A Multiplicative Property for Zero-Sums II

David J. Grynkiewicz Chao Liu
Department of Mathematical Sciences
University of Memphis
Memphis, TN 38152, U.S.A.
diambri@hotmail.com chaoliuac@gmail.com

Submitted: December 14, 2021; Accepted: May 22, 2022; Published: TBD
© The authors. Released under the CC BY-ND license (International 4.0).

Abstract

For $n \geq 1$, let C_n denote a cyclic group of order n. Let $G \cong C_n \oplus C_{mn}$ with $n \geq 2$ and $m \geq 1$, and let $k \in [0, n-1]$. It is known that any sequence of $mn + n - 1 + k$ terms from G must contain a nontrivial zero-sum of length at most $mn + n - 1 - k$.

The associated inverse question is to characterize those sequences with maximal length $mn + n - 2 + k$ that fail to contain a nontrivial zero-sum subsequence of length at most $mn + n - 1 - k$. For $k \leq 1$, this is the inverse question for the Davenport Constant. For $k = n - 1$, this is the inverse question for the $\eta(G)$ invariant concerning short zero-sum subsequences. For $C_n \oplus C_n$ and $k \in [2, n-2]$, with $n \geq 5$ prime, it was conjectured in a paper of Grynkiewicz, Wang and Zhao that they must have the form $S = e_1^{[n-1]} \cdot e_2^{[n-1]} \cdot (e_1 + e_2)^{[k]}$ for some basis (e_1, e_2), with the conjecture established in many cases and later extended to composite moduli n. In this paper, we focus on the case $m \geq 2$. Assuming the conjectured structure holds for $k \in [2, n-2]$ in $C_n \oplus C_n$, we characterize the structure of all sequences of maximal length $mn + n - 2 + k$ in $C_n \oplus C_{mn}$ that fail to contain a nontrivial zero-sum of length at most $mn + n - 1 - k$, showing they must either have the form $S = e_1^{[n-1]} \cdot e_2^{[n-1]} \cdot (e_1 + e_2)^{[(m-s)n+k]}$ for some $s \in [1, m]$ and basis (e_1, e_2) with $\text{ord}(e_2) = mn$, or else have the form $S = g_1^{[n-1]} \cdot g_2^{[n-1]} \cdot (g_1 + g_2)^{[(m-1)n+k]}$ for some generating set $\{g_1, g_2\}$ with $\text{ord}(g_1 + g_2) = mn$. In view of prior work, this reduces the structural characterization for a general rank two abelian group to the case $C_p \oplus C_p$ with p prime. Additionally, we give a new proof of the precise structure in the case $k = n - 1$ for $m = 1$. Combined with known results, our results unconditionally establish the structure of extremal sequences in $G \cong C_n \oplus C_{mn}$ in many cases, including when n is only divisible by primes at most 7, when $n \geq 2$ is a prime power and $k \leq \frac{2n+1}{3}$, or when n is composite and $k = n - d - 1$ or $n - 2d + 1$ for a proper, nontrivial divisor $d \mid n$.

Mathematics Subject Classifications: 11B75
1 Introduction and Preliminaries

Regarding combinatorial notation for sequences and subsums, we utilize the standardized system surrounding multiplicative strings as outlined in the references [15] [14] [19]. For the reader new to this notational system, we begin with a self-contained review.

Notation

All intervals will be discrete, so for \(x, y \in \mathbb{Z} \), we have \([x, y] = \{ z \in \mathbb{Z} : x \leq z \leq y \}\). For integers \(x \) and \(n \) with \(n \geq 1 \), let \((x)_n \in [0, n - 1]\) denote the least non-negative representative for \(x \) modulo \(n \). We use \(C_n \) to denote a cyclic group of order \(n \). A finite abelian group \(G \) has the form \(G \cong C_{n_1} \oplus \ldots \oplus C_{n_r} \) with \(1 < n_1 | \ldots | n_r \), where \(n_r = \exp(G) \) is the exponent and \(r \geq 0 \) is the rank of \(G \), which is the minimal cardinality of a generating set for \(G \). For \(r \leq 2 \), an arbitrary rank at most two abelian group has the form \(G \cong C_{n} \oplus C_{mn} \) with \(n, m \geq 1 \). When \(n \geq 2 \), so the rank \(r = 2 \), a (ordered) basis for \(G \) is a pair \((e_1, e_2)\) of elements \(e_1, e_2 \in G \) such that \(G = \langle e_1 \rangle \oplus \langle e_2 \rangle \cong C_n \oplus C_{mn} \).

Let \(G \) be an abelian group. In the tradition of Combinatorial Number Theory, a sequence of terms from \(G \) is a finite, unordered string of elements from \(G \). We let \(\mathcal{F}(G) \) denote the free abelian monoid with basis \(G \), which consists of all (finite and unordered) sequences \(S \) of terms from \(G \) written as multiplicative strings using the boldsymbol \(\cdot \). This means a sequence \(S \in \mathcal{F}(G) \) has the form

\[
S = g_1 \cdot \ldots \cdot g_\ell
\]

with \(g_1, \ldots, g_\ell \in G \) the terms in \(S \). Then

\[
\nu_g(S) = |\{ i \in [1, \ell] : g_i = g \}|
\]

denotes the multiplicity of the terms \(g \) in \(S \), allowing us to represent a sequence \(S \) as

\[
S = \prod_{g \in G} g^{\nu_g(S)},
\]

where \(g^{[n]} = g \cdot \ldots \cdot g \) \(n \) times. The maximum multiplicity of a term of \(S \) is the height of the sequence, denoted \(h(S) = \max\{ \nu_g(S) : g \in G \} \).

The support of the sequence \(S \) is the subset of all elements of \(G \) that are contained in \(S \), that is, that occur with positive multiplicity in \(S \), which is denoted

\[
\text{Supp}(S) = \{ g \in G : \nu_g(S) > 0 \}.
\]

The length of the sequence \(S \) is

\[
|S| = \ell = \sum_{g \in G} \nu_g(S).
\]
A sequence $T \in \mathcal{F}(G)$ with $\nu_g(T) \leq \nu_g(S)$ for all $g \in G$ is called a subsequence of S, denoted $T \upharpoonright S$, and in such case, $S \cdot T^{-1} = T^{[-1]}$. S denotes the subsequence of S obtained by removing the terms of T from S, so $\nu_g(S \cdot T^{-1}) = \nu_g(S) - \nu_g(T)$ for all $g \in G$.

Since the terms of S lie in an abelian group, we have the following notation regarding subsums of terms from S. We let

$$\sigma(S) = g_1 \ldots g_\ell = \sum_{g \in G} \nu_g(S)g$$

denote the sum of the terms of S and call S a zero-sum sequence when $\sigma(S) = 0$. A minimal zero-sum sequence is a zero-sum sequence that cannot have its terms partitioned into two proper, nontrivial zero-sum subsequences. For $n \geq 0$, let

$$\Sigma_n(S) = \{\sigma(T) : T \mid S, |T| = n\}, \quad \Sigma_{\leq n}(S) = \{\sigma(T) : T \mid S, 1 \leq |T| \leq n\}, \quad \text{and} \quad \Sigma(S) = \{\sigma(T) : T \mid S, |T| \geq 1\}$$

denote the variously restricted collections of subsums of S. The sequence S is zero-sum free if $0 \notin \Sigma(S)$. Finally, if $\varphi : G \to G'$ is a map, then

$$\varphi(S) = \varphi(g_1) \cdot \ldots \cdot \varphi(g_\ell) \in \mathcal{F}(G')$$

denotes the sequence of terms from G' obtained by applying φ to each term from S.

Background

Let G be a finite abelian group. The Davenport Constant for G is the minimal integer $D(G)$ such that any sequence of terms from G with length at least $D(G)$ must contain a nontrivial zero-sum subsequence. Equivalently, $D(G)$ is the maximal length of a minimal zero-sum sequence (see [21] [14]). Besides being of interest as an independent topic in Combinatorial Number Theory, it also plays an important role when studying factorization in Krull Domains and, more generally, in (Transfer) Krull Monoids. See [14] [15]. For a general rank at most two abelian group $G \approx C_n \oplus C_m$, where $m, n \geq 1$, we have [14, Theorem 5.8.3]

$$D(C_n \oplus C_m) = mn + n - 1.$$

This is a classical result of Olson [25] or van Emde Boas and Kruyswijk [6] whose proof requires the constant $\eta(G)$, defined as the minimal length such that any sequence of terms from G with length at least $\eta(G)$ contains a nontrivial zero-sum subsequence of length at most $\exp(G)$. For rank at most two groups, we have [25] [6] [14, Theorem 5.8.3]

$$\eta(C_n \oplus C_m) = mn + 2n - 2.$$

Specializing a particular case of a more general invariant [3] [13], Delorme, Ordaz and Quiroz introduced [4] the constant $s_{\leq \ell}(G)$ defined as the minimal length such that

$$|S| \geq s_{\leq \ell}(G) \quad \text{implies} \quad 0 \in \Sigma_{\leq \ell}(S).$$
For connections with Coding Theory, see [3]. The constant \(s_{\ell}(G) \) has also been studied in various other contexts [7] [29] [11].

Since \(s_{\ell}(G) = \infty \) for \(\ell < \exp(G) \) and coincides with the invariants \(\eta(G) \) and \(D(G) \) for the values \(\ell = \exp(G) \) and \(\ell = D(G) \), it may be viewed as a means of interpolating these constants as \(\ell \in [\exp(G), D(G)] \). For the case of rank two groups, Chunlin Wang and Kevin Zhao determined its exact value [32]:

\[
s_{\leq mn+n-1-k}(C_n \oplus C_{mn}) = mn + n - 1 + k, \quad \text{for } k \in [0, n - 1].
\]

The associated inverse question is to characterize all extremal sequences of maximal length \(mn + n - 2 + k \) with \(0 \notin \Sigma_{\leq mn+n-1-k}(S) \). For \(k = 0 \), this means characterizing all zero-sum free sequences of maximal length \(mn + n - 2 = D(G) - 1 \). For \(k = 1 \), this means characterizing all minimal zero-sum sequences of maximal length \(mn + n - 1 = D(G) \). For \(k = n - 1 \), this means characterizing all extremal sequences of length \(mn + 2n - 3 = \eta(G) - 1 \) with \(0 \notin \Sigma_{\leq mn}(S) \). The precise structure in all three of these cases is known.

For \(k \leq 1 \), this was an involved undertaking achieved by combining the individual results of Gao, Geroldinger, Grynkiewicz, Reiher and Schmid from [8] [10] [31] [20] [28] with the numerical verification of the case when \(m = 1 \) and \(n = 9 \) [2]. This characterization has since proved quite useful, being employed in the proofs of several other results, e.g., [1] [12] [16] [17] [26] [30] [27].

For \(k = n - 1 \), this was accomplished by Schmid [30]. For simplicity, we assume \(m = 1 \) in the following discussion. The group \(G \cong C_n \oplus C_n \) has Property C if every sequence \(S \) with \(|S| = \eta(G) - 1 = 3n - 3 \) and \(0 \notin \Sigma_{\leq n}(S) \) must have the form \(S = e_1^{[n-1]} \cdot e_2^{[n-1]} \cdot e_3^{[n-1]} \). It was shown in [9] that, assuming Conjecture 1 holds for \(k = 1 \) in \(G \) (meaning, assuming the structure of minimal zero-sums of length \(2n - 1 \) were known), then Property C holds for \(G \). Once this case in Conjecture 1 was resolved (as described above), this meant Property C was established without condition. However, it was a surprisingly nontrivial question to determine which \(e_1, e_2, e_3 \in G \) would give rise to a sequence \(S = e_1^{[n-1]} \cdot e_2^{[n-1]} \cdot e_3^{[n-1]} \) with \(0 \notin \Sigma_{\leq n}(S) \). For \(n = p \) prime, a derivation of the precise characterization from Property C can be found in [5], and the derivation of the precise characterization from Property C in the general case (when \(n \) may be composite) follows as a particular case of a more general result of Schmid [30]. The exact formulation is stated in Conjecture 1.4. In Section 2, we give a short alternative proof of this case, deriving the precise characterization given in Conjecture 1.4 from Property C using the arguments from [22].

The structure of sequences \(S \) of terms from \(C_n \oplus C_n \) with \(|S| = 2n - 2 + k \) but \(0 \notin \Sigma_{\leq 2n-1-k}(S) \) was studied in [23] [21] for \(k \in [2, n - 2] \). In [23], the case when \(n \) is prime and \(k \leq \frac{2n+1}{3} \) was resolved, showing all such sequences must have the form

\[
S = e_1^{[n-1]} \cdot e_2^{[n-1]} \cdot (e_1 + e_2)^{[k]}
\]

for some basis \((e_1, e_2) \) for \(G \cong C_n \oplus C_n \). It was conjectured in [23] [32] that this should also hold for \(k \in [2, n - 2] \) (we remark that the conjecture appeared in an earlier submitted version of [23] authored only by Wang and Zhao), and the results of [21] extended this conjecture to general \(n \) as follows, where we incorporate the already established cases \(k \leq 1 \) and \(k = n - 1 \) into the statement.
Conjecture 1. Let $n \geq 2$, let $G \cong C_n \oplus C_n$, let $k \in [0, n-1]$, and let S be a sequence of terms from G with

$$|S| = 2n - 2 + k$$

and $0 \notin \Sigma_{\leq 2n-1-k}(S)$. Then there exists a basis (e_1, e_2) for G such that the following hold.

1. If $k = 0$, then $S \cdot g$ satisfies Item 2, where $g = -\sigma(S)$.

2. If $k = 1$, then $S = e_1^{[n-1]} \cdot \prod_{i \in [1, mn]} (x_i e_1 + e_2)$, for some $x_1, \ldots, x_{mn} \in [0, n-1]$ with $x_1 + \ldots + x_{mn} \equiv 1 \mod n$.

3. If $k \in [2, n-2]$, then $S = e_1^{[n-1]} \cdot e_2^{[sn-1]} \cdot (e_1 + e_2)^{(m-s)n+k}$, for some $s \in [1, m]$.

4. If $k = n - 1$, then $S = e_1^{[n-1]} \cdot e_2^{[sn-1]} \cdot (xe_1 + e_2)^{(m-s)n+n-1}$, for some $s \in [1, m]$ and $x \in [1, n-1]$ with $\gcd(x, n) = 1$.

In [21], a multiplicative property for the conjecture was established, showing that, if the structure from Conjecture 1 holds for k_m in $C_m \oplus C_m$ and for k_n in $C_n \oplus C_n$, where $k_m \in [0, m-1]$ and $k_n \in [0, n-1]$, then Conjecture 1 also holds for $k = k_m + k_n$ in $C_{mn} \oplus C_{mn}$. This reduced the characterization problem in $C_n \oplus C_n$ to the case when n is prime.

The characterization in the case $C_n \oplus C_{mn}$ with $m \geq 2$, even including a precise statement of the potential structure for sequences of length $mn + n-2 + k$ avoiding a nontrivial zero-sum of length at most $mn + n-1 - k$, was completely open apart from the boundary cases $k \leq 1$ and $k = n - 1$. Our main result is Theorem 2.1, which fully determines the structure of S for k in $C_n \oplus C_{mn}$ assuming Conjecture 1 holds for k in $C_n \oplus C_n$, as follows. Note, Theorem 2.2, handling the case $k = n - 1$, is due to Schmid [30] and is incorporated into the statement of Theorem 2 for completeness.

Theorem 2. Let $m \geq 1$, let $n \geq 3$, let $G \cong C_n \oplus C_{mn}$, let $k \in [2, n-1]$ and let S be a sequence of terms from G with

$$|S| = mn + n - 2 + k$$

and $0 \notin \Sigma_{\leq mn+n-1-k}(S)$. If Conjecture 1 holds for k in $C_n \oplus C_n$, then there exists a basis (e_1, e_2) for G with $\ord(e_2) = mn$ or a generating set $\{g_1, g_2\}$ for G with $\ord(g_1 + g_2) = mn$ such that the following hold.

1. If $k \in [2, n-2]$, then either

 (a) $S = e_1^{[n-1]} \cdot e_2^{[sn-1]} \cdot (e_1 + e_2)^{(m-s)n+k}$, for some $s \in [1, m]$, or

 (b) $S = g_1^{[n-1]} \cdot g_2^{[sn-1]} \cdot (g_1 + g_2)^{(m-s)n+k}$.

2. If $k = n - 1$, then either

 (a) $S = e_1^{[n-1]} \cdot e_2^{[sn-1]} \cdot (xe_1 + e_2)^{(m-s)n+n-1}$, for some $s \in [1, m]$ and $x \in [1, n-1]$ with $\gcd(x, n) = 1$, or
As noted in the introduction, Conjecture 1 holding for a zero-sum subsequence of \(G \), which in turn is reduced to the case \(C_p \oplus C_p \) with \(p \geq 11 \) prime by the results of [21]. The reduction to the case \(C_n \oplus C_n \) is the main aim of the paper and emulates the strategy successfully used to characterize the extremal sequences for the Davenport Constant (the case \(k \leq 1 \), where the characterization problem was reduced to case \(C_n \oplus C_n \) by Schmid [31] and resolved in this case by the results from [8] [10] [20] [28] (as well as the case \(n = 9 \) [2]). However, combining Theorem 2 with known cases in Conjecture 1 yields many group \(C_n \oplus C_m \) where the structure of extremal sequences is determined here without restriction. As several examples, we list the following corollaries.

Corollary 3. If \(m \geq 1 \) and \(n = 2^{s_1}3^{s_2}5^{s_3}7^{s_4} \geq 2 \) with \(s_1, s_2, s_3, s_4 \geq 0 \), then the conclusion of Theorem 2 holds in \(C_n \oplus C_m \) for all \(k \in [2, n-1] \).

Corollary 4. For any prime power \(n \geq 2 \) and \(m \geq 1 \), the conclusion of Theorem 2 holds in \(C_n \oplus C_m \) for all \(2 \leq k \leq \frac{2n+1}{3} \).

Corollary 5. For \(n \geq 4 \) composite, \(m \geq 1 \) and \(d \mid n \) a proper, nontrivial divisor, the conclusion of Theorem 2 holds in \(C_n \oplus C_m \) when \(k = n - d - 1 \geq 2 \) or \(k = n - 2d + 1 \geq 2 \).

2 The case \(k = n - 1 \)

As noted in the introduction, Conjecture 1 holding for \(k = 1 \) in \(G \cong C_n \oplus C_n \) implies that Property C holds for \(G \), meaning any sequence \(S \) of \(3n - 3 \) terms from \(G \cong C_n \oplus C_n \) with \(0 \notin \Sigma_{\leq n}(S) \) must have the form \(S = e_1^{[n-1]} \cdot e_2^{[n-1]} \cdot e_3^{[n-1]} \) for some distinct \(e_1, e_2, e_3 \in G \). The goal of this section is to give a new proof of the characterization of which elements \(e_1, e_2, e_3 \in G \) result in a sequence \(S = e_1^{[n-1]} \cdot e_2^{[n-1]} \cdot e_3^{[n-1]} \) with \(0 \notin \Sigma_{\leq n}(S) \). Clearly, \(0 \notin \Sigma_{\leq n}(S) \) ensures \(\text{ord}(e_1) = \text{ord}(e_2) = \text{ord}(e_3) = n \). Thus there is some \(f_1 \in G \) such that \((f_1, e_2) \) is a basis for \(G \) unless \(\text{gcd}(x, n) := n/h > 1 \). However, if this were the case, then \(T = e_1^{[h]} \cdot e_2^{[xh]} \) is a zero-sum subsequence of \(S \) for some \(x \in \{0, \frac{n}{h} - 1\} \) having length \(|T| = h + xh \leq n \), contradicting that \(0 \notin \Sigma_{\leq n}(S) \). Therefore \((e_1, e_2) \) is a basis for \(G \), and likewise \((e_1, e_3) \) and \((e_2, e_3) \) must also be bases for \(G \). However, obtaining further restriction on \(e_1, e_2 \) and \(e_3 \) is much less trivial. We begin with the following lemma showing how the characterization is related to a statement involving the index (see [22]) of the sequence \((-x_1) \cdot (-x_2) \cdot 1 \), where \(e_3 = x_1e_1 + x_2e_2 \), and continue afterwards with a series of lemmas modifying slightly the main line of argument for the prime case from [22].

Lemma 6. Let \(G \cong C_n \oplus C_n \) with \(n \geq 2 \). Suppose \((e_1, e_2) \) is a basis for \(G \) and \(S = e_1^{[n-1]} \cdot e_2^{[n-1]} \cdot (x_1e_1 + x_2e_2)^{[n-1]} \), where \(x_1, x_2 \in [0, n-1] \). Then \(0 \notin \Sigma_{\leq n}(S) \) if and only if \((-x_1k)_n + (-x_2k)_n + (k)_n > n \) for every \(k \in [1, n-1] \).

Proof. Consider an arbitrary zero-sum subsequence \(T \) of \(S \) and then let \(T = e_1^{[k_1]} \cdot e_2^{[k_2]} \cdot (x_1e_1 + x_2e_2)^{[k]} \), where \(k_1, k_2, k \in [0, n-1] \). Note we cannot have \(k = 0 \) (assuming \(T \)
nontrivial) as \((e_1, e_2)\) is a basis, so \(k \in [1, n - 1]\). Then we have \(k_1 = (-x_1k)_n\) and \(k_2 = (-x_2k)_n\). Conversely, given any \(k \in [1, n - 1]\), the subsequence \(T\) defined above with \(k_1 = (-x_1k)_n\) and \(k_2 = (-x_2k)_n\) will be a nontrivial zero-sum. Now \[|T| = k_1 + k_2 + k = (-x_1k)_n + (-x_2k)_n + (k)_n.\]

If \((-x_1k)_n+(-x_2k)_n+(k)_n \leq n\) for some \(k \in [1, n - 1]\), then the corresponding subsequence \(T\) defined using \(k\) is a nontrivial zero-sum subsequence of length at most \(n\), showing \(0 \in \Sigma_{\leq n}(S)\). On the other hand, if \(0 \in \Sigma_{\leq n}(S)\), then there is a nontrivial zero-sum of the form \(T = e_1^{[k_1]} \cdot e_2^{[k_2]} \cdot (x_1e_1 + x_2e_2)^{[k]}\), for some \(k \in [1, n - 1]\), which satisfies \(|T| = (-x_1k)_n + (-x_2k)_n + (k)_n \leq n\). \(\square\)

The following is special case of [22, Proposition 2.1.1].

Lemma 7. Let \(n \geq 2\) and let \(x_1, x_2, x_3 \in \mathbb{Z}\) with \(x_1 + x_2 + x_3 \equiv 0 \mod n\). There there exists \(k \in [1, n - 1]\) with \(\gcd(k, n) = 1\) and \((kx_1)_n + (kx_2)_n + (kx_3)_n \leq n\).

Lemma 8. Let \(n \geq 2\). For \(x \in [1, n - 1]\) with \(\gcd(x, n) = 1\), let \(X(x) = \left\{ \left\lfloor \frac{x}{n} \right\rfloor, \left\lfloor \frac{2x}{n} \right\rfloor, \ldots, \left\lfloor \frac{(x-1)n}{n} \right\rfloor \right\} \subseteq [2, n - 1]\).

1. \(|X(x)| = x - 1\).
2. Let \(d = \left\lfloor \frac{x}{n} \right\rfloor\). The difference between any two consecutive elements in \(X(x)\) is either \(d\) or \(d + 1\) with \(\min X(x) = d + 1\) and \(\max X(x) = n - d\) (for \(x \geq 2\)).
3. \([2, n - 1] = X(x) \cup (x - n)\) is a disjoint union.
4. Let \(\Delta(u, x) = (ux)_n - ((u - 1)x)_n\). For every \(u \in [1, n - 1]\), \(\Delta(u, x) \in \{x, x - n\}\) with \(u \in X(x)\) iff \(\Delta(u, x) = x - n\).

Proof. Item 1–3 are given in [22, Lemma 2.4]. For Item 4, we have \(-n < \Delta(u, x) < n\), and since \(\Delta(u, x) \equiv x \mod n\), it follows that \(\Delta(u, x) \in \{x, x - n\}\). Let \(u \in \mathbb{Z}\) and \(t = \left\lceil \frac{ux}{n} \right\rceil\), so \(tn \leq ux < (t + 1)n\) and \(ux = (ux)_n + tn = ((u - 1)x)_n + \Delta(u, x) + tn\). Hence \(\Delta(u) = x - n\) when \((u - 1)x = ((u - 1)x)_n + (t - 1)n < tn\), and \(\Delta(u) = x\) when \((u - 1)x = ((u - 1)x)_n + tn \geq tn\). Thus \(\Delta(u) = x - n\) if and only if \((u - 1)x < tn\). Since \(tn \leq ux\) always holds, this is equivalent to \(t \leq u \leq \frac{tn}{x} + 1\), and as \(u\) is an integer, this is equivalent to \(u = \left\lceil \frac{tn}{x} \right\rceil\). Therefore \(\Delta(u, x) = x - n\) if and only if \(u = \left\lceil \frac{tn}{x} \right\rceil\), where \(t = \left\lceil \frac{ux}{n} \right\rceil\). Now restrict to \(u \in [1, n - 1]\). Since \(u < n\), we have \(t = \left\lceil \frac{ux}{n} \right\rceil \leq x - 1\). Since \(u, x \geq 1\), we have \(t = \left\lceil \frac{ux}{n} \right\rceil\) with \(u \geq 1\) forces \(t \neq 0\), while \(u = \left\lceil \frac{tn}{x} \right\rceil = \frac{tn}{x}\) with \(t \in [1, x - 1]\) (and \(r \in [0, x - 1]\)) ensures \(t = \frac{ux - r}{n} = \left\lceil \frac{ux}{n} \right\rceil\) (as \(0 \leq r < x \leq n\)). As a result, for \(u \in [1, n - 1]\), we find that \(\Delta(u, x) = x - n\) if and only if \(u = \left\lceil \frac{tn}{x} \right\rceil\) for some \(t \in [1, x - 1]\), as desired. \(\square\)
Lemma 9. Let \(n \geq 2 \) and let \(x_1, x_2, x_3 \in \mathbb{Z} \) with \(\gcd(x_i, n) = 1 \) for all \(i \in [1, 3] \). If \((kx_1)_n + (kx_2)_n + (kx_3)_n > n \) for every \(k \in [1, n-1] \), then \(x_i + x_j \equiv 0 \mod n \) for some distinct \(i, j \in [1, 3] \).

Proof. If \(\gcd(x_1+x_2+x_3, n) \neq 1 \), then there exists some \(r \in [1, n-1] \) such that \(rx_1 + rx_2 + rx_3 \equiv 0 \mod n \). Applying Lemma 7 to \(rx_1, rx_2, rx_3 \in \mathbb{Z} \), we find some \(s \in [1, n-1] \) with \(\gcd(s, n) = 1 \) and \((srx_1)_n + (srx_2)_n + (srx_3)_n \leq n \). But then, setting \(k = (sr)_n \in [0, n-1] \), we have \((kx_1)_n + (kx_2)_n + (kx_3)_n \leq n \) with \(k = (sr)_n \neq 0 \) since \(r \in [1, n-1] \) and \(\gcd(s, n) = 1 \), which is contrary to hypothesis. Therefore, we conclude that \(\gcd(x_1 + x_2 + x_3, n) = 1 \).

As a result, replacing \(x_1, x_2, x_3 \in \mathbb{Z} \) with \(sx_1, sx_2, sx_3 \in \mathbb{Z} \), where \(s \in \mathbb{Z} \) is an integer congruent to the inverse of \(x_1 + x_2 + x_3 \mod n \), we can w.l.o.g. assume

\[
x_1 + x_2 + x_3 \equiv 1 \mod n.
\]

Replacing each \(x_i \) by \((x_i)_n \), we can w.l.o.g. assume \(x_1, x_2, x_3 \in [1, n-1] \). If \(n = 2 \), then \(x_1 = x_2 = x_3 = 1 \), and the lemma holds. Therefore we may assume \(n \geq 3 \).

Claim 1. For every \(u \in [1, n-1] \),

\[
(ux_1)_n + (ux_2)_n + (ux_3)_n = n + u.
\]

Proof. Indeed, \((ux_1)_n + (ux_2)_n + (ux_3)_n = u(x_1 + x_2 + x_3) \equiv u \), so \((ux_1)_n + (ux_2)_n + (ux_3)_n = kn + u \) for some \(k \in \{0, 1, 2\} \). By hypothesis \(kn + u \geq n + 1 \), so \((ux_1)_n + (ux_2)_n + (ux_3)_n \in \{n + u, 2n + u\} \) for every \(u \in [1, n-1] \). Since \(u \in [1, n-1] \) and \(\gcd(x_i, n) = 1 \) for every \(i \in [1, 3] \), we have \((ux_i)_n \neq 0 \) and \(((n-u)x_i)_n = n - (ux_i)_n \) for all \(i \in [1, 3] \). Consequently, if \((ux_1)_n + (ux_2)_n + (ux_3)_n = 2n + u \) for some \(u \in [1, n-1] \), then we find \(((n-u)x_1)_n + ((n-u)x_2)_n + ((n-u)x_3)_n = (n - (ux_1)_n) + (n - (ux_2)_n) + (n - (ux_3)_n) = 3n - (2n + u) = n - u \leq n \) which is contrary to hypothesis. \(\Box \) (Claim 1)

Let \(X_i = X(x_i) \) and \(\Delta(u, x_i) \) for \(i \in [1, 3] \) be as defined in Lemma 8. The special case \(u = 1 \) in Claim 1 ensures

\[
x_1 + x_2 + x_3 = n + 1.
\]

Hence, if \(x_k = 1 \) for some \(k \in [1, 3] \), then the desired conclusion follows with \(\{i, j\} = [1, 3] \setminus k \), so we may assume

\[
x_1, x_2, x_3 \geq 2,
\]

ensuring \(X_1, X_2 \) and \(X_3 \) are each nonempty (by Lemma 8.1).

Claim 2. \([2, n-1] = X_1 \cup X_2 \cup X_3 \) is a disjoint union.

Proof. By Claim 1, for every \(u \in [2, n-1] \), we have

\[
\sum_{i=1}^{3} \Delta(u, x_i) = \sum_{i=1}^{3} (ux_i)_n - \sum_{i=1}^{3} ((u-1)x_i)_n = (n + u) - (n + u - 1) = 1.
\]

On the other hand, if \(u \) belongs to \(s \in [0, 3] \) of the sets \(X_1, X_2 \) and \(X_3 \), then Lemma 8.4 implies \(1 = \sum_{i=1}^{3} \Delta(u, x_i) = x_1 + x_2 + x_3 - sn = 1 + (1-s)n \), forcing \(s = 1 \), which completes the claim as \(X_i = X(x_i) \subseteq [2, n-1] \) holds trivially for any \(x_i \in [1, n-1] \). \(\Box \) (Claim 2)
Note that $2 \in X_i = X(x_i)$ precisely when \(\left\lfloor \frac{n}{x_i} \right\rfloor = 2 \), i.e., when \(\frac{n}{2} \leq x_i \leq n - 1 \). Consequently, in view of Claim 2 and \(n \geq 3 \), we can w.l.o.g. assume
\[
x_2, x_3 < \frac{n}{2} \leq x_1.
\]
Let \(x'_1 = n - x_1 \in [1, \frac{n}{2}] \) and set \(X'_1 = X(x'_1) \). By Lemma 8.3 and Claim 2, we have
\[
X'_1 = [2, n - 1] \setminus X_1 = X_2 \cup X_3,
\]
with the union disjoint. Hence, since \(X_2 \) and \(X_3 \) are nonempty, as noted above, it follows that \(X'_1 \) is also nonempty, ensuring \(x'_1 \geq 2 \) (by Lemma 8.1).

As in Lemma 8, let \(d_2 = \left\lfloor \frac{n}{x_2} \right\rfloor \), \(d_3 = \left\lfloor \frac{n}{x_3} \right\rfloor \) and \(d'_1 = \left\lfloor \frac{n}{x'_1} \right\rfloor \). Note \(d_2, d_3, d'_1 \geq 2 \) since \(x_2, x_3, x'_1 \leq \frac{n}{2} \). By Lemma 8.2, the minimal element in \(X_i \) for \(i = 2, 3 \) (resp. the minimal element in \(X'_1 \)) is \(d_i + 1 \) (resp. \(d'_1 + 1 \)). Since \(X'_1 = X_2 \cup X_3 \), the minimal element \(d'_1 + 1 \) in \(X'_1 \) must either equal the minimal element in \(X_2 \) or the minimal element in \(X_3 \), say w.l.o.g. the former, in which case \(d'_1 + 1 = d_2 + 1 \in X_2 \). Denote this joint value by \(d := d'_1 = d_2 \).

Claim 3. \(X'_1 = X_2 \).

Proof. By (2), we have \(X_2 \subseteq X'_1 \), and the first element of \(X'_1 \) is in \(X_2 \) by assumption, equal to the first element of \(X_2 \). Let \(d + 1 = z_1 < z_2 < \cdots < z_{x'_1-1} \) denote the elements of \(X'_1 \). Assume \(z_k \in X_2 \) for \(k < x'_1 - 1 \). By Lemma 8.2 applied to \(X'_1 \), since \(d \geq 2 \), \(z_{k+1} \) is one of the values \(z_k + d \) or \(z_k + d + 1 \), and exactly one of these elements is in \(X'_1 \). But \(d_2 = d \), so \(d_2 \) applied to \(X_2 \) yields that the next element of \(X_2 \) after \(z_k \in X_2 \) is also either \(z_k + d \) or \(z_k + d + 1 \). Since only one of these two possibilities lies in \(X'_1 \), namely the value between them equal to \(z_{k+1} \), we are forced to conclude from \(X_2 \subseteq X'_1 \) that the next element in \(X_2 \) after \(z_k \in X_2 \) is \(z_{k+1} \in X_2 \). This shows, via induction on \(k \), that \(X_2 \) equals the first \(|X_2| \) elements of \(X'_1 \). However, Lemma 8.2 implies that \(\max X_2 = n - d_2 = n - d = n - d'_1 = \max X'_1 \), which combined with the previous conclusion forces \(X'_1 = X_2 \).

Since \(X'_1 = X_2 \cup X_3 \) is a disjoint union, we conclude from Claim 3 that \(X_3 = \emptyset \), whence \(x_3 - 1 = |X_3| = 0 \) by Lemma 8.1, contradicting (1). \(\square \)

Proposition 10. For any \(n \geq 2 \), Conjecture 1.4 holds for \(k = n - 1 \) in \(C_n \oplus C_n \).

Proof. Let \(G \cong C_n \oplus C_n \) and let \(S \in \mathcal{F}(G) \) be a sequence with \(|S| = 3n - 3 \) and \(0 \notin \Sigma_{\leq n}(S) \). Then \(S = e_1^{[n-1]} \cdot e_2^{[n-1]} \cdot e_3^{[n-1]} \) for some \(e_1, e_2, e_3 \in G \) which pairwise form bases for \(G \), as noted at the start of Section 2. Write \(e_3 = x_1e_1 + x_2e_2 \) with \(x_1, x_2 \in [1, n - 1] \). By Lemma 6, the hypothesis that \(0 \notin \Sigma_{\leq n}(S) \) is equivalent to \((-x_1 \cdot k)_n + (-x_2 \cdot k)_n + (k \cdot 1)_n > n \) holding for all \(k \in [1, n - 1] \). Since \((e_1, e_3) \) and \((e_2, e_3) \) are both bases, we must have \(\gcd(x_1, n) = \gcd(x_2, n) = 1 \). Applying Lemma 9 using the elements \(-x_1, -x_2 \) and 1, we deduce that either \(x_1 + x_2 \equiv 0 \mod n \), or \(x_1 = 1 \), or \(x_2 = 1 \). If \(x_1 = 1 \), then the conclusion of Conjecture 1.4 holds using the basis \((e_2, e_1) \). If \(x_2 = 1 \), then the conclusion of Conjecture 1.4 holds using the basis \((e_1, e_2) \). If \(x_1 + x_2 \equiv 0 \mod n \), then \(e_3 = x_1e_1 - x_1e_2 \).
In this final case, letting \(y \in [1, n - 1] \) be the multiplicative inverse of \(x_1 \) modulo \(n \), we find that \(ye_3 = e_1 - e_2 \) and \(e_1 = ye_3 + e_2 \), in which case Conjecture 1.4 holds using the basis \((e_3, e_2)\), which completes the proof. \(\square \)

3 Reduction to the Diagonal Case

The goal of this section is to prove Theorem 2.1 as well as the three corollaries giving examples where our results hold without restriction. For the proof, we will need the following characterization of maximal length minimal zero-sums in a cyclic group [14][Corollary 5.4.6] [15][Corollary 4.4].

Theorem 11. Let \(n \geq 2 \), let \(G \cong C_n \). If \(S \in \mathcal{F}(G) \) is a minimal zero-sum sequence of length \(|S| = D(G) = n\), then \(S = g^{[n]} \) for some \(g \in G \) with \(\text{ord}(g) = n \). If \(S \in \mathcal{F}(G) \) is a zero-sum free sequence of length \(|S| = D(G) - 1 = n - 1\), then \(S = g^{[n-1]} \) for some \(g \in G \) with \(\text{ord}(g) = n \).

We continue with the proof of Theorem 2.1.

Proof of Theorem 2.1. Let \(G \cong C_n \oplus C_{mn} \) and let \(\phi : G \rightarrow G \) be a homomorphism with \(\ker \phi \cong C_m \) and \(\phi(G) \cong C_n \oplus C_n \).

Since \(k \in [2, n-2] \), we have \(n \geq 4 \). Let \(S \in \mathcal{F}(G) \) be a sequence with
\[
|S| = mn + n - 2 + k \quad \text{and} \quad 0 \notin \Sigma_{\leq n+k}(S).
\] (3)

Define a block decomposition of \(S \) to be a factorization
\[
S = W \cdot W_1 \cdot \ldots \cdot W_{m-1}
\]
with \(1 \leq |W_i| \leq n \) and \(\phi(W_i) \) zero-sum for each \(i \in [1, m - 1] \). Since \(s_{\leq n}(\phi(G)) = s_{\leq n}(C_n \oplus C_n) = 3n - 2 \) and \(|S| = (m - 2)n + 3n - 2 + k \geq (m - 2)n + 3n - 2 \), it follows by repeated application of \(s_{\leq n}(\phi(G)) \) that \(S \) has a block decomposition.

Claim A. If \(S = W \cdot W_1 \cdot \ldots \cdot W_{m-1} \) is a block decomposition of \(S \), then \(|W_i| = n \) for all \(i \in [1, m - 1] \), \(|W| = 2n - 2 + k \), \(0 \notin \Sigma_{\leq 2n-1-k}(\phi(W)) \), and \(0 \notin \Sigma_{\leq n-1}(\phi(S)) \). In particular, Conjecture 1 holds for \(\phi(W) \).

Proof. Suppose \(0 \in \Sigma_{\leq 2n-1-k}(\phi(W)) \). Then there is a nontrivial subsequence \(W_0 \mid W \) with \(|W_0| \leq 2n-1-k \) and \(\phi(W_0) \) zero-sum. Now \(\sigma(W_0) \cdot \sigma(W_1) \cdot \ldots \cdot \sigma(W_{2n-2+k}) \) is a sequence of \(m \) terms from \(\ker \phi \cong C_m \). Since \(D(C_m) = m \), it follows that it has a nontrivial zero-sum subsequence, say \(\prod_{i \in J} \sigma(W_i) \) for some nonempty \(J \subseteq [0, m - 1] \). But then \(\prod_{i \in J} W_i \) is a nontrivial zero-sum subsequence of \(S \) with \(\prod_{i \in J} |W_i| \leq (m - 1)n + (2n - 1 - k) = mn + n - 1 - k \), contrary to (3). So we instead conclude that \(0 \notin \Sigma_{\leq 2n-1-k}(\phi(W)) \).
As a result, since \(s_{\leq 2n-1-k}(\varphi(G)) = s_{\leq 2n-1-k}(C_n \oplus C_n) = 2n-1+k \), and since \(|W_i| \leq n\) for all \(i \in [1, m-1] \), it follows that

\[
2n - 2 + k = mn + n - 2 + k - (m - 1)n \leq |S| - \sum_{i=1}^{m-1} |W_i| = |W| \leq 2n - 2 + k,
\]

forcing equality to hold in all estimates, i.e., \(|W_i| = n\) for \(i \in [1, m - 1] \) and \(|W| = 2n - 2 + k\). If \(0 \in \Sigma_{\leq n-1}(\varphi(S)) \), then we can find a nontrivial zero-sum \(W_1' \mid S \) with \(|W_1'| \leq n - 1\) and \(\varphi(W_1') \) zero-sum. Applying the argument used to show the existence of a block decomposition, we obtain a block decomposition \(S = W' \cdot W_1' \cdots W_{m-1}' \) with \(|W_1'| \leq n - 1\), contradicting what was just shown. Therefore \(0 \notin \Sigma_{\leq n-1}(\varphi(S)) \). Finally, since \(|W| = 2n - 2 + k\) and \(0 \notin \Sigma_{\leq 2n-1-k}(\varphi(W)) \) with Conjecture 1 holding for \(k \) in \(C_n \oplus C_n \) by hypothesis, it follows that Conjecture 1 holds for \(\varphi(W) \). \(\square \) (Claim A)

Suppose

\[
S = \tilde{W} \cdot W_0 \cdot W_1 \cdots W_{m-1}
\]

with each \(\varphi(W_i) \) a nontrivial zero-sum for \(i \in [0, m - 1] \) and \(|\tilde{W}| \geq 2k - n - 1 \). We call this a weak block decomposition of \(S \) with associated sequence

\[
S_\sigma = \sigma(W_0) \cdot \sigma(W_1) \cdots \sigma(W_{m-1}) \in F(\ker \varphi).
\]

Since \(\ker \varphi \cong C_m \) and \(|S_\sigma| = m = D(C_m)\), it follows that \(S_\sigma \) contains a nontrivial zero-sum. In view of Claim A, we have \(|W_i| \geq n\) for all \(i \in [0, m-1] \). As a result, if \(S_\sigma \) contained a proper, nontrivial zero-sum subsequence, then \(S \) would have a nontrivial zero-sum of length at most \(|S| - |\tilde{W}| - n \leq (mn + n - 2 + k) - (2k - n - 1) - n = mn + n - 1 - k\), contrary to (3). We conclude that the associated sequence \(S_\sigma \) must be a minimal zero-sum of length \(D(C_m) = m \), in which case Theorem 11 implies that there is some \(g_0 \in \ker \varphi \) with \(\text{ord}(g_0) = m \) such that

\[
\sigma(W_0) = \sigma(W_1) = \ldots = \sigma(W_{m-1}) = g_0. \tag{4}
\]

Now let \(S = W \cdot W_1 \cdots W_{m-1} \) be a fixed but otherwise arbitrary block decomposition. In view of Claim A, we have \(|W| = 2n - 2 + k\) with \(0 \notin \Sigma_{\leq 2n-1-k}(\varphi(W)) \) and Conjecture 1 holding for \(\varphi(W) \) using \(k \in [2, n - 2] \). As a result, there is a basis \((\tilde{e}_1, \tilde{e}_2)\) for \(\varphi(G) \cong C_n \oplus C_n \) such that

\[
\varphi(W) = \tilde{e}_1^{[n-1]} \cdot \tilde{e}_2^{[n-1]} \cdot (\tilde{e}_1 + \tilde{e}_2)^{[k]},
\]

and there is a subsequence \(W_0 \mid W \) with

\[
\varphi(W_0) = \tilde{e}_1^{[n-k]} \cdot \tilde{e}_2^{[n-k]} \cdot (\tilde{e}_1 + \tilde{e}_2)^{[k]}.
\]

Setting \(\tilde{W} = W \cdot W_0^{[-1]} \), so

\[
\varphi(\tilde{W}) = \tilde{e}_1^{[k-1]} \cdot \tilde{e}_2^{[k-1]},
\]
we find $|\tilde{W}| = 2k - 2 > 2k - n - 1$ (as $n \geq 2$), meaning $S = \tilde{W} \cdot W_0 \cdot W_1 \cdots \cdot W_{m-1}$ is a weak block decomposition with associated sequence $S_\sigma = \sigma(W_0) \cdot \sigma(W_1) \cdots \cdot \sigma(W_{m-1})$ satisfying (4) for some $g_0 \in \ker \varphi$ with $\text{ord}(g_0) = m$.

Claim B. For any $j \in [1, m-1]$, if $W_j | W \cdot W_j$ is a subsequence with $|W_j| = n$ and $\varphi(W_j)$ zero-sum, then $\varphi(W \cdot W_j \cdot (W_j)[:-1]) = \varphi(W) = \bar{e}_1[n^{-1}] \cdot \bar{e}_2[n^{-1}] \cdot (\bar{e}_1 + \bar{e}_2)[k]$.

Proof. We can w.l.o.g. assume $j = 1$. Setting $W' = W \cdot W_1 \cdot (W_1)[:-1]$, we find that $S = W' \cdot W_2 \cdot W_3 \cdot \ldots \cdot W_{m-1}$ is a block decomposition, so Conjecture 1 must hold for $\varphi(W')$ by Claim A with respect to some basis (\bar{f}_1, \bar{f}_2), meaning $\varphi(W \cdot W_1 \cdot (W_1)[:-1]) = \varphi(W') = \bar{f}_1[n^{-1}] \cdot \bar{f}_2[n^{-1}] \cdot (\bar{f}_1 + \bar{f}_2)[k]$. We need to show $\{\bar{f}_1, \bar{f}_2\} = \{\bar{e}_1, \bar{e}_2\}$. Assuming by contradiction that this fails, we can w.l.o.g. assume $\bar{f}_1 \notin \{\bar{e}_1, \bar{e}_2\}$, ensuring f_1 has multiplicity at least $n - 1$ in $\varphi(W \cdot W_1)$. Note, since the n-term zero-sum $\varphi(W')$ cannot contain a term with multiplicity exactly $n - 1$, any term $g \notin \{\bar{e}_1, \bar{e}_2\}$ with multiplicity at least $n - 1$ in $\varphi(W \cdot W_1)$ must either have $\varphi(W_1) = g[n]$ or else $g = \bar{e}_1 + \bar{e}_2$ with $\nu_{\bar{e}_1 + \bar{e}_2}(\varphi(W_1)) \geq n - 1 - k \geq 1$. In both cases, there cannot be a second term $g' \notin \{\bar{e}_1, \bar{e}_2\}$ with multiplicity at least $n - 1$, the former since $\nu_{\bar{e}_1 + \bar{e}_2}(W_0 \cdot W_1) = k \leq n - 2$, and the latter since $\varphi(W_1)$ cannot contain a term with multiplicity exactly $n - 1$. As a result, we conclude that \bar{e}_1, \bar{e}_2 and \bar{f}_1 are the only terms with multiplicity at least $n - 1$ in $\varphi(W \cdot W_1)$, and thus w.l.o.g. $\bar{f}_2 = \bar{e}_2$.

Suppose $\bar{f}_1 = \bar{e}_1 + \bar{e}_2$. Then $\varphi(W') = (\bar{e}_1 + \bar{e}_2)[n^{-1}] \cdot \bar{e}_2[n^{-1}] \cdot (\bar{e}_1 + 2\bar{e}_2)[k]$, and since $n \geq 4$ ensures $\bar{e}_1 + 2\bar{e}_2 \neq \bar{e}_1$ with $\varphi(W_1)$ an n-term zero-sum, it follows that $\varphi(W_1) = \bar{e}_1[n]$. In such case, $\varphi(W_1) = (\bar{e}_1 + \bar{e}_2)[n^{-1}] \cdot \bar{e}_1[n^{-1}] \cdot (\bar{e}_1 + 2\bar{e}_2)[k]$, which is only zero-sum for $k = 1$, contradicting that $k \in [2, n - 2]$. So we conclude that $\bar{f}_1 \neq \bar{e}_1 + \bar{e}_2$, in which case we must instead have $\varphi(W_1) = \bar{f}_1[n]$. In this case, $\varphi(W') = \bar{f}_1[n^{-1}] \cdot \bar{e}_2[n^{-1}] \cdot (\bar{f}_1 + \bar{e}_2)[k]$ with $\bar{f}_1 + \bar{e}_2 \in \{\bar{e}_1, \bar{e}_1 + \bar{e}_2\}$. Thus either $\bar{f}_1 = \bar{e}_1 - \bar{e}_2$ or \bar{e}_1. Since $\bar{f}_1 \neq \bar{e}_1$, this means $\bar{f}_1 = \bar{e}_1 - \bar{e}_2 \neq \bar{e}_1 + \bar{e}_2$ (as $n \geq 3$), $\varphi(W') = \bar{f}_1[n^{-1}] \cdot \bar{e}_2[n^{-1}] \cdot \bar{e}_1[k] = (\bar{e}_1 - \bar{e}_2)[n^{-1}] \cdot \bar{e}_2[n^{-1}] \cdot \bar{e}_1[k]$ and $\varphi(W_1) = \bar{e}_1[n^{-1}] \cdot \bar{e}_1[k] \cdot \bar{f}_1[k]$. Hence, since $\varphi(W_1)$ is an n-term zero-sum, it follows that $\bar{e}_1 - \bar{e}_2 = \bar{f}_1 = \bar{e}_1 - k\bar{e}_2$, contradicting that $k \in [2, n - 2]$.

\(\Box\) (Claim B)

Claim C. $\varphi(W_j) \in \{\bar{e}_1[n], \bar{e}_2[n], (\bar{e}_1 + \bar{e}_2)[n]\}$ for every $j \in [1, m - 1]$.

Proof. Since each $\varphi(W_j)$, for $j \in [1, m - 1]$, is a zero-sum of length n by Claim A, it suffices to show $\text{Supp}(\varphi(W_1 \cdots W_{m-1})) \subseteq \{\bar{e}_1, \bar{e}_2, \bar{e}_1 + \bar{e}_2\}$. Let $g \in \text{Supp}(W_j)$ and $j \in [1, m - 1]$ be arbitrary. Since $0 \notin \Sigma_{n-1}(\varphi(S))$ by Claim A and $|W \cdot W_j \cdot g[:-1]| = 3n - 3 + k \geq 3n - 2 = s_{\leq n}(C_n \oplus C_n)$, there is subsequence $W_j | W \cdot W_j \cdot g[:-1]$ with $|W_j| = n$, $\varphi(W_j)$ zero-sum and $g \in \text{Supp}(W \cdot W_j \cdot (W_j)[:-1])$. Thus Claim B ensures that $\varphi(g) \in \{\bar{e}_1, \bar{e}_2, \bar{e}_1 + \bar{e}_2\}$, and as $g \in \text{Supp}(W_j)$ and $j \in [1, m - 1]$ were arbitrary, the claim follows.

\(\Box\) (Claim C)

Claim D. There are $g_1, g_2 \in G$ with $\varphi(g_1) = \bar{e}_1$, $\varphi(g_2) = \bar{e}_2$ and also $\text{Supp}(S) = \{g_1, g_2, g_1 + g_2\}$.
Proof. Let \(x \in \text{Supp}(\overline{W}) \) and \(y \in \text{Supp}(W_j) \), for some \(j \in [0, m - 1] \), be arbitrary terms with \(\varphi(x) = \varphi(y) = \tau_1 \), which exist as \(k \geq 2 \) and \(v_{\tau_1}(\varphi(W_0)) = n - k \geq 1 \). If we set \(\overline{W}' = \overline{W} \cdot x^{[-1]} \cdot y \) and \(W_j' = W_j \cdot y^{[-1]} \cdot x \), we find that \(S = \overline{W}' \cdot W_1 \cdot \ldots \cdot W_{j-1} \cdot W_j' \cdot W_{j+1} \cdot \ldots \cdot W_{m-1} \) is a weak product decomposition with associated sequence \(S_g \cdot \sigma(W_j)^{[-1]} \cdot \sigma(W_j') = g_0^{[m-1]} \cdot \sigma(W_j') \). As a result, Theorem 11 implies that \(g_0 - y + x = \sigma(W_j) - y + x = \sigma(W_j') = g_0 \), whence \(x = y \). This shows that all terms \(x \in \text{Supp}(S) \) with \(\varphi(x) = \tau_1 \) are equal to the same element (say) \(g_1 \in G \). The same argument shows that all terms \(x \in \text{Supp}(S) \) with \(\varphi(x) = \tau_2 \) are equal to the same element (say) \(g_2 \in G \).

Let \(z \in \text{Supp}(W_0 \cdot \ldots \cdot W_{m-1}) \) be an arbitrary term with \(\varphi(z) = \tau_1 + \tau_2 \), which exists as \(v_{\tau_1+\tau_2}(\varphi(W_0)) = k \geq 2 \). Let \(g \in \text{Supp}(W_j) \) with \(j \in [0, m - 1] \). Since \(k \geq 2 \), we have \(g_1 \cdot g_2 \mid \overline{W} \). If we set \(\overline{W}' = \overline{W} \cdot g_1^{[-1]} \cdot g_2^{[-1]} \cdot z \) and \(W_j' = W_j \cdot z^{[-1]} \cdot g_1 \cdot g_2 \), we find that \(S = \overline{W}' \cdot W_1 \cdot \ldots \cdot W_{j-1} \cdot W_j' \cdot W_{j+1} \cdot \ldots \cdot W_{m-1} \) is a weak product decomposition with associated sequence \(S_g \cdot \sigma(W_j)^{[-1]} \cdot \sigma(W_j') = g_0^{[m-1]} \cdot \sigma(W_j') \). As a result, Theorem 11 implies that \(g_0 - z + g_1 + g_2 = \sigma(W_j) - z + g_1 + g_2 = \sigma(W_j') = g_0 \), whence \(z = g_1 + g_2 \). This shows that all terms \(x \in \text{Supp}(W_0 \cdot \ldots \cdot W_{m-1}) \) with \(\varphi(z) = \tau_1 + \tau_2 \) are equal to the same element \(g_1 + g_2 \in G \). Since, by definition of \(\overline{W} \), there are no terms \(z \in \text{Supp}(\overline{W}) \) with \(\varphi(z) = \tau_1 + \tau_2 \), the claim follows.

\(\square \) (Claim D)

In view of Claim D and (4), we find that
\[
g_0 = \sigma(W_0) = (n - k)g_1 + (n - k)g_2 + k(g_1 + g_2) = ng_1 + ng_2. \tag{5}
\]
Since \(\varphi(g_1 + g_2) = \tau_1 + \tau_2 \) has order \(n \), it follows that \(n \) divides \(\text{ord}(g_1 + g_2) \), which, combined with \(n(g_1 + g_2) = g_0 \) having \(\text{ord}(g_0) = m \), forces \(\text{ord}(g_1 + g_2) = mn \). If \(\langle g_1, g_2 \rangle = G' \) were a proper subgroup of \(G \cong C_n \oplus C_{mn}, \) then \(\text{ord}(g_1 + g_2) = mn \) ensures that \(\langle g_1, g_2 \rangle \cong C_n \oplus C_{mn} \) for some proper divisor \(n' \mid n \). In such case, \(S \) would be a sequence of terms from \(G' \cong C_n \oplus C_{mn} \) with length \(|S| = (m + 1)n - 2 + k \geq mn + 2n' - 2 + k \geq \eta(G') \), ensuring that \(S \) has a zero-sum of length at most \(mn \), contrary to (3). Therefore \(\langle g_1, g_2 \rangle = G \), meaning \(\langle g_1, g_2 \rangle \) is a generating set for \(G \).

If there are \(i, j \in [1, m - 1] \) with \(\varphi(W_i) = \tau_1 [n] \) and \(\varphi(W_j) = \tau_2 [n] \), then Claim D ensures that \(W_i = g_1^{[n]} \) and \(W_j = g_2^{[n]} \). Combined with (4) and (5), this implies \(ng_1 + ng_2 = g_0 = \sigma(W_i) = ng_1 \) and \(ng_1 + ng_2 = g_0 = \sigma(W_j) = ng_2 \), whence \(ng_1 = ng_2 = 0 \) and \(g_0 = ng_1 + ng_2 = 0 \), contradicting that \(\text{ord}(g_0) = m \geq 2 \). Therefore we can w.l.o.g. assume
\[
W_1, W_2, \ldots, W_{m-1} \in \{ g_2^{[n]}, (g_1 + g_2)^{[n]} \}.
\]
If \(W_1 = \ldots = W_{m-1} = (g_1 + g_2)^{[n]} \), then Theorem 2.1(b) holds, as desired. So we can w.l.o.g assume \(W_1 = g_2^{[n]} \), in which case (4) and (5) yield \(ng_1 + ng_2 = g_0 = \sigma(W_1) = ng_2, \) implying
\[
ng_1 = 0.
\]

Let \(s - 1 \in [1, m - 1] \) be the number of \(i \in [1, m - 1] \) with \(W_i = g_2^{[n]} \). Then
\[
S = g_1^{[n-1]} \cdot g_2^{[s-1]} \cdot (g_1 + g_2)^{(m-s)n+k}.
\]
Since $ng_1 = 0$, we have $\text{ord}(g_1) \leq n$. Thus
\[
n^2m = |G| = |\langle g_1, g_2 \rangle| = \frac{|\langle g_1 \rangle| \cdot |\langle g_2 \rangle|}{|\langle g_1 \rangle \cap \langle g_2 \rangle|} \leq n(mn),
\]
forcing equality to hold in all above estimates. As a result, $\text{ord}(g_1) = n$, $\text{ord}(g_2) = mn$ and $\langle g_1 \rangle \cap \langle g_2 \rangle = \{0\}$, meaning (g_1, g_2) is a basis for G, and now Theorem 2.1(a) holds, completing the proof.

To conclude the paper, we note that Corollaries 3, 4 and 5 follow immediately by combining Theorem 2 with the respective result from [21, Corollaries 1.3, 1.4 and 1.5]. These corollaries represent the cases in [21] where Conjecture 1 was established unconditionally for C_n^2.

References

