = maxX = diamX ≤ rn.

Suppose d ≥ 2. Then all elements of X will be divisible by d (in view of 0 ∈ X). Let

X ′ = 1
d ·X = {x/d : x ∈ X} and observe that gcd(X ′ −X ′) = 1 with X ′ ⊆ [0, b rnd c] ⊆ [0, rn]

and |X ′| = |X| ≥ n + 1. Consequently, if we knew the lemma held whenever d = 1, then we

could apply this case to X ′ to conclude that [−rn, rn] ⊆ (r + 1)X ′ − (r + 1)X ′, implying (by

multiplying everything by d) that dZ ∩ [−rdn, rdn] ⊆ (r + 1)X − (r + 1)X, as desired. So we

see that it suffices to consider the case when d = 1, i.e., when gcd(X −X) = 1, which we now

assume.
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Since |X| ≥ n+ 1, N ≤ rn, and n > r ≥ 2, we have

(1) s :=

⌊
N − 1

|X| − 2

⌋
≤ N − 1

|X| − 2
≤ N − 1

n− 1
≤ rn− 1

n− 1
< r + 1.

Consequently, applying Theorem A to X (using h = h1 = r + 1 and h2 = 0), we find that

|(r + 1)X| ≥ s(s+ 1)

2
|X| − s2 + 1 + (r + 1− s)N.

Note that diam
(
(r + 1)X

)
= (r + 1)N , (s + 1)(|X| − 2) ≥ N , N ≥ s(n − 1) + 1 and r ≥ s.

Thus

M : = 2|(r + 1)X| − 2− diam
(
(r + 1)X

)
= 2|(r + 1)X| − 2− (r + 1)N

≥ s(s+ 1)(|X| − 2) + 2s+ (r + 1− 2s)N

≥ sN + 2s+ (r + 1− 2s)N = 2s+ (r + 1− s)N

≥ 2s+ (r + 1− s)(s(n− 1) + 1).

The above bound is quadratic in s with the coefficient of s2 negative (since n > 1). The bound

for M is thus minimized at a boundary value for s. As a result, since 1 ≤ s ≤ r in view of (1),

we conclude that M ≥ rn + 2 > 0. Hence we can apply Lemma 3.1 using A = (r + 1)X to

conclude that [−rn, rn] ⊆ [−M,M ] ⊆ (r + 1)X − (r + 1)X, completing the proof. �

The least common multiple of the first r integers has been well studied. Bounds from Hong

and Feng [6] give

cr := lcm{i : i = 1, 2, . . . , r} ≥ 2r−1,

for instance, while the first few values are easily computed to be c1 = 1, c2 = 2, c3 = 6, c4 = 12,

c5 = 60, c6 = 60, and c7 = 420.

Theorem 3.3. Let k ≥ 2 be a integer and let ck−1 = lcm{i : i = 1, 2, . . . , k − 1}. Then the

equation

(x1 − y1) + . . .+ (xk − yk) = ck−1

is (k − 1)-regular.

Proof. Let r = k − 1 ≥ 1, let c = cr for r ≥ 5, let c = 3cr = 3c2 when r = 2, and let c = 2cr for

r ≤ 4 with r 6= 2. Thus cr is divisible by every integer from [1, r] and n := c
r > r (in view of the

basic lower bound mentioned above for cr as well as the first few explicit values given above).

Let χ : [1, c+ 1]→ [1, r] be an arbitrary r-coloring. We will show that there is a monochromatic

solution to the equation (x1 − y1) + . . . + (xk − yk) = cr, which will show the equation to be

r-regular, as desired.

Observe that [1, c+ 1] = [1, rn+ 1] with n = c
r > r. Thus, by the pigeonhole principle, there

is a monochromatic subset X ⊆ [1, rn + 1] with |X| ≥ n + 1 ≥ r + 2 ≥ 3 and diamX ≤ rn.

Let d = gcd(X − X). Then X ⊆ [1, rn + 1] is contained in an arithmetic progression with

difference d. However, since |X| ≥ n + 1, this is only possible if d ∈ [1, r]. Thus d | cr by
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construction with cr ≤ c = rn, ensuring that cr ∈ dZ ∩ [1, rn]. Applying Lemma 3.2 to X now

yields cr ∈ (r+ 1)X − (r+ 1)X = kX − kX. Thus there are x1, . . . , xk, y1, . . . , yk ∈ X such that

(x1 − y1) + . . . + (xk − yk) = cr = ck−1, and since all elements in X are monochromatic, this

provides a monochromatic solution, completing the proof. �
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